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Abstract

Prey (N) dependence [g(N)], predator (P) dependence [g(P) or g(N,P)], and ratio dependence [f(P/N)] are often seen as con-
trasting forms of the predator’s functional response describing predator consumption rates on prey resources in predator–prey
and parasitoid–host interactions. Analogously, prey-, predator-, and ratio-dependent functional responses are apparently alterna-
tive functional responses for other types of consumer–resource interactions. These include, for example, the fraction of flowers
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pollinated or seeds parasitized in pollination (pre-dispersal) seed-parasitism mutualisms, such as those between fig was
fig trees or yucca moths and yucca plants. Here we examine the appropriate functional responses for how the fraction of fl
pollinated and seeds parasitized vary with the density of pollinators (predator dependence) or the ratio of pollinator and fl
densities (ratio dependence). We show that both types of functional responses can emerge from minor, but biologically imp
variations on a single model. An individual-based model was first used to describe plant–pollinator interactions. Conditi
upon on whether the number of flowers visited by the pollinator was limited by factors other than search time (e.g., by the nu
of eggs it had to lay, if it was also a seed parasite), and on whether the pollinator could directly find flowers on a plant, or
to search, the simulation results lead to either a predator-dependent or a ratio-dependent functional response. An analytic
was then used to show mathematically how these two cases can arise.
© 2005 Published by Elsevier B.V.
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1. Introduction

A functional response for a consumer–resource
system was originally proposed to represent how
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consumer (P) rate of resource consumption (amount of
resource consumed per unit time) changes with the size
or density of the resource population (N) (Solomon,
1949). Today there are three common ways of biolog-
ically and mathematically expressing such functional
responses for consumer–resource systems: (1) prey
dependence [g(N)], (2) predator dependence [g(P) or
g(N,P)], and (3) ratio dependence [g(P/N)] (Gutierrez,
1996; Abrams and Ginzburg, 2000). For prey depen-
dence, the consumption rate of the resource per unit
consumer (that is, the consumer’s functional response),
varies with resource density alone. For predator depen-
dence, the consumption rate of the resource depends
on the consumer density or the consumer and resource
densities. For ratio dependence, the consumer’s func-
tional response depends only on the ratio of consumer
and resource densities. Much debate occurs over which
functional response is most appropriate (Berryman,
1992; Ginzburg and Akc¸akaya, 1992; Arditi and Saiah,
1992; Gutierrez, 1992; Gleeson, 1994; Sarnelle, 1994;
Abrams, 1994; Berryman et al., 1995; Akc¸akaya et al.,
1995; Abrams, 1997), with no clear consensus among
ecologists (Abrams and Ginzburg, 2000; Jost, 2000).
Although the ratio-dependent functional response has
been in the literature for many decades (Thompson,
1939; Leslie, 1948), it is particularly controversial to
many ecologists, to a large degree because no clear
mechanistic derivation has been presented, as has been
done in the case of other functional responses. Our
intention here is not to review or resolve this debate, but
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structures from the population of apparent resources.
Therefore, many insects may spend time in handling
the same individual structures. Insect parasitoids also
have this same characteristic, although they search
out and oviposit on host insects, rather than plant
hosts.

For these cases, “functional response” is defined
to mean the fraction of flowers pollinated, or
seeds or insects parasitized. In the well-known
Nicholson–Bailey parasitoid model this fraction has
the form of a predator-dependent response; (1− e−sPT)
(Nicholson and Bailey, 1935), whereP is the para-
sitoid density ands (search rate) andT (time spent
searching) are constants.Thompson (1939)was first
to derive an alternative parasitoid model on the basis
of probability theory, describing the fraction of prey,
of density N, parasitized by a searching parasitoid
of densityP, as ratio-dependent; (1− e−sPT/N), where
the functional response depends onP/N rather thanP
(seeGutierrez, 1996; p. 66). This apparent dichotomy
is analogous to that between the prey- and ratio-
dependent responses for predator–prey interactions.
Because ratio dependence was not originally derived
mechanistically, it may be difficult to see the biologi-
cal connection between the two responses.

