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Abstract: A resource is considered here to be a biotic population that helps to maintain the population

growth of its consumers, whereas a consumer utilizes a resource and in turn decreases its growth rate.

Bi-directional consumer–resource (C–R) interactions have been the object of recent theory. In these

interactions, each species acts, in some respects, as both a consumer and a resource of the other, which is

the basis of many mutualisms. In uni-directional C–R interactions between two species, one acts as a

consumer and the other as a material and/or energy resource, while neither acts as both. The relationship

between insect pollinator/seed parasites and the host plant is an example of the latter interaction type of

C–R, as the insect provides no material resource to the plant (though it provides a pollination service). In

this paper we consider a different variation of the uni-directional C–R interaction, in which the resource

species has both positive and negative effects on the consumer species, while the consumer has only a

negative effect on the resource. A predator–prey system in which the prey is able to kill or consume

predator eggs or larvae is an example. Our aim is to demonstrate mechanisms by which interaction

outcomes of this system vary with different conditions, and thus to extend the uni-directional C–R

theory established by Holland and DeAngelis (2009). By the analysis of a specific two-species system, it is

shown that there is no periodic solution of the system, and the parameter (factor) space can be divided

into six regions, which correspond to predation/parasitism, amensalism, and competition. The

interaction outcomes of the system transition smoothly when the parameters are changed continuously

in the six regions and/or initial densities of the species vary in a smooth fashion. Varying a pair of

parameters can also result in the transitions. The analysis leads to both conditions under which the

species approach their maximal densities, and explanations for phenomena in experiments by Urabe and

Sterner (1996).
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1. Introduction

Predator–prey interactions are pervasive in ecological systems,
and models of predator–prey interactions have been a foundation
for describing and understanding such interactions for several
decades (e.g., MacArthur and Levins, 1967; MacArthur, 1972).
These are a class of consumer–resource (C–R) interactions, which
in basic terms relate the process of energy and/or nutrient transfer
between a consumer organism and a resource. A resource is any
biotic or abiotic factor that increases the population growth of its
consumer, at least over some range of the availability or supply of
the resource; consumers simultaneously change (and typically
deplete) the availability or abundance of the exploited resource. A
C–R interaction is characterized by ( + � ), where the consumer
gains some material benefit at the cost of the resource. Models
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such as the Rosenzweig–MacArthur (RM) model (Rosenzweig and
MacArthur, 1963) have been highly successful in describing the
properties of such interactions and have played a key role in the
development of predator–prey theory over the last fifty years.

More recently, the fact that C–R interactions occur in other
types of interactions has been incorporated in models. What this
means is that even in other types of interaction, such as mutualism,
amensalism, and commensalism, C–R interactions may be occur-
ring, but the net result may not always be ( + � ). For example, in
mutualistic systems, a consumer (mutualist) exploits a resource
(e.g. nutrient, nectar, shelter) supplied by another species
(mutualist) and in the process provisions that species with another
resource or a non-trophic service of dispersal or defense (Agrawal
and Fordyce, 2000; Agrawal et al., 2007; Boukal et al., 2007;
Chamberlain and Holland, 2008; Ferriere et al., 2007; Holland et al.,
2005, 2009, 2010; Murdoch et al., 2003; Turchin, 2003; Wang and
Wu, 2011). Mutualism is denoted by the outcome ( + + ); that is,
each interacting species benefits. However, because the underlying
interactions are C–R in nature, the balance between benefit and

http://dx.doi.org/10.1016/j.ecocom.2011.04.002
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cost for either or both of the species may shift, so that all other
possible combinations of outcomes might occur under certain
circumstances; that is, ( + � ), ( � 0), ( + 0) or ( � � ) (Anderson
et al., 2004; Perhar and Arhonditsis, 2009; Wang et al., 2007).

Holland and DeAngelis (2009, 2010) denoted the generality of
C–R interactions by writing the equations for two populations in
the general form

dN1

dt
¼ N1½r1 þ c1 f 1½R2ðN1; N2Þ� � q1g1½R1ðN1; N2Þ� � d1N1�;

dN2

dt
¼ N2½r2 þ c2 f 2½R1ðN1; N2Þ� � q2g2½R2ðN1; N2Þ� � d2N2�;

(1.1)

which they called a bi-directional C–R interaction. Here r1 and r2

are growth rates in the absence of the other species. In general,
r1 > 0, so the consumer can maintain itself without the resource.
The ratios r1/d1 and r2/d2 can be thought of as carrying capacities in
the absence of the other species. The equation for each population
has a term, fi[Rj(Ni, Nj)], that represents its gain from the
interaction, and a term, gi[Rj(Ni, Nj)], that represents the costs
incurred to it by the interaction. Eq. (1.1) represent the model
assumption that biomass or nutrients flow in both directions.

Mutualisms in which the resources are abiotic tend to be bi-
directional. Some of the key mutualisms of this type include coral
mutualisms, mycorrhizal mutualisms, nitrogen fixing mutualisms,
and lichens. In corals, the photosynthetic zooxanthellae provide
energy in the form of glucose to the coral animals, while the coral
polyp passes nitrogen from captured prey to the zooxanthellae.
Most terrestrial plants appear to have a mutualistic relationship
with mycorrhizal fungi, which are usually found in the rhizosphere
of the root system. The plant provides carbohydrate exudates to
the fungi, which in turn, through their extensive network of
hyphae in the soil, greatly increase the access of the plant to
nutrients such as phosphorus. Nitrogen fixation mutualisms exist
between leguminous host plants and rhizobial bacteria that reside
in root nodules in the plant. The bacteria fix nitrogen that the plant
uses, and receive carbohydrates from the plant in return. Lichens
are a mutualistic association of a species of fungus and green or
blue-green algae. The algae provide sugars and oxygen to the
fungus, which provides the algae with nutrients that it absorbs
from the substrate, such as a log or a rock, to which it is attached.

