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Abstract A mathematical model for the plant–pollinator–robber interaction is stud-
ied to understand the factors leading to the widespread occurrence and stability of
such interactions. In the interaction, a flowering plant provides resource for its polli-
nator and the pollinator has both positive and negative effects on the plant. A nectar
robber acts as a plant predator, consuming a common resource with the pollinator,
but with a different functional response. Using dynamical systems theory, mecha-
nisms of species coexistence are investigated to show how a robber could invade the
plant–pollinator system and persist stably with the pollinator. In addition, circum-
stances are demonstrated in which the pollinator’s positive and negative effects on
the plant could determine the robber’s invasibility and the three-species coexistence.

Keywords Unidirectional consumer–resource interaction · Uniform persistence ·
Stability · Invasion · Extinction

1 Introduction

The relationship between flowering plants and animal pollinators has resulted from
coevolution over tens of millions of years (Crane et al. 1986, 1995; Hu et al. 2008).
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The plants provide nectar, seeds, and other resources for the pollinators. The pol-
linators consume the resources and supply pollination as a service in return. This
relationship can be termed mutualistic, as individuals of each species benefit from
the interaction. Because cooperation of plants and pollinators is crucial to the main-
tenance of both natural and agricultural ecosystems (Kearns et al. 1998), it has been
the object of much empirical research and many modeling studies.

In addition to the mutualistic pollinators that provide a service to plants, there are
other visitors to flowers that are purely exploitative. A common tactic of these visitors
is to remove nectar by biting holes on the plants, without contacting the anthers and/or
stigma, and thus not transporting pollen (Sprengel 1793; Darwin 1859, 1876, etc.).
These exploiters are referred to as “nectar robbers” since they consume nectar, but do
not provide pollination service, or as “cheaters” because they take advantage of the
mutualistic relationship between plants and pollinators. Since almost all plants whose
flowers are tubular or have nectar spurs have robbers associated with them, nectar
robbing is a widespread phenomenon. Usually, the nectar robbing has a detrimental
effect on the plants by destruction of the flowers (e.g., González-Gómez and Valdivia
2005) or by deterring pollination by mutualist partners (e.g., Irwin and Brody 1998),
though some cases have been studied in which the apparent net cost is either small or
nonexistent (e.g., Richardson 2004).

Either because the costs of nectar robbing to the plant are generally small relative
to the costs of effective morphological and chemical traits that would deter robbers,
or because such defenses would reduce the efficiency of pollinators as well as rob-
bers (McCall and Irwin 2006), plants have not evolved effective defenses against
nectar robbing. Traditional mutualism theory would imply that mutualistic coopera-
tion should not be able to persist when there is no targeted deterrence to the cheaters,
because the cheaters, by avoiding pollen transfer, might also avoid some costs and
would therefore be expected to drive the pollinators to extinction. Thus, it is a chal-
lenging problem to explain why pollination mutualism persists stably when there are
nectar robbers/cheaters (Irwin et al. 2010).

The present work considers the question of whether a nectar robber and pol-
linator/seed parasite can coexist on one plant species, despite the apparent com-
petitive advantages of the nectar robber. Our expectation is that mathematical
models may play a useful role in the research of plant–pollinator–robber inter-
action, similar to their role in other areas of ecological theory (Williams 2008;
Lonsdorf et al. 2009). Modeling of mutualistic relationships goes back at least
as far as May (1976). More recently, mutualisms have been modeled as a spe-
cial class of consumer–resource interactions, in which either resources or services
are exchanged such that both interacting species populations profit from the inter-
action (Holland and DeAngelis 2009). The relationship between plants and polli-
nators is called a unidirectional consumer–resource (C–R) interaction, when one
species acts as a resource and the other as both a resource and a consumer (Hol-
land and DeAngelis 2009). Alternatively, a bidirectional C–R interaction means
that both species exploit the other as a resource. In recent years, specific C–R
models have shown a series of novel results (e.g., Neuhauser and Fargione 2004;
Zhang et al. 2007; Holland and DeAngelis 2009; Wang et al. 2011; Li et al. 2011;
Wang and DeAngelis 2011). For example, interaction outcomes of the C–R systems
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will transition among mutualism, amensalism, commensalism, neutralism, and para-
sitism when parameter values and/or initial densities are changed. Hence, consider-
ing the unidirectional C–R interaction between the plant and pollinator in the plant-
pollinator-robber system is important.

