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Abstract

Prey (V) dependenceg[N)], predator P) dependenceg[P) or g(N,P)], and ratio dependencgP/N)] are often seen as con-
trasting forms of the predator’s functional response describing predator consumption rates on prey resources in predator—prey
and parasitoid—host interactions. Analogously, prey-, predator-, and ratio-dependent functional responses are apparently alterna-
tive functional responses for other types of consumer—resource interactions. These include, for example, the fraction of flowers
pollinated or seeds parasitized in pollination (pre-dispersal) seed-parasitism mutualisms, such as those between fig wasps and
fig trees or yucca moths and yucca plants. Here we examine the appropriate functional responses for how the fraction of flowers
pollinated and seeds parasitized vary with the density of pollinators (predator dependence) or the ratio of pollinator and flower
densities (ratio dependence). We show that both types of functional responses can emerge from minor, but biologically important
variations on a single model. An individual-based model was first used to describe plant—pollinator interactions. Conditional
upon on whether the number of flowers visited by the pollinator was limited by factors other than search time (e.g., by the number
of eggs it had to lay, if it was also a seed parasite), and on whether the pollinator could directly find flowers on a plant, or had
to search, the simulation results lead to either a predator-dependent or a ratio-dependent functional response. An analytic model
was then used to show mathematically how these two cases can arise.
© 2005 Published by Elsevier B.V.
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consumerR) rate of resource consumption (amount of structures from the population of apparent resources.
resource consumed per unit time) changes with the size Therefore, many insects may spend time in handling
or density of the resource populatioN)((Solomon, the same individual structures. Insect parasitoids also
1949. Today there are three common ways of biolog- have this same characteristic, although they search
ically and mathematically expressing such functional out and oviposit on host insects, rather than plant
responses for consumer—resource systems: (1) preyhosts.
dependenceg[N)], (2) predator dependence(P) or For these cases, “functional response” is defined
g(N,P)], and (3) ratio dependencg(P/N)] (Gutierrez, to mean the fraction of flowers pollinated, or
1996; Abrams and Ginzburg, 2000~or prey depen-  seeds or insects parasitized. In the well-known
dence, the consumption rate of the resource per unit Nicholson—Bailey parasitoid model this fraction has
consumer (thatis, the consumer’s functional response), the form of a predator-dependent response; €1°7)
varies with resource density alone. For predator depen- (Nicholson and Bailey, 1935whereP is the para-
dence, the consumption rate of the resource dependssitoid density ands (search rate) and’ (time spent
on the consumer density or the consumer and resourcesearching) are constanfBhompson (1939wvas first
densities. For ratio dependence, the consumer’s func-to derive an alternative parasitoid model on the basis
tional response depends only on the ratio of consumer of probability theory, describing the fraction of prey,
and resource densities. Much debate occurs over whichof density N, parasitized by a searching parasitoid
functional response is most appropriai&efryman, of densityP, as ratio-dependent; (2e~**7N) where
1992; Ginzburg and Alakaya, 1992; Arditiand Saiah, the functional response dependsRWV rather thanP
1992; Gutierrez, 1992; Gleeson, 1994; Sarnelle, 1994; (seeGutierrez, 1996p. 66). This apparent dichotomy
Abrams, 1994; Berryman et al., 1995; fdt@ya et al., is analogous to that between the prey- and ratio-
1995; Abrams, 1997 with no clear consensus among dependent responses for predator—prey interactions.
ecologists Abrams and Ginzburg, 2000; Jost, 2000 Because ratio dependence was not originally derived
Although the ratio-dependent functional response has mechanistically, it may be difficult to see the biologi-
been in the literature for many decaddh@mpson, cal connection between the two responses.
1939; Leslie, 1948 it is particularly controversial to Here we show that both of these functional
many ecologists, to a large degree because no clearesponses may emerge from mechanistic models dif-
mechanistic derivation has been presented, as has beefering only in one assumption. To demonstrate this,
done in the case of other functional responses. Our we use two individual-based models describing insect
intention here is not to review or resolve this debate, but pollination of flowers. (A model of seed or insect par-
to explore how such different functional responses may asitism would be similar.) We then interpret the results
apply to other, less well recognized consumer—resource of these models from a single analytic model that can
systems, mutualisms in particulaHdlland et al., produce either aratio-dependent or predator-dependent
in press. (i.e., pollinator-dependent) function.