A special form of the model (1.1), noted by Holland and
DeAngelis (2009), is uni-directional C–R interaction, represented
by the equations

dN1

dt
¼ N1½r1 þ c1 f 1½R2ðN1; N2Þ� � q1g1½R1ðN1; N2Þ� � d1N1�;

dN2

dt
¼ N2½r2 þ c2 f 2½R1ðN1; N2Þ� � d2N2�:

(1.2)

In this model, there are positive effects occurring to both
populations, but the population N1 is the only one that incurs a
loss due to a C–R interaction, reflecting that during the uni-
directional C–R interaction, the consumer provisions the resource-
supplying species with a non-trophic service of dispersal or
defense. For example, as animals, N2, consume nectar of plants, N1,
they pollinate the plants’ flowers.

We believe that a another variation on these equations, which
differs from both (1.1) and (1.2), is important to study; that is, the
system

dN1

dt
¼ N1½r1 þ c1 f 1½R2ðN1; N2Þ� � q1g1½R1ðN1; N2Þ� � d1N1�;

dN2

dt
¼ N2½r2 � q2g2½R2ðN1; N2Þ� � d2N2�:

(1.3)

In this model, N2 is assumed to be the resource and N1 the
consumer. N1 always has a negative effect on N2, but the resource,
N2, can have a negative, as well as a positive, effect on the
consumer, N1. This system cannot represent a mutualism, because
there is no possibility of N2 receiving a positive effect from N1.
However, Eq. (1.3) constitute a general representation for some
important types of interactions as discussed below.

The above model can represent effective competitive ( � � )
systems when the negative effect of the resource on the consumer
is greater than the positive effect. However, more importantly, the
model can represent predator–prey systems in which the prey can
also have a negative effect on the predator, and it may in general be
possible for this negative effect to exceed the positive effect when
the size of the resource becomes very large. Some ecological
examples are as follows.

One case results from the fact that interacting species may switch
predator and prey roles ontogenetically. For example, larval or
juvenile piscivorous fish may be consumed by invertebrates and
planktivorous fish that serve as the prey of the adult piscivores. For
example, Polis et al. (1989) point out that 90 species of jellyfish and
ctenophores eat fish eggs or larvae, while the older fish feed on these
same species. Margalhães et al. (2005) noted that small juvenile
‘predatory’ mites may be killed by their thrips ‘prey’. Barkai and
McQuaid (1988) noted that on some South African islands, rock
lobsters feed on whelks, but in other areas whelks may be in such
high abundance that they overwhelm and consume the lobsters. For
cases of this type to fit our model, the reversals of prey killing or
eating predators should not constitute a major part of the prey’s diet,
as there is only a negative interaction term in the prey equation of
(1.3). Such systems may be modeled by age-structured models, but
the simple coupled system (1.3) can also yield insights.

Prey may have other, non-trophic, effects on predators. The
interactions between grass and the herbivorous Brandt’s vole in an
Inner Mongolian grassland in China have been studied by Zhong
et al. (1999). Grass is the main food of the vole, but when grass
density is high, the grass is an obstacle for the voles’ ability to
communicate and interact. This leads to a decrease in mating
opportunities, thus negatively affecting population growth. Thus in
a model, the grass can be assumed to have two separate effects, one
positive and one negative, on the voles.

Another general case in which positive and negative effects may
simultaneously occur is the presence of chemicals in the edible
biomass of many plant species that are toxic to herbivores (Dearing
et al., 2005; Stamp, 2003). Herbivores may have behavioral
mechanisms to avoid ingestion of toxins, but when toxic plants are
present in high densities, the risk of ingestion and harmful effects
or mortality to the herbivore may increase. Feng et al. (2008, 2009),
Li et al. (2006) and Liu et al. (2008) have applied modeling to this
interaction. However, their model does not have the form of (1.3),
because they assumed that the toxin does not result in a mortality
rate, but in a decrease in ingestion of the plant biomass. We suggest
the model (1.3) may be a possible alternative for cases in which the
toxin does not cause that herbivore to slow down its feeding rate,
but instead leads to mortality of the herbivore.

As a final example that fits into the category of uni-directions C–
R interactions, but may differ slightly in the form of Eq. (1.3), we
mention the experiments of Urabe and Sterner (1996). In these
experiments algae (the resource) is grown in batch culture, with
zooplankton grazing on the algae. Phosphorus is the limiting
nutrient. The experiments demonstrate that the population
density of algae increases monotonically with increases in light
intensity. The zooplankton increases monotonically as the biomass
density of algae increases from small to medium levels. However,
the growth rate of zooplankton decreases monotonically with
further increases in algal biomass density. This is the result of light
enrichment causing the phosphorus:carbon (P:C) ratio in the algae
to decrease, lowering the nutritional value to the zooplankton and
leading to their decline. This interaction has been modeled by
Loladze et al. (2000), using an interaction term that changes from



Y. Wang et al. / Ecological Complexity 8 (2011) 249–257 251
positive to negative as the P:C ratio exceeds a certain value.
Although their model at first sight differs in mathematical form
from model (1.3), we show later that (1.3) can be put in a similar
form.

In the following section we describe our model in greater detail
and analyze its steady state equilibria.

2. Model

In this section, we establish a differential equation system to
describe the C–R population dynamics where the resource has both
positive and negative effects on the consumer and the consumer
has only negative effect on the resource. Then we introduce a
specific model and exhibit features of its zero isoclines.