Our present work was specifically stimulated by recent research by Fishman and
Hadany (2010), who derived an analytical expression for population-level plant-
pollinator interaction, showing that the functional response between the pollinator
and plant can be approximated by the Beddington–DeAngelis (BD) functional re-
sponse. Fishman and Hadany (2010) were modeling the interaction of a social insect,
the honeybee, with a plant species. In that case, the “predator interference” of the BD
functional response emerges because individual bees, after they have visited a plant
and taken nectar, leave a temporary scent that warns other bees from the hive that
the nectar supply of a flower is temporarily low. The existence of the BD functional
response can have a fundamentally different effect on the plant–pollinator–robber
system, than the more Holling type II functional response, which is more commonly
assumed in consumer-resource interactions.

Here, we demonstrate global dynamics of this plant-pollinator model described
by the BD functional response. Based on these global results, we extend the analy-
sis to models of plant–pollinator–robber systems, assuming that unlike the pollinator,
the robber interaction with the plant is a Holling type II functional response, since
the robber removes nectar via biting holes and acts as a predator to the plant. The
consumption of nectar by one robber may decrease that available to another indi-
vidual, but that action is through depletion of resources, not interference. These two
assumptions on functional responses lead to a three-species model that differs from
any that we are aware of in the literature. We add the assumption that the plant has
some pollination from sources other than the pollinator considered in this model, or
there is some other mode of propagation, which is able to support the plant popu-
lation at a lower level in the absence of the pollinator; thus it is nonobligate. Using
this model, we demonstrate circumstances under which the three-species system can
persist, while under other circumstances, the pollinator and/or robber will go to ex-
tinction.

The paper is organized as follows. The plant-pollinator-robber model is described
in Sect. 2. Section 3 demonstrates dynamics of the subsystems, while Sect. 4 shows
permanence of the three-species system. Discussion and application are given in
Sect. 5.

2 A Plant–Pollinator–Robber Model

The model derivation is based on unidirectional interactions between plants and pol-
linators, and predator–prey relationship between plants and nectar robbers.

In the plant–pollinator system, pollinators travel from their nests to a foraging
patch, collecting food, flying back to the nests, and unloading. In individual inter-
actions with flowers, the pollinators remove nectar and contact pollen, and provide
pollination service. Thus, the pollinators have both positive and negative effects on
the plants, while the plants provide food and other resources for the pollinators.
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Let N1 and N2 represent the population densities of plants and pollinators, respec-
tively. As shown by Fishman and Hadany (2010), the positive effect of pollinators on
plants can be described by aN1N2/(1 + aN1 + abN2). The parameter a is the effec-
tive equilibrium constant for (undepleted) plant–pollinator interaction, which com-
bines traveling and unloading times spent in central place pollinator foraging, with
individual-level plant–pollinator interaction. b denotes the intensity of exploitation
competition among pollinators (Pianka 1974). The negative effect of pollinators on
plants can be described by −B(N1,N2)N1. Since we know little of the appropriate
functional forms for resource supply by mutualists, we simply assume a linear in-
crease in cost of resource production with B(N1,N2) = β1N2. Then β1 denotes the
per-capita negative effect.

In the plant–robber system, a nectar robber bites holes on plants it visits, and
takes away nectar without providing pollination service. Thus, it acts as a predator
to the plants and interactions between the plant and robber can be characterized by a
predator–prey model with the Holling II functional response. In the pollinator-robber
system, we assume that there is no interfering competition between the two species
(Irwin et al. 2010). Then the plant-pollinator-robber interactions can be characterized
by

dN1

dt
= r1N1 − d1N

2
1 + α12N1N2

1 + aN1 + bN2
− β1N1N2 − β2N1N3

c + N1
,

dN2

dt
= −d2N2 + α21N1N2

1 + aN1 + bN2
,

dN3

dt
= −d3N3 + α31N1N3

c + N1
,

(1)

where N1, N2, and N3 represent the population densities of plants, pollinators, and
robbers, respectively. The parameter r1 is the intrinsic growth rate of the plants and
d1 the self-incompatible degree. As mentioned above, a and b represent the effec-
tive equilibrium constant and the intensity of exploitation competition, while β1

denotes the per-capita negative effect. Since a is fixed in the discussions of this
paper, the parameter α12 can be regarded as the plants’ efficiency in translating
plant–pollinator interactions into fitness (Beddington 1975; DeAngelis et al. 1975;
Fishman and Hadany 2010), and α21 is the corresponding value for the pollinators.
β2 denotes the saturation level in the Holling II functional response, while c is the
half-saturation constant. d2 (resp. d3) is the pollinators’ (resp. robbers’) per-capita
mortality rate, and α31 represents the robber’ efficiency in translating plant-robber
interactions into fitness.

In system (1), if Ni(0) = 0, then Ni(t) = 0 for all t , so that the three faces of the
positive cone and, therefore, the positive cone itself, are invariant. Consider solutions
of (1) with initial conditions N1(0) ≥ 0,N2(0) ≥ 0,N3(0) ≥ 0. Then solutions of (1)
with these initial values are nonnegative. By the second equation of (1), we have
dN2/dt ≤ 0 when d2 ≥ α21/a. It follows from the Liapunov theorem (Hofbauer and
Sigmund 1998) that limt→∞ N2(t) = 0, which implies extinction of pollinators. Sim-
ilarly, when d3 ≥ α31, we have limt→∞ N3(t) = 0, which implies extinction of nectar
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robbers. Since we consider coexistence of pollinators and robbers in this work, we
assume

α21 > ad2, α31 > d3.

3 Two-Species Systems

We consider the dynamics of the three two-species subsystems of (1) in this section.
The three subsystems are: the plant-pollinator system, the plant–robber system, and
the pollinator–robber system. In the last system, it is easy to see that both pollinators
and robbers will go to extinction, which comes from our assumption in (1) that the
visitors rely on flowering plants for survival. Thus, we will focus on the first two
systems.

In the absence of nectar robbers (i.e., N3 = 0), system (1) becomes a plant-
pollination model with unidirectional interactions

dN1

dt
= r1N1 − d1N

2
1 + α12N1N2

1 + aN1 + bN2
− β1N1N2,

dN2

dt
= −d2N2 + α21N1N2

1 + aN1 + bN2
.

(2)

The following results exhibit dissipation and nonexistence of periodic orbits of (2).

Proposition 3.1

(i) Solutions of (2) are bounded.
(ii) System (2) has no periodic orbits or cycle chains in the positive quadrant.

Proof

(i) Note that dN1/dt < N1(r1 + α12/b − d1N1) shows that lim supt→∞ N1(t) ≤
(r1 + α12/b)/d1. Furthermore, since dN1/dt |N1=(r1+α12/b)/d1 < 0, we see that
N1(t) ≤ (r1 + α12/b)/d1 for t large. Thus, for all t large, dN2/dt < −d2N2 +
α21(r1 +α12/b)/(bd1). Hence lim supt→∞ N2(t) ≤ α21(r1 +α12/b)/(bd1d2) for
t large. This proves that solutions of (2) are forward bounded.

(ii) Let U(N1,N2) and V (N1,N2) denote the functions on the right-hand sides of
(2), respectively. Denote D(N1,N2) = 1/(N1N2), then we have ∂(DU)/∂N1 +
∂(DV )/∂N2 = −d1/N2 − (aα12 +bα21)/(1+aN1 +bN2)

2 < 0. It follows from
the Bendixson–Dulac theorem (Zhang et al. 1992) that system (2) has no periodic
orbits or cycle chains in the positive quadrant. �

In order to show conditions under which the pollinators can persist in the plant-
pollinator system, we consider stability of equilibria of (2), which is determined by
the Jacobian matrix

J (N1,N2) =
(

f11 f12
f21 f22

)
(3)



Uni-directional Interaction and Plant–Pollinator–Robber Coexistence 2147

where

f11 = r1 − 2d1N1 − β1N2 + α12N2

1 + aN1 + bN2
− aα12N1N2

(1 + aN1 + bN2)2
,

f21 = α21N2(1 + bN2)

(1 + aN1 + bN2)2
,

f12 = −β1N1 + α12N1(1 + aN1)

(1 + aN1 + bN2)2
, f22 = −d2 + α21N1(1 + aN1)

(1 + aN1 + bN2)2
.

On the axes, there are two equilibria O(0,0) and P1(r1/d1,0). O is a saddle point
since the Jacobian matrix J (O) has eigenvalues r1 and −d2, while J (P1) has eigen-
values −r1 and −d2 + α21r1/(d1 + ar1). Let P(N1,N2) be a positive equilibrium.
By the right-hand side of (2), we obtain

N1 = d2(1 + bN2)

α21 − ad2
, a0N

2
2 + a1N2 + a2 = 0 (4)

where

a0 = bβ1

α21 − ad2
+ d1d2b

2

(α21 − ad2)2
> 0, a1 = β1 − br1

α21 − ad2
+ 2bd1d2

(α21 − ad2)2
− α12

α21
,

a2 = − r1

α21 − ad2
+ d1d2

(α21 − ad2)2
.

Thus, there may exist two positive equilibria P12(N
+
1 ,N+

2 ) and P −
12(N

−
1 ,N−

2 ) with

N±
1 = d2(1 + bN±

2 )

α21 − ad2
, N±

2 = −a1 ± √
Δ1

2a0
, Δ1 = a2

1 − 4a0a1. (5)

As a result, the global dynamics of (2) can be demonstrated by the following the-
orem, while the proof is in Appendix A.

Theorem 3.2

(i) Suppose α21 < d2(d1 + ar1)/r1. When −a1 ≤ 0 or Δ1 < 0, P1 is globally
asymptotically stable in the positive quadrant.

(ii) When α21 < d2(d1 +ar1)/r1,−a1 > 0 and Δ1 > 0, there exist two positive equi-
libria P −

12 and P12. P −
12 is a saddle point, while P1 and P12 are locally asymptoti-

cally stable. The positive quadrant is divided into two regions by the separatrices
of P −

12. The region above the separatrices is the basin of attraction of P12, while
the other is that of P1.

(iii) When α21 < d2(d1 + ar1)/r1,−a1 > 0 and Δ1 = 0, there is a unique positive
equilibrium P12. P1 is locally asymptotically stable and P12 is a saddle-node
point. The positive quadrant is divided into two regions by the separatrices
of P −

12. The region above the separatrices is the basin of attraction of P12, while
the other is that of P1.

(iv) When α21 > d2(d1 +ar1)/r1, P12 is the unique positive equilibrium of (2), which
is globally asymptotically stable in the positive quadrant.
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Fig. 1 Phase-plane panels for the population dynamics of the plant–pollinator system, in which l1 and
l2 denote the isoclines of plants (N1) and pollinators (N2) in (2). Stable and unstable equilibria are
identified by solid and open circles, respectively. Vector fields are shown by gray arrows, which repre-
sent the direction and speed of population trajectories. Fix r1 = 1.8, d1 = 0.01, α12 = 0.10, a = 0.35,
b = 0.2, β1 = 0.001, d2 = 0.45, and let α21 vary. (a) When pollinators’ efficiency (α21) in translating
plant–pollinator interactions into fitness is small, they cannot survive in the plant–pollinator system and
the plants approach the carrying capacity in the absence of pollinators. (b) When the pollinators’ efficiency
is intermediate and isoclines l1 and l2 are tangent at a saddle-node point P12, the two species could coexist
if their initial densities are sufficiently large. The separatrices (the black line) of P12 subdivide the plane
into two regions. The region below it is the basin of attraction of P1(r1/d1,0) while the region above it
is that of P12. A similar discussion can be given for (c), where isoclines l1 and l2 intersect at a saddle
point P−

12 and a stable node P12. (d) When the pollinators’ efficiency is large, the plant-pollinator system
persists at a steady state P12, in which the plants approach a population density larger than the carrying
capacity

Theorem 3.2 describes the global dynamics of system (2). (a) When their effi-
ciency is small, the pollinators cannot survive in the plant-pollinator system, as shown
in Theorem 3.2(i) and Fig. 1a. (b) When the efficiency is intermediate, the pollinators
persist only if initial densities of the two species are above a threshold, as in Theorem
3.2(ii)(iii) and Fig. 1b–c. (c) When the efficiency is large, the pollinators will persist,
as in Theorem 3.2(iv) and Fig. 1d.
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When the two species coexist, the interaction outcomes may transition between
mutualism and parasitism when the positive and negative effects α12 and β1 vary,
while the roles of the parameters are shown in the following proposition.

Proposition 3.3 When P12(N
+
1 ,N+

2 ) and/or P −
12(N

−
1 ,N−

2 ) exist, we have

∂N+
i

∂β1
< 0,

∂N−
i

∂β1
> 0,

∂N+
i

∂α12
> 0,

∂N−
i

∂α12
< 0, i = 1,2

where N±
i are given in (5).

Proof We give a proof for N−
i . A similar proof is possible for Ni+. By (5), we obtain

N−
2 = α21 − ad2

bd2

(
N−

1 − d2

α21 − ad2

)
.

Then N−
2 > 0 implies N−

1 > d2/(α21 − ad2). It follows from (2) that N−
1 satisfies

b0N
2
1 + b1N1 + b2 = 0, N−

1 = −b1 − √
Δ2

2b0
, (6)

where

b0 = α21

a

[
β1(α21 − ad2) + bd1d2

]
> 0, b2 = α12

a
d2

2 > 0

b1 = d2

[
α12d2 − α21

a
(α12 + br1 + β1)

]
< 0, Δ2 = b2

1 − 4b0b2.

By taking partial derivatives with respect to β1 in both sides of (6), we have

∂N−
1

∂β1
= α21N

−
1

a
√

Δ2
(α21 − ad2)

(
N−

1 − d2

α21 − ad2

)
> 0.

Similarly, we have

∂N−
1

∂α12
= − d2

a
√

Δ2
(α21 − ad2)

(
N−

1 − d2

α21 − ad2

)
< 0.

Since dN−
2 /dN−

1 = (α21 − ad2)/(bd2) > 0, the results for N−
2 exist. Thus, Proposi-

tion 3.3 is proved. �

Proposition 3.3 exhibits how the positive and negative effects of pollinators on the
plants lead to transitions of interaction outcomes. Since P12(N

+
1 ,N+

2 ) is asymptoti-
cally stable and N+

1 represents the plant density at the equilibrium, Proposition 3.3
shows that the outcomes are mutualism when the negative effect (β1) is small and/or
the positive effect (α12) is large. Otherwise, the outcomes would be parasitism. Equi-
librium P −

12(N
−
1 ,N−

2 ) is a saddle point and its separatrices determine the basin of at-
traction of the stable equilibrium P12. Thus, when the negative effect is small and/or
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the positive effect is large, the interaction outcomes could be mutualism even if initial
densities of the two species are small.

In the absence of pollinators (i.e., N2 = 0), system (1) becomes a plant-robber
model with the Holling II functional response

dN1

dt
= r1N1 − d1N

2
1 − β2N1N3

c + N1
,

dN3

dt
= −d3N3 + α31N1N3

c + N1
.

(7)

When d3 < r1α31/(r1 + cd1), there exists a positive equilibrium P13(N
#
1 ,N#

3 ) of (7)
with

N#
1 = cd3

α31 − d3
<

r1

d1
, N#

3 = α31N
#
1 (r1 − d1N

#
1 )

β2d3
. (8)

The following result exhibits the dynamics of system (7).

Proposition 3.4 (Kuang and Freedman 1988) Assume α31 > d3.

(i) When

r1

d1
≤ cd3

α31 − d3

equilibrium (r1/d1,0) of (7) is globally asymptotically stable in the positive
quadrant.

(ii) When

cd3

α31 − d3
<

r1

d1
≤ c(α31 + d3)

α31 − d3
(9)

equilibrium P13 is globally asymptotically stable in the positive quadrant.
(iii) When

r1

d1
>

c(α31 + d3)

α31 − d3
(10)

there is a unique limit cycle Pφ(t) := (φ1(t), φ3(t)) of (7), which is globally
asymptotically stable in the positive quadrant (except P13).

Proposition 3.4 describes the global dynamics of system (7). (a) When their effi-
ciency is small, the robbers cannot survive in the plant-robber system, as shown in
Proposition 3.4(i) and Fig. 2a. (b) When the efficiency is intermediate, the robbers
and plants coexist at a steady state, as in Proposition 3.4(ii) and Fig. 2b–c. Here,
the robbers’ density at the steady state increases with their efficiency. (c) When the
efficiency is large, the robbers and plants coexist in periodic oscillations, as in Propo-
sition 3.4(iii) and Fig. 2d.
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Fig. 2 Phase-plane panels for the population dynamics of the plant–robber system, in which l∗1 and l3
denote the isoclines of plants (N1) and nectar robbers (N3) in (7). Solid and open circles represent stable
and unstable equilibria, respectively. Vector fields are displayed by gray arrows, which denote the direction
and speed of population trajectories. Fix r1 = 1.8, d1 = 0.01, c = 90, β2 = 0.5, d3 = 0.45, and let α31
vary. (a) When the robbers’ efficiency (α31) in translating plant–robber interactions into fitness is small,
they cannot survive in the plant–robber system and the plants would approach the carrying capacity in the
absence of robbers. (b) When the robbers’ efficiency is intermediate, the two species coexist at a steady
state, in which the plants approach a population density less than the carrying capacity. A similar discussion
can be given for (c), in which the robbers’ density in the steady state increases with their