In the same way that predator—prey systems give
rise to assumptions of different forms of functional
responses, other types of consumer—resource inter-2. Materials and methods
actions lead to alternative models of prey, predator,
and/or ratio dependence. Among these systems are2.l. Individual-based model
plant—insect interactions in which insects are pollina-
tors, seed parasites, or both. Pollinators both exploit  Individual-based models (IBMs) simulate popula-
resources from flowers and pollinate them (so are tions or systems of populations as being composed
usually classified as mutualists). Insect seed parasitesof discrete agents that represent individuals or groups
oviposit on flowers or fruits such that their larvae of individuals, with sets of traits that may vary
consume the seeds. What is characteristic about bothamong individuals. Each agent has a unique history
cases is that the consumer (mutualist or parasite) uti- of interactions with its environment and other agents.
lizes resources from the reproductive structures of IBMs may be useful in developing a better under-
plants, but usually does not physically remove these standing of functional responses, as they can capture
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the variation among individuals that is relevant to

the questions being addressed. Here IBMs are used

to simulate a number of individual insects pollinat-
ing individual flowers of a plant or patch of plants
over some time period. An example is senita cac-
tus flowers, which bloom for only one night, being
pollinated and oviposited on by senita moths dur-
ing the course of that nightHplland and DeAngelis,
2002.

2.2. Model 1

We performed simulations with different numbers
of flowers,F =100, 200, 300, or 400 during the night,
subjected to visits from insect pollinators present in
the area in different numbergf=5, 10, 15,..., or
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one insect to visit the same flower, but multiple visits
to one flower counted as one pollination.

o No explicitassumption was made on ‘handling’ time
needed to pollinate a flower, asitis likely to be small.
Nonetheless, the number of visits of pollinators to
flowers was assumed small (mean of two visits per
hour). This small rate may be reasonable for pollina-
tor/seed predators, because their visits to plants are
also associated with ovipositing a limited number of

eggs.

The number of flowers pollinated was recorded for
each of the 3& 4 =120 cases simulated. Because this
was a Monte Carlo simulation, stochastic variation was
incorporated.

Using least squares, we fit to the number of flowers
pollinated at the end of the night, both a predator-

150. Each pollinator was simulated independently, and gependent function,

allowed to spend some randomly chosen fraction of
the night (from 0 to 1) around the plant. The pollinator
was simulated to visitand pollinate flowers on the plant.
The steps in this simulation were as follows. For each
pollinator:

e The fraction of the night (10 h) that the pollinator
was in the vicinity of the plant was chosen from a
uniform random distribution between 0 and 1.

e Using the rate of flowers per hour visited (assumed
the same for all pollinators), a particular realization
of flowers visited (and pollinated) was chosen using
a Poisson distribution in time.

e Which specific flowers were visited by the pollina-
tor was chosen randomly. Visits to each individual
flower were recorded. It was possible for more than

Py(T) = F(1—e M) 1)
and a ratio-dependent function,
Py(T) = F(1—e 2™/F) 2

with one fitting parameter for each model; anday,
respectively. The terms within the parentheses of (1)
and (2) are the functional responses; that is, fraction of
flowers pollinated.