Here we show that both of these functional
responses may emerge from mechanistic models dif-
fering only in one assumption. To demonstrate this,
we use two individual-based models describing insect
pollination of flowers. (A model of seed or insect par-
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pply to other, less well recognized consumer–reso
ystems, mutualisms in particular (Holland et al.
n press).

In the same way that predator–prey systems
ise to assumptions of different forms of functio
esponses, other types of consumer–resource
ctions lead to alternative models of prey, preda
nd/or ratio dependence. Among these system
lant–insect interactions in which insects are poll

ors, seed parasites, or both. Pollinators both ex
esources from flowers and pollinate them (so
sually classified as mutualists). Insect seed para
viposit on flowers or fruits such that their larv
onsume the seeds. What is characteristic about
ases is that the consumer (mutualist or parasite
izes resources from the reproductive structure
lants, but usually does not physically remove th
sitism would be similar.) We then interpret the res
f these models from a single analytic model that
roduce either a ratio-dependent or predator-depe
i.e., pollinator-dependent) function.

. Materials and methods

.1. Individual-based model

Individual-based models (IBMs) simulate popu
ions or systems of populations as being compo
f discrete agents that represent individuals or gro
f individuals, with sets of traits that may va
mong individuals. Each agent has a unique his
f interactions with its environment and other age

BMs may be useful in developing a better und
tanding of functional responses, as they can ca
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the variation among individuals that is relevant to
the questions being addressed. Here IBMs are used
to simulate a number of individual insects pollinat-
ing individual flowers of a plant or patch of plants
over some time period. An example is senita cac-
tus flowers, which bloom for only one night, being
pollinated and oviposited on by senita moths dur-
ing the course of that night (Holland and DeAngelis,
2002).

2.2. Model 1

We performed simulations with different numbers
of flowers,F = 100, 200, 300, or 400 during the night,
subjected to visits from insect pollinators present in
the area in different numbers,M = 5, 10, 15,. . ., or
150. Each pollinator was simulated independently, and
allowed to spend some randomly chosen fraction of
the night (from 0 to 1) around the plant. The pollinator
was simulated to visit and pollinate flowers on the plant.
The steps in this simulation were as follows. For each
pollinator:

• The fraction of the night (10 h) that the pollinator
was in the vicinity of the plant was chosen from a
uniform random distribution between 0 and 1.

• Using the rate of flowers per hour visited (assumed
the same for all pollinators), a particular realization
of flowers visited (and pollinated) was chosen using
a Poisson distribution in time.

• a-
ual
han

one insect to visit the same flower, but multiple visits
to one flower counted as one pollination.

• No explicit assumption was made on ‘handling’ time
needed to pollinate a flower, as it is likely to be small.
Nonetheless, the number of visits of pollinators to
flowers was assumed small (mean of two visits per
hour). This small rate may be reasonable for pollina-
tor/seed predators, because their visits to plants are
also associated with ovipositing a limited number of
eggs.

The number of flowers pollinated was recorded for
each of the 30× 4 = 120 cases simulated. Because this
was a Monte Carlo simulation, stochastic variation was
incorporated.

Using least squares, we fit to the number of flowers
pollinated at the end of the night, both a predator-
dependent function,

P1(T ) = F (1 − e−a1M) (1)

and a ratio-dependent function,

P2(T ) = F (1 − e−a2M/F ) (2)

with one fitting parameter for each model;α1 andα2,
respectively. The terms within the parentheses of (1)
and (2) are the functional responses; that is, fraction of
flowers pollinated.