The uni-directional C–R system we consider is that of (1.3),
which we write in slightly different form here;

dN1

dt
¼ N1½r1 þ c1 f 1ðN1; N2Þ � q1g1ðN1; N2Þ � d1N1�;

dN2

dt
¼ N2½r2 � q2g2ðN1; N2Þ � d2N2�;

(2.1)

where N1 represents the population density of the consumer
(species 1) while N2 represents that of the resource (species 2).

In the first equation of (2.1), the parameter r1 denotes the
intrinsic growth rate of the consumer, and r1/d1 represents its
carrying capacity when in isolation from the resource. The term
‘ + c1f1(N1, N2)’ denotes the increase in the growth of the consumer
due to the resource (species 2) and ‘f1(N1, N2)’ describes how the
positive effects from the resource vary with N1 and N2. The term
‘ � q1g1(N1, N2)’ denotes the decrease in the growth of the
consumer due to negative effects from the resource and
‘ � g1(N1, N2)’ describes how the negative effects from the resource
vary with N1 and N2. Coefficients c1 and q1 change f1 and g1 into the
per capita growth rate of the consumer. In the second equation of
(2.1), the parameter r2 denotes the intrinsic growth rate of the
resource while r2/d2 represents its carrying capacity. The term
‘ � q2g2(N1, N2)’ is the negative effect on growth of the resource due
to consumptions from the consumer (species 1). Hence, in the
system (2.1), the consumer has only a negative effect, �q2g2, on the
resource (N2), while the resource (N2) has both positive +c1f1 and
negative, �q1g1, effects on the consumer (N1).

Without loss of generality, we suppose c1 = q1 = 1 and q2 = 1 in
this paper. In order to exhibit how and under what conditions
interaction outcomes of (2.1) vary with different factors and/or
initial densities of the species populations, we introduce the
N2 
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Fig. 1. In (a), r2=d2 � N0
2 and r2/b2 � r1/d1. All positive solutions converge to equilibrium

b2 > r1/d1. All positive solutions converge to equilibrium P4(p41, p42). When r2 increases, l2
p42 < N̂2 while it decreases as p42 > N̂2. (For interpretation of the references to color in
following specific system:

dN1

dt
¼ N1 r1 þ

a12N2

b2 þ N2
�b1N2 � d1N1

� �
dN2

dt
¼ N2½r2 � b2N1 � d2N2�;

(2.2)

where Ni, ri and di have the same meanings as those in model (2.1)
and all parameters in the system are positive. Here, the response
function (f1) of the consumer is assumed to be proportional to N2/
(b2 + N2): this displays a saturation effect for large N2. The other
functions, g1 and g2, are assumed to be linear. Thus the parameter
a12 denotes the saturation level of the functional response of
species 1 and b2 denotes the half-saturation density of species 2.
The parameter b1 represents the negative effect level of species 2
on species 1, while b2 denotes the consumption level of species 1
on species 2.

We demonstrate the features of isoclines of (2.2) as follows. Let
l1 and l2 denote the zero isoclines of N1 and N2, respectively:

l1 : N1 ¼ F1ðN2Þ ¼ 1

d1
r1 þ

a12N2

b2 þ N2
�b1N2

� �
;

l2 : N2 ¼ F2ðN1Þ ¼ 1

d2
ðr2 � b2N1Þ:

(2.3)

On l1, P1(r1/d1, 0) is an equilibrium of (2.2) and the point ð0; N0
2Þ

represents the intersection of l1 and the N2-axis, as shown in
Fig. 1a. N0

2 satisfies

N0
2 ¼

r1 þ a12 � b2b1 þ
ffiffiffiffiffiffiffi
D1

p
2b1

;

D1 ¼ ðr1 þ a12 � b2b1Þ
2 þ 4r1b2b1:

(2.4)

The isocline l1 is concave left with maximum N̂ðN̂1; N̂2Þ as shown in
Fig. 1a. N̂1 and N̂2 are

N̂1 ¼ F1ðN̂2Þ ¼ 1

d1
r1 þ

a12N̂2

b2 þ N̂2

� b1N̂2

" #
;

N̂2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a12b2

b1

s
� b2:

(2.5)

The reason is that dF1=dN2jN̂ ¼ 0 and d2F1=dN2
2 < 0. Thus when

N2 < N̂2, the function N1 = F1(N2) is monotonically increasing;
when N2 > N̂2, the function becomes monotonically decreasing.

On l2, P2(0, r2/d2) is an equilibrium of (2.2) and the point (0, r2/
b2) denotes the intersection of l2 and the N1-axis, as shown in
Fig. 1a.
2
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Fig. 2. In (a), r2=d2 > N0
2 and r2/b2 � r1/d1. P3 is a saddle with separatrix (the red line). Orbits under the red line converge to P1(r1/d1, 0) while those above the red line tend to

P2(0, r2/d2). In (b), r2=d2 > N0
2 , r2/b2 > r1/d1, D2 > 0 and AB > 0. P3 is a saddle and P4 is a stable node, orbits under the separatrix (the red line) converge to P4 while those above

the red line tend to P2(0, r2/d2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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The intersection N̄ðN̄1; N̄2Þ of l1 and l2 satisfies

AN̄
2
1 � BN̄1 þ C ¼ 0; N̄2 ¼

1

d2
ðr2 � b2N̄1Þ; (2.6)

where

A ¼ b2ðb1b2 � d1d2Þ; C ¼ ðb1r2 � r1d2Þðb2d2 þ r2Þ � d2a12r2;
B ¼ �ðd1d2 � b1b2Þðb2d2 þ r2Þ � b2ðr1d2 þ d2a12 � b1r2Þ:

(2.7)

The roots N̄1 in (2.6) and the corresponding values N̄2 are denoted
by Pi(pi1, pi2), i = 3, 4:

p31 ¼
B �

ffiffiffiffiffiffiffi
D2

p
2A

; p32 ¼
1

d2
ðr2 � b2 p31Þ;

p41 ¼
B þ

ffiffiffiffiffiffiffi
D2

p
2A

; p42 ¼
1

d2
ðr2 � b2 p41Þ; D2 ¼ B2 � 4AC:

(2.8)

Thus the points P3(p31, p32) and P4(p41, p42) are equilibria of (2.2) if
their componentsare positive. When the equilibria P3 and P4 coincide,
l2 is tangent to l1 at P̄3, which corresponds to D2 = 0 and AB > 0.