For model 1 the ratio-dependent response was
the best fit Fig. 1). The parameter values and the
least square values for the entire set of four simula-
tions for each of the two cases (predator versus prey
dependence) were;; =0.032 (LS =52,371) (predator
dependence) angy =10.4 (LS =9000) (ratio depen-
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Fig. 1. Least square fits of ratio-dependent functional response to data generated by individual-based model 1 of flowers pollinated by insects
on a single plant or cluster of plants. Four different numbers of flowers were used: 100, 200, 300, and 400. The parameter value and least square

value arewz =10.4 (LS =9000).
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dence). Note that these statistics are cumulative vari- cumulative for all four simulations of each of the two
ance explained among the four simulations for each of alternative cases.
the two cases.
2.4. Analytic model
2.3. Model 2
Why did two different functional responses, ratio-

Model 2 was identical to model 1 with one excep- dependent and predator-dependent, emerge from the
tion; the effective surface area of the model plant or pollination model that had only a ‘minor’ difference
patch of plants was divided into a large number of in using flowers or spatial cells as the basic units that
spatial cells, only some of which were flowers. In insects visited? A mathematical model that has possi-
model 1 we assumed that pollinators were able to ble relevance can be derived starting with a traditional
detect flowers from a distance and land directly on prey-dependent functional response that describes the
flowers, although the flowers visited were chosen at second-by-second dynamics of insect flower pollina-
random. In model 2, we simulated the pollinators land- tion or oviposition during a given night. In particular,
ing on spatial cells on the plant or plants at random, consider a standard Holling type 2 (prey-dependent)
some of which had flowers and some of which did functional response, which incorporates both handling
not. Thus the pollinator was simulated as searching. time and search time to describe pollination or ovipo-
Visits to each spatial cell were recorded and the num- sition of flowers over the time period of a night:
ber of flowers pollinated was calculated based on the

. aMF

number spatial cells that were flowers and had at least — = ———— 3)
one visit. dr 1+ahF

All simulations had 1000 spatial cells, but each had whereM is the mean density of insects (number per
100, 200, 300, or 400 flower#), as well as 5, 10, 15,  unit area) that are in the vicinity of a given plant during
20,..., or 150 pollinators¥). The number of flowers  the night,F the density of unpollinated flowers,the
pollinated was recorded for each of the 3@ =120 rate coefficient at which flowers are found by searching
cases simulated. Asin model 1, a least squares fit of thepollinators, and: time spent handling each flower. The
number of flowers pollinated by the end of the nightwas right hand side represents the rate at which flowers are
made for both functional responses of Ed9.and (2) pollinated or removed from the population of unpolli-
In this case, however, the predator-dependent responsenated flowers (a similar equation could represent rate of
was the best fitRig. 2). Parameter values and the least oviposition). Eq(3) can be derived from first principles
square values werel; =0.018 (LS=6180) (predator (e.g.,Case, 200D The insects move through an area
dependence) angh =6.2 (LS =61,400) (ratio depen- as they search and encounter flowers, spending some
dence). As with model 1, parameter and LS values are time on each flower before they resume their search. In
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Fig. 2. Least square fits of predator-dependent functional response to data generated by individual-based model 2 of flowers pollinated by insect:
on a single plant or cluster of plants. Four different numbers of flowers were used: 100, 200, 300, and 400. The parameter value and least squar
value areir; =0.018 (LS =6180).
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this model of one night, insect numbaf, is assumed  (3)and aratio-dependent response. In model 2, the fact

to remain constant. that there was no handling time, and that the pollina-
Eq. (3), however, is not a good representation of tor was modeled as searching for flowers, led to the

the decrease of unpollinated flowers, because in reality, predator-dependent functional response.

although the number of unpollinated flowers is reduced

throughtime, the total number of flowersis not, and pre-

viously pollinated flowers can be visited multiple times 3. Discussion and conclusion

by pollinators. ThusF in the denominator of (3) should

be constant through time. To show this mathematically =~ Functional responses of Eggl) and (2)resem-

we use a new variable for unpollinated flowdrs.and ble previous models of responses in the literature,
rewrite Eq.(3) as, the probability-based parasitoid model Dhompson
dU aMU (1939)and the predator-dependent parasitoid model of