For model 1 the ratio-dependent response was
the best fit (Fig. 1). The parameter values and the
least square values for the entire set of four simula-
t prey
d or
d n-
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v

Which specific flowers were visited by the pollin
tor was chosen randomly. Visits to each individ
flower were recorded. It was possible for more t

ig. 1. Least square fits of ratio-dependent functional respons
n a single plant or cluster of plants. Four different numbers of
alue are:α2 = 10.4 (LS = 9000).
ions for each of the two cases (predator versus
ependence) were:α1 = 0.032 (LS = 52,371) (predat
ependence) andα2 = 10.4 (LS = 9000) (ratio depe

ta generated by individual-based model 1 of flowers pollinate
were used: 100, 200, 300, and 400. The parameter value and
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dence). Note that these statistics are cumulative vari-
ance explained among the four simulations for each of
the two cases.

2.3. Model 2

Model 2 was identical to model 1 with one excep-
tion; the effective surface area of the model plant or
patch of plants was divided into a large number of
spatial cells, only some of which were flowers. In
model 1 we assumed that pollinators were able to
detect flowers from a distance and land directly on
flowers, although the flowers visited were chosen at
random. In model 2, we simulated the pollinators land-
ing on spatial cells on the plant or plants at random,
some of which had flowers and some of which did
not. Thus the pollinator was simulated as searching.
Visits to each spatial cell were recorded and the num-
ber of flowers pollinated was calculated based on the
number spatial cells that were flowers and had at least
one visit.

All simulations had 1000 spatial cells, but each had
100, 200, 300, or 400 flowers (F), as well as 5, 10, 15,
20, . . ., or 150 pollinators (M). The number of flowers
pollinated was recorded for each of the 30× 4 = 120
cases simulated. As in model 1, a least squares fit of the
number of flowers pollinated by the end of the night was
made for both functional responses of Eqs.(1) and (2).
In this case, however, the predator-dependent response
was the best fit (Fig. 2). Parameter values and the least
s or
d n-
d are

cumulative for all four simulations of each of the two
alternative cases.

2.4. Analytic model

Why did two different functional responses, ratio-
dependent and predator-dependent, emerge from the
pollination model that had only a ‘minor’ difference
in using flowers or spatial cells as the basic units that
insects visited? A mathematical model that has possi-
ble relevance can be derived starting with a traditional
prey-dependent functional response that describes the
second-by-second dynamics of insect flower pollina-
tion or oviposition during a given night. In particular,
consider a standard Holling type 2 (prey-dependent)
functional response, which incorporates both handling
time and search time to describe pollination or ovipo-
sition of flowers over the time period of a night:

dF

dt
= − aMF

1 + ahF
(3)

whereM is the mean density of insects (number per
unit area) that are in the vicinity of a given plant during
the night,F the density of unpollinated flowers,a the
rate coefficient at which flowers are found by searching
pollinators, andh time spent handling each flower. The
right hand side represents the rate at which flowers are
pollinated or removed from the population of unpolli-
nated flowers (a similar equation could represent rate of
oviposition). Eq.(3)can be derived from first principles
( rea
a some
t h. In

F nse to d by insects
o flowers least square
v

quare values were:α1 = 0.018 (LS = 6180) (predat
ependence) andα2 = 6.2 (LS = 61,400) (ratio depe
ence). As with model 1, parameter and LS values

ig. 2. Least square fits of predator-dependent functional respo
n a single plant or cluster of plants. Four different numbers of
alue are:α1 = 0.018 (LS = 6180).
e.g.,Case, 2000). The insects move through an a
s they search and encounter flowers, spending

ime on each flower before they resume their searc

data generated by individual-based model 2 of flowers pollinate
were used: 100, 200, 300, and 400. The parameter value and
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this model of one night, insect number,M, is assumed
to remain constant.