3. Dynamic behavior

In this section, we exhibit the dynamic behavior of (2.2), which
is shown in Figs. 2 and 3. The proofs are in Appendices A–D.

Theorem 3.1. There is no periodic orbit in the system (2.2).

Theorem 3.2. When the intrinsic growth rate of the resource is small

(i.e. r2 � d2N0
2), we have the following results.
N2
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r
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Fig. 3. In (a), r2=d2 > N0
2 , r2/b2 > r1/d1, D2 = 0 and AB > 0. Equilibrium P3 is a saddle-node, a

line tend to P2(0, r2/d2). In (b), r2=d2 > N0
2 , r2/b2 > r1/d1 and there is no interior equilibrium

the references to color in this figure legend, the reader is referred to the web version 
(i) If the consumption level of the consumer is large (i.e. b2 � r2d1/r1),
the resource goes extinct while the consumer approaches its

carrying capacity, as shown in Fig. 1a. That is, all positive solutions

of (2.2) converge to equilibrium P1(r1/d1, 0).
(ii) If the consumption level of the consumer is small (i.e. b2 < r2d1/r1),

the two species coexist at the steady state P4, as shown in Fig. 1b.
That is, all positive solutions of (2.2) converge to equilibrium P4.

Theorem 3.3. When the intrinsic growth rate of the resource is large

(i.e. r2 > d2N0
2), we have the following results.

(i) If the consumption level of the consumer is large (i.e. b2 � r2d1/
r1), then the initial densities of species populations determine the

interaction outcomes: when the initial density of the consumer is

relatively large, the resource goes extinct; otherwise, the

consumer goes extinct, as shown in Fig. 2a. That is, orbits below

the separatrix (the red line in Fig. 2a) of P3 converge to P1(r1/d1,
0), while those above the separatrix tend to P2(0, r2/d2).

(ii) If the consumption level of the consumer is intermediate (i.e.

b2 < r2d1/r1, but D2 > 0 and AB > 0), then the initial densities of

species populations determine the interaction outcomes: when

the initial density of the consumer is relatively small, the

consumer goes extinct; otherwise, the two species coexist at the

equilibrium P4, as shown in Fig. 2b. That is, orbits above the

separatrix (the red line in Fig. 2b) of P3 tend to P2(0, r2/d2), while

those below the separatrix converge to P4.
(iii) If the consumption level of the consumer is at a critical value (i.e.

D2 = 0, b2 < r2d1/r1 and AB > 0), then the initial densities of

species populations determine the interaction outcomes: when

the initial density of the consumer is relatively small, the
N2

22 /d

0
2N

l 1 

l2 

O 
11 /dr 22 / βr N1

b

nd orbits under the separatrix (the red line) converge to P3 while those above the red

. All positive solutions converge to the equilibrium P2(0, r2/d2). (For interpretation of

of the article.)
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G3. In region I, P1 is globally stable and the interaction outcomes are ( � 0). In II, P4 is

globally stable and the outcomes are ( � + ), ( � 0) and ( � � ) when (a12, b2) is

above, on and below G4 respectively. In III, the unique interior equilibrium P3 is a

saddle and the outcomes are (0 � ), ( � � ) and ( � 0) when N(0) is above, on and
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outcomes are (0 � ).
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consumer goes extinct; otherwise, the two species coexist at

equilibrium P̄3, as shown in Fig. 3a. That is, orbits above the

separatrix (the red line in Fig. 2b) of the saddle-node equilibrium

P̄3 tend to P2(0, r2/d2), while those below the separatrix converge

to P̄3.
(iv) If the consumption level of the consumer is small (i.e. b2 < r2d1/r1,

D2 < 0 or AB � 0), the consumer goes extinct while the resource

approaches its carrying capacity, as shown in Fig. 3b. That is, all

positive solutions converge to the equilibrium P2(0, r2/d2).

Therefore, dynamics of (2.2) are displayed in the following
table:

Conditions Equilibrium

stability

Interaction

outcomes

r2 � d2N0
2 ; b2 � r2d1 P1 is stable ð� 0Þ

r2 � d2N0
2 ; b2 < r2d1 P4 is stable ð� þÞ

r2 > d2N0
2 ; b2 � r2d1 P1 and P2 are stable ð� 0Þ=ð� �Þ=ð0 �Þ

r2 > d2N0
2 ; b2 < r2d1; D2 > 0; AB > 0 P2 and P4 are stable ð� þÞ=ð� �Þ=ð0 �Þ

r2 > d2N0
2 ; b2 < r2d1; D2 > 0; AB > 0 P3 is a saddle-node ð� þÞ=ð� �Þ=ð0 �Þ

r2 > d2N0
2 ; b2 < r2d1; D2 < 0 or AB � 0 P2 is stable ð0 �Þ

The maximal population densities of the species are as follows.
It follows from Theorems 3.2 and 3.3 that the maximal density of
the resource is its carrying capacity r2/d2. The consumer could
approach its maximal density at the maximum of l1, N̂, if the
isocline l2 passes through the point N̂. By Theorem 3.2(ii) and
Theorem 3.3(ii), we have the following result.

Corollary 3.4. Let N̂2 > 0 and r2 � b2N̂1 � d2N̂2 ¼ 0.

(i) If the intrinsic growth rate of the resource is small (i.e. r2 � d2N0
2),

then the consumer approaches its maximum N̂1 while the resource

reaches N̂2.
(ii) If the intrinsic growth rate of the resource is large (i.e. r2 > d2N0

2),
then the consumer approaches its maximum N̂1 and the resource

reaches N̂2 if the initial density of the consumer is relatively large,

i.e., the initial density point is below the separatrix of P3 (the red

line in Fig. 2b).

It follows from Theorems 3.2 and 3.3 that the sign of N0
2 � r2=d2

plays a role in the transition of interaction of outcomes of the
system (2.2). The variation of N0

2 � r2=d2 with parameters a12 and
b1 is discussed as follows, while the related discussion is in Section
5 and the proof is in Appendix D.

Proposition 3.5. For the saturation level a12 and negative effect level

b1, we have

@ðN0
2 � r2=d2Þ
@a12

> 0;
@ðN0

2 � r2=d2Þ
@b1

< 0:

Remark 3.6. It follows from Theorems 3.2 and 3.3 that the eight-
dimensional parameter space, which consists of parameters r1, r2,
d1, d2, b2, a12, b1 and b2, is divided into six regions as follows, which
is shown in Fig. 4:

(i) In region I, we have r2=d2 � N0
2 and r2/b2 � r1/d1; in region II,

we have r2=d2 � N0
2 and r2/b2 > r1/d1; in region III, we have

r2=d2 > N0
2 and r2/b2 � r1/d1.

(ii) In region IV, we have r2/b2 > r1/d1, D2 > 0 and AB > 0; in region
V, we have r2/b2 > r1/d1, D2 = 0 and AB > 0; in region VI, we
have r2/b2 > r1/d1, D2 < 0 and/or AB � 0.
4. Transition mechanism

In this section, we show how and under what conditions the
interaction outcomes transition among predation/parasitism
( + � ), amensalism ( � 0) and competition ( � � ) as both the
factors (parameters) and initial densities of the species vary. We
also give an example to exhibit how and when the variance of two
specific parameters leads to the transition of interaction outcomes.

We demonstrate the variance of interaction outcomes with all
the eight parameters and initial densities as follows. As shown in
Remarks 3.6, the parameter space is divided into six regions. When
the parameters are in region I, we have r2=d2 � N0

2 and r2/b2 � r1/d1.
It follows from Theorem 3.2(i) that all positive solutions converge to
P1(r1/d1, 0), which corresponds to the interaction outcomes ( � 0).
Thus the resource (species 2) goes to extinction while the consumer
(species 1) approaches its carrying capacity when in isolation from
the resource. Hence the interaction outcomes of the system (2.2) are
determined by the factors (parameters) in region I. The ecological
meaning is that the small intrinsic growth rate of the resource
(r2 � d2N0

2) and large consumption level (b2 � r2d1/r1) lead to the
extinction of the resource.

In region II, we have r2=d2 � N0
2 and r2/b2 > r1/d1. It follows from

Theorem 3.2(ii) that all positive solutions converge to P4(p41, p42) and
the two species coexist while p41 is given by (2.8). Then, if p41 < r1/d1,
the interaction outcomes are ( � � ); if p41 = r1/d1, the outcomes
become ( � 0); if p41 > r1/d1, the outcomes become ( � + ). Hence the
interaction outcomes are also determined by the factors (parameters)
in region II. The ecological meaning is that the small intrinsic growth
rate of the resource (r2 � d2N0

2) and small consumption level
(b2 < r2d1/r1) lead to the coexistence of the two species.

In region III, we have r2=d2 > N0
2 and r2/b2 � r1/d1. It follows

from Theorem 3.3(i) that the N1N2 plane is divided into three
regions by the separatrix of P3 as shown in Fig. 2a: if the initial
density point, N(0), is above the separatrix of P3, the solution N(t)
converges to P2 as t ! + 1, and the interaction outcomes are (0 � );
if N(0) is on the separatrix, the solution converges to P3 and the
outcomes become ( � � ); if N(0) is below the separatrix, the
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solution converges to P1 and the outcomes become ( � 0). Hence
the interaction outcomes are determined by the initial population
densities of the species in region III. The ecological meaning is that
the large intrinsic growth rate of the resource (r2 > d2N0

2) and large
consumption level (b2 > r2d1/r1) lead to the dependence on the
initial population densities of the species.

In region IV, we have r2=d2 > N0
2, r2/b2 > r1/d1, D2 > 0 and

AB > 0. It follows from Theorem 3.3(ii) that the N1N2 plane is
divided into three regions by the separatrix of P3 as shown in
Fig. 2b: if the initial density point, N(0), is above the separatrix of
P3, the solution N(t) converges to P2 as t ! + 1, and the interaction
outcomes are (0 � ). If N(0) is on the separatrix, the solution
converges to P3 and the outcomes are: ( � � ) as p31 < r1/d1; ( � 0)
as p31 = r1/d1; ( � + ) as p31 > r1/d1, while p31 is given by (2.8). If
N(0) is below the separatrix, the solution converges to P4(p41, p42)
and the outcomes are: ( � � ) as p41 < r1/d1; ( � 0) as p41 = r1/d1;
( � + ) as p41 > r1/d1, while p41 is given by (2.8). Hence the
interaction outcomes are determined by both the factors
(parameters) and initial population densities in region IV. The
ecological meaning is that the large intrinsic growth rate of the
resource (r2 > d2N0

2) and intermediate consumption level
(b2 < r2d1/r1 but D2 > 0 and AB > 0) lead to the dependence on
both factors and initial population densities.

In region V, we have r2=d2 > N0
2, r2/b2 > r1/d1, D2 = 0 and AB > 0.

It follows from Theorem 3.3(iii) that the N1N2 plane is divided into
two regions by the separatrix of P̄3, as shown in Fig. 3a: if the initial
density point, N(0), is above the separatrix of P̄3, the solution N(t)
converges to P2 as t ! + 1, and the interaction outcomes are (0 � ).
If N(0) is on or below the separatrix, the solution converges to P̄3

and the outcomes are: ( � � ) as p̄31 < r1=d1; ( � 0) as p̄31 ¼ r1=d1;
( � + ) as p̄31 > r1=d1, while p̄31 is given by (2.8). Hence the
interaction outcomes are also determined by both the factors
(parameters) and initial population densities in region V. The
ecological meaning is that the large intrinsic growth rate of the
resource (r2 > d2N0

2) and intermediate consumption level
(b2 < r2d1/r1 but D2 = 0 and AB > 0) lead to the dependence on
both factors and initial population densities.

In region VI, we have r2=d2 > N0
2, r2/b2 > r1/d1, D2 < 0 and/or

AB � 0. It follows from Theorem 3.3(iv) that all positive solutions
converge to P2(0, r2/d2), as shown in Fig. 3b, and the interaction
outcomes are (0 � ). Thus the consumer goes to extinction, while
the resource approaches its carrying capacity when in isolation
from the consumer. Hence the interaction outcomes are deter-
mined by the factors (parameters) in region VI. The ecological
meaning is that the large intrinsic growth rate of the resource
(r2 > d2N0

2) and small consumption level (b2 < r2d1/r1, D2 < 0 and/
or AB � 0) lead to the extinction of the consumer.

As an example, we show how a pair of parameters and the initial
densities of species populations affect the interaction outcomes of
the system (2.2) as follows. We fix all parameters but a12 and b2,
while similar discussions can be given for other parameters.

Let

r1 ¼ 0:8; r2 ¼ 0:5; b1 ¼ 0:02; b2 ¼ 0:4;

d1 ¼ d2 ¼ 0:01:

Let G1 denote the line r2/b2 = r1/d1, we have

G1 : b2 ¼ 0:00625:

Let G2 denote the curve N0
2 ¼ r2=d2. Since N0

2 � ð0:8 þ a12Þ=0:02, we
have

G2 : a12 ¼ 0:2:
We denote

G3 ¼ fða12; b2Þ : 0 < a12 < 0:2; D2 ¼ 0; AB > 0g;

and

G4 ¼ fða12; b2Þ : a12 > 0:008; p41 ¼ 80g;

which are shown in Fig. 4 based on numerical simulations. Here, A,
B, D2 and p41 are given by (2.7) and (2.8).

It follows from Theorems 3.2 and 3.3 that the a12b2 parameter
plane is divided into six regions by the curves G1, G2 and G3, which are
shown in Fig. 4. As discussed above, in region I = {(a12, b2) : a12� 0.2,
b2� 0.00625}, all positive solutions converge to the equilibrium P1,
which corresponds to the interaction outcomes ( � 0). In region II =
{(a12, b2) : a12� 0.2, b2 < 0.00625}, and all positive solutions
converge to the equilibrium P4. Furthermore, when (a12, b2) is
above G4, we have p41 > r1/d1 and the interaction outcomes are
( � + ); when (a12, b2) is on G4, we have p41 = r1/d1 and the outcomes
are ( � 0); when (a12, b2) is below G4, we have p41 < r1/d1 and the
outcomes are ( � � ). That is, the interaction outcomes are
determined by the factors (parameters) in both regions I and II.

In region III = {(a12, b2) : 0 < a12 < 0.2, b2 � 0.00625}, the
unique equilibrium P3 is a saddle, while the dynamical behavior
of (2.2) is shown in Fig. 2a. It follows from the monotonicity of l2
that p31 < r1/d1. Hence when the initial density point, N(0), is above
the separatrix of P3, the solution N(t) converges to P2, which
corresponds to the interaction outcomes (0 � ). When N(0) is on
the separatrix, the solution converges to P3, which corresponds to
the outcomes ( � � ). When N(0) is below the separatrix, the
solution converges to P1, which corresponds to the outcomes
( � 0). That is, the interaction outcomes are determined by the
initial population densities of the species in region III.

In region IV = {(a12, b2) : 0 < a12 < 0.2, b2 < 0.00625 and (a12,
b2) is above G3}, there are two interior equilibria P3 and P4, where
P3 is a saddle and P4 is a stable node as shown in Fig. 2b. Numerical
simulations show that p31 < r1/d1 in region IV. Then when the
initial density point N(0) is above the separatrix of P3, the solution
N(t) converges to P2, which corresponds to the interaction
outcomes (0 � ). When N(0) is on the separatrix, the solution
converges to P3, which corresponds to the outcomes ( � � ). When
N(0) is below the separatrix, the solution converges to P4 and the
interaction outcomes are ( � + ), ( � 0) and ( � � ), as (a12, b2) is
above, on and below G4, respectively. That is, the interaction
outcomes are determined by both the factors (parameters) and
initial population densities in region IV.

In region V = {(a12, b2) : 0 < a12 < 0.2 and (a12, b2) is on G3}, the
unique interior equilibrium P3 is a saddle-node, as shown in Fig. 3a.
Numerical simulations display that p31 < r1/d1 in region V. Then
when the initial density point N(0) is above the separatrix of P3, the
solution N(t) converges to P2, which corresponds to the interaction
outcomes (0 � ). When N(0) is on or below the separatrix, the
solution converges to P3, which corresponds to the outcomes
( � � ). That is, the interaction outcomes are determined by both the
factors (parameters) and initial population densities in region V.

In region VI = {(a12, b2) : 0 < a12 < 0.2 and (a12, b2) is below
G3}, all positive solutions converge to equilibrium P2 as shown in
Fig. 3b, which corresponds to the interaction outcomes (0 � ). That
is, the interaction outcomes are determined by the factors
(parameters) in region VI.

5. Application and discussion

In this paper we have considered a uni-directional C–R system
in which the resource has a negative, as well as a positive, effect on
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the consumer. Using the analysis of a specific system, we
demonstrated the mechanisms by which and circumstances under
which interaction outcomes of the system vary with both different
factors and initial densities of the species populations. We also
showed conditions under which the maximal population densities
of the species can be approached. Our work extends the C–R theory
established by Holland and DeAngelis (2009).

In the specific uni-directional C–R system that we considered,
factors (parameters) play an important role in the transition of
interaction outcomes. We focused on the saturation level (a12) and
consumption level (b2) of the consumer (species 1), and noted that
similar descriptions can be given for the resource (species 2), as
well as for other factors than the two just mentioned. First, when
both the saturation level and consumption level of the consumer
are large (i.e., N0

2 > r2=d2 and b2 > r2d1/r1), it follows from
Theorem 3.2(i) and Proposition 3.5 that the consumer is ‘dominant’
in the two species system. Thus, for any initial population
densities, the consumer will approach its carrying capacity, while
the resource goes to extinction. Second, when the saturation level is
large but the consumption level is intermediate, it follows from
Theorem 3.2(ii) and Proposition 3.5 that the two species coexist
and species 1 would approach a density larger than its carrying
capacity, as the two levels are well balanced, which is described by
the inequality p41 > r1/d1 (see Fig. 1b). Finally, when both the
saturation level and consumption level are small, it follows from
Theorem 3.3(iv) and Proposition 3.5 that the consumer goes to
extinction while the resource approaches its carrying capacity.

The initial population densities of the species are crucial in the
transition of interaction outcomes. When the saturation level is
small, but the consumption level is large, it follows from
Theorem 3.3(i) and Proposition 3.5 that, if its initial population
density is large, the consumer will approach its carrying capacity,
while the resource goes to extinction. Otherwise, if its initial
density is small, the consumer will go to extinction, while the
resource approaches its carrying capacity. Hence it is the initial
population densities of the species that determine the interaction
outcomes of the system in this situation.

The balance of the factors and initial population densities are
also vital in the transition of interaction outcomes. When both the
saturation level and consumption level of the consumer are
intermediate in value, it follows from Theorem 3.3(ii) and (iii) that,
if its initial density is small, the consumer will go to extinction,
while the resource approaches its carrying capacity. However, if
the initial density of the consumer is large, the two species coexist
and the consumer will approach a density larger than its carrying
capacity, if the two levels are well balanced, which is described by
the inequality p41 > r1/d1 (see Fig. 1b).

The interesting phenomena shown in the experiments of Urabe
and Sterner (1996), as mentioned in the Introduction, can be
explained using our model. First, recall that Loladze et al. (2000)
developed a model for this phenomenon, using a function for the
efficiency of conversion of algae to zooplankton biomass that can
decrease to zero when the algal density increases to large values, as
a result of the phosphorus: carbon ratio, and hence food quality,
decreasing. Although the mathematical function that Loladze et al.
use looks different from mathematical form of model (2.2), it is
easy to show that the two terms

a12N2

b2 þ N2
� b1N2

can be rewritten, with introduction of some new parameters, as

h1N2

b2 þ N2
ð1 � h2N2Þ;
where h1 = a12 � b1b2 and h2 = b1/(a12 � b1b2). This represents a
trophic interaction term in which the conversion efficiency,
1 � h2N2, decreases with increasing algae biomass. Hence this is
similar in form to the model of Loladze et al. From this model (2.2),
it is easy to explain the experimental results. When light intensity
increases from low, to medium, then to high levels in the
experiments, the intrinsic growth rate of the algae (i.e., r2 in
(2.2)) monotonically increases from small, to medium, to large
values (Urabe and Sterner, 1996). Consider the situation in which
the algae and zooplankton coexist, that is, in which P4(p41, p42) is a
stable equilibrium of (2.2) in Theorem 3.3(ii). The variation of p41

with increases of r2 can be shown geometrically as follows. By the
concave principle and monotonicity of l1, as shown in Fig. 1b,
isocline l2 moves upward in a parallel way when r2 increases. Then
p41 increases monotonically with the increase of r2, as long as
p42 < N̂2 holds, where l1 corresponds to a monotonically increasing
function, and p41 decreases monotonically with the increase of r2

when p42 > N̂2, where l1 then corresponds to a monotonically
decreasing function. Hence when r2 increases from small to
intermediate values (i.e., p42 � N̂2), the population density of the
zooplankton, p41, increases from a small value to its maximum N̂1.
However, when r2 increases from intermediate to large values,
such that N̂2 < p42 < p̄32, p41 decreases monotonically from its
maximum N̂1 to p̄31 where p̄31 and p̄32 are given in (2.8). Hence
our model provides explanations for the phenomena in the
experiments. Furthermore, the model predicts new situations:
when the light intensity continues to increase, such that the
condition in Theorem 3.3(iv) is satisfied (i.e., the equilibrium
P̄3ð p̄31; p̄32Þ disappears), it follows from Theorem 3.3(iii) and (iv)
that the density (i.e., the steady state) of the zooplankton will jump
from a positive value ( p̄31) to zero; that is, as a discrete jump rather
than a continuous transition. Therefore, when the growth rate, r2,
of algae increases, there are three stages in the zooplankton’s
growth. In the first stage, its density increases monotonically from
small values to its maximal value; in the second stage, its density
decreases monotonically from its maximum to a positive value
( p̄31); in the third stage, its density (i.e., in steady state) suddenly
jumps from the positive value ( p̄31) to zero, where it goes to
extinction.

The work in this paper differs from that of Holland and
DeAngelis (2009) on their uni-directional model. First, the model is
a different variation from their model (see Section 1). Second, the
method of analysis is different. While the results of Holland and
DeAngelis (2009) are obtained by numerical simulations and are
powerful in predicting novel transitions of outcomes, mathemati-
cal proofs were not shown, but the analysis were performed using
symbolic math and specified parameter values. In this paper, we
deduce our results in a rigorous way. Furthermore, our conditions
under which the interaction outcomes undergo transitions are
given quantitatively, which is helpful in understanding which
factor or initial density is important. Finally, the results have some
differences: (a) The interaction outcomes ( � � ) display that both
of the consumer and resource would approach population
densities below their carrying capacities; (b) The interaction
outcomes (0 � ) demonstrate a novel situation that the consumer
may go extinct in the C–R system as shown in Fig. 3; (c) The
transitions in this paper are among the interaction outcomes
( � + ), (0 � ), ( � 0) and ( � � ), while the transitions are among
( + � ), (0 + ), ( + 0) and ( + + ) in the paper by Holland and
DeAngelis (2009) in their uni-directional C–R model.

The situation that resources have a negative effect on the
consumers exists widely in nature. For example, our everyday
experience tells us that many kinds of human food have both
healthy and unhealthy effects on human bodies. Despite the
simplicity of our assumptions, our model is helpful in understand-
ing the transitions between different interaction outcomes that
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can occur during changes of different factors in uni-directional C–R
systems.
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Appendix A

Proof of Theorem 3.1. Let

DðN1; N2Þ ¼ 1

N1N2
;

then we have

@½Dðd1G1 � d1N1Þ�
@N1

þ @½Dðd2G2 � d2N2Þ�
@N2

¼ � d1

N2
� d2

N1
< 0:

By the Bendixson–Dulac Theorem (Hofbauer and Sigmund, 1998),
there is no periodic orbit in system (2.2). &

Appendix B

Proof of Theorem 3.2. When r2=d2 � N0
2 and r2/b2 = r1/d1 as

shown in Fig. 1a, l1 is above l2 and there is no intersection between
them in the interior of R2

þ where R2
þ ¼ fðN1; N2Þ : N1� 0; N2� 0g.

Then there is no interior equilibrium of (2.2). It follows from the
phase portrait analysis (Hofbauer and Sigmund, 1998) that all
positive solutions of 2.2 converge to equilibrium P1 as shown in
Fig. 1a. That is, species 1 reaches its carrying capacity when in
isolation from species 2, while species 2 goes to extinction. When
r2/b2 > r1/d1 as shown in Fig. 1b, l1 and l2 intersect at P4. It follows
from Theorem 3.2 and the phase portrait analysis that all positive
solutions of (2.2) converge to P4 as shown in Fig. 1b. &

Appendix C

Proof of Theorem 3.3. When r2=d2 > N0
2 and r2/b2 = r1/d1 as

shown in Fig. 2a, l1 and l2 intersect at P3. It follows from
Theorem 3.1 and the phase portrait analysis that P3 is a saddle
and orbits below the separatrix of P3 converge to the equilibria P1

while those above the separatrix converge to P2, which is shown
in Fig. 2a.

When r2/b2 > r1/d1, D2 > 0 and AB > 0 as shown in Fig. 2b, l1 and
l2 intersect at P3 and P4. It follows from Theorem 3.1 and the phase
portrait analysis that P3 is a saddle while P4 is a stable node, and
orbits below the separatrix of P3 converge to the equilibria P4 while
those above the separatrix converge to P2, which is shown in
Fig. 2b.When r2/b2 > r1/d1, D2 = 0 and AB > 0 as shown in Fig. 3a, l1 and
l2 are tangent at the saddle-node P̄3ðP31; P32Þ (Zhang et al., 1992)

P31 ¼
B

2A
; P32 ¼

1

d2
ðr2 � b2 p31Þ: (C.1)

It follows from Theorem 3.1 and the phase portrait analysis that
orbits below the separatrix of P3 converge to the equilibria P3 while
those above the separatrix converge to P2, which is shown in
Fig. 3a.

When r2/b2 > r1/d1, D2 < 0 (or AB = 0) as shown in Fig. 3b, l1 is
below l2. Then there is no interior equilibrium of (2.2) and all
positive solutions converge to P2. &

Appendix D

Proof of Proposition 3.5. It follows from (2.4) that

@ðN0
2 � r2=d2Þ
@a12

¼ r1 þ a12 � b2b1 þ
ffiffiffiffiffiffiffi
D1

p
2b1

ffiffiffiffiffiffiffi
D1

p > 0:

By the definition of N0
2, we have

r1 þ a12
a12b2

b2 þ N0
2

� b1N0
2 ¼ 0:

By taking partial derivatives with respect to b1 on both sides of the
equation, we have

a12b2

ðb2 þ N0
2Þ

2
� b1

" #
@N0

2

@b1

¼ N0
2 : (D.1)

It follows from (2.4) that

b2 þ N0
2 ¼

r1 þ a12 þ b2b1 þ
ffiffiffiffiffiffiffi
D1

p
2b1

>
r1 þ a12 þ b2b1

b1

:

Therefore, we have ðb2 þ N0
2Þ

2
> a12b2=b1. That is,

a12b2=ðb2 þ N0
2Þ

2 � b1 < 0. By (D.1), we have @N0
2=@b1 < 0. That

is, @ðN0
2 � r2=d2Þ=@b1 < 0. &
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