—_— = (4) Nicholson and Bailey (1935)Vhat we have done, how-
d 1+ahF ever, is to show mechanistically the similar origin of
Note that the coefficient o/ on the right-hand side  poth the predator-dependent and ratio-dependent forms
of (4) is aM/(1 +ahF), and thus is assumed constant of the functional response. Our explanation is some-
through the night. When E@4) is integrated over the  what similar to that suggested Iassell (1978)gnd
second-by-second dynamics of a night and subtractedArditi and Saiah (1992)However, for those authors
from the initial number of flowers, it yields the number  the ratio dependence arises in ) from the occur-
of pollinated flowers, rence of a large prey handling time by the predators.
P(T) = F — U(T) = F(L — e <™M/(+ahF)y () We suggest that other f?_;lctors in the behavio_r and level
of perception of the pollinator can lead to ratio depen-
where T=1 represents one night. The terms within dence. In particular, pollinators that visit relatively few
the parentheses represent the functional response. Arflowers (due to limited number of eggs to lay) and
equation of the form of (5) was derived Byassell are able to find the flowers on a plant or cluster of
(1978) Eq. (A1.21) and similarly irArditi and Saiah plants directly without much searching, may create
(1992) their Eq. (7). Those authors noted thatinthetwo a ratio-dependent response for the fraction of those
limiting cases of » ahF and 1« ahF, P(T) reduces flowers pollinated. Our simulation data also suggests
to formsP1(T) andPo(T), respectively. The exponent that it may be difficult to tell predator-dependent and
approachesI'M/hF (ratio-dependence) in the case that ratio-dependentresponses apartin empirical data (even
1« ahF,and—aTM (predator-dependence) inthe case the simulation output are not easily distinguished by
that 1>> ahF. eye), so that sophisticated statistical techniques may
In our IBM simulations (model 1 and model 2) we be needed.
made no assumptions concerning handling time, sothe  Our application was to a mutualism, in particular
above analytic model might not seem initially applica- pollination mutualism, but essentially the same applies
ble. But the IBMs do make implicit assumptions. The to pre-dispersal seed parasitism. This is a general result
assumption made in model 1 that some mean humber ofthat should hold for most consumer—resource inter-
flowers was visited by an individual pollinator during actions in which the consumer does not immediately
a night in model 1 may be operationally equivalent to decrease the chance that the resources will be “han-
assuming a handling time limiting visits, even though dled” by other searching consumers. These cases of
the actual time spent visiting an individual flower was consumer—resource interactions will likely often be
nonexistent in the model. This limitation on flowers found embedded within interspecific mutualisms. As
visited is reasonable to assume in the case of pollina- more attention is given to consumer—resource interac-
tor/parasites, which may have only a limited number of tions within mutualism Klolland et al., in pregsthe
eggs to oviposit, and so would stop pollinating after a appropriate types of functional responses for mutual-
few visits. This limitation in visits to flowers, although ism will be more fully investigated. With our present
not explicitly linked to handling time, could be equiv- level of knowledge, both ratio- and predator-dependent
alent to a dominance of effective handling time in Eq. functional responses should be considered equally
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valid for such consumer resource interactions embed- Berryman, A.A., Gutierrez, A.P., Arditi, R., 1995. Credible, parsi-
ded within mutualism. More generally, we repdast’s monious and useful predator—prey models—a reply to Abrams,

(2000) conclusion that it may be that which form of Gleeson, and Sarnelle. Ecology 76, 1980-1985.

. . . Case, T.J., 2000. An lllustrated Guide to Theoretical Ecology. Oxford
functional response is best or most appropriate depends ™ ;" p/css New York
on the biology of the particular consumer—resource Ginzburg, L.R., Akakaya, H.R., 1992. Consequences of ratio-

interactions being investigated. In evolutionary time, dependent predation for steady-state properties of ecosystems.
it is certainly feasible for natural selection to favor Ecology 73, 1536-1543.

species traits that influence one or both of search and Gleeson, S.K., 1994. Density dependence is better than ratio depen-
. . dence. Ecology 75, 1834-1835.
handling times.

Gutierrez, A.P., 1992. Physiological basis of ratio-dependent
predator—prey theory: the metabolic pool model as a paradigm.
Ecology 73, 1552—-1563.
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