Eq. (3), however, is not a good representation of
the decrease of unpollinated flowers, because in reality,
although the number of unpollinated flowers is reduced
through time, the total number of flowers is not, and pre-
viously pollinated flowers can be visited multiple times
by pollinators. Thus,F in the denominator of (3) should
be constant through time. To show this mathematically
we use a new variable for unpollinated flowers,U, and
rewrite Eq.(3) as,

dU

dt
= − aMU

1 + ahF
(4)

Note that the coefficient ofU on the right-hand side
of (4) is aM/(1 +ahF), and thus is assumed constant
through the night. When Eq.(4) is integrated over the
second-by-second dynamics of a night and subtracted
from the initial number of flowers, it yields the number
of pollinated flowers,

P(T ) = F − U(T ) = F (1 − e−aTM/(1+ahF )) (5)

where T = 1 represents one night. The terms within
the parentheses represent the functional response. An
equation of the form of (5) was derived byHassell
(1978); Eq. (A1.21) and similarly inArditi and Saiah
(1992); their Eq. (7). Those authors noted that in the two
limiting cases of 1� ahF and 1� ahF, P(T) reduces
to formsP1(T) andP2(T), respectively. The exponent
approaches-TM/hF (ratio-dependence) in the case that
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(3)and a ratio-dependent response. In model 2, the fact
that there was no handling time, and that the pollina-
tor was modeled as searching for flowers, led to the
predator-dependent functional response.

3. Discussion and conclusion

Functional responses of Eqs.(1) and (2) resem-
ble previous models of responses in the literature,
the probability-based parasitoid model ofThompson
(1939)and the predator-dependent parasitoid model of
Nicholson and Bailey (1935). What we have done, how-
ever, is to show mechanistically the similar origin of
both the predator-dependent and ratio-dependent forms
of the functional response. Our explanation is some-
what similar to that suggested byHassell (1978)and
Arditi and Saiah (1992). However, for those authors
the ratio dependence arises in Eq.(5) from the occur-
rence of a large prey handling time by the predators.
We suggest that other factors in the behavior and level
of perception of the pollinator can lead to ratio depen-
dence. In particular, pollinators that visit relatively few
flowers (due to limited number of eggs to lay) and
are able to find the flowers on a plant or cluster of
plants directly without much searching, may create
a ratio-dependent response for the fraction of those
flowers pollinated. Our simulation data also suggests
that it may be difficult to tell predator-dependent and
ratio-dependent responses apart in empirical data (even
t by
e may
b

lar
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t esult
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a tely
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f As
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� ahF, and−aTM (predator-dependence) in the c
hat 1� ahF.

In our IBM simulations (model 1 and model 2) w
ade no assumptions concerning handling time, s
bove analytic model might not seem initially appli
le. But the IBMs do make implicit assumptions. T
ssumption made in model 1 that some mean numb
owers was visited by an individual pollinator duri
night in model 1 may be operationally equivalen
ssuming a handling time limiting visits, even thou

he actual time spent visiting an individual flower w
onexistent in the model. This limitation on flow
isited is reasonable to assume in the case of po
or/parasites, which may have only a limited numbe
ggs to oviposit, and so would stop pollinating aft
ew visits. This limitation in visits to flowers, althoug
ot explicitly linked to handling time, could be equ
lent to a dominance of effective handling time in
he simulation output are not easily distinguished
ye), so that sophisticated statistical techniques
e needed.

Our application was to a mutualism, in particu
ollination mutualism, but essentially the same app

o pre-dispersal seed parasitism. This is a general r
hat should hold for most consumer–resource in
ctions in which the consumer does not immedia
ecrease the chance that the resources will be
led” by other searching consumers. These cas
onsumer–resource interactions will likely often
ound embedded within interspecific mutualisms.
ore attention is given to consumer–resource inte

ions within mutualism (Holland et al., in press), the
ppropriate types of functional responses for mu

sm will be more fully investigated. With our prese
evel of knowledge, both ratio- and predator-depen
unctional responses should be considered eq
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valid for such consumer resource interactions embed-
ded within mutualism. More generally, we repeatJost’s
(2000)conclusion that it may be that which form of
functional response is best or most appropriate depends
on the biology of the particular consumer–resource
interactions being investigated. In evolutionary time,
it is certainly feasible for natural selection to favor
species traits that influence one or both of search and
handling times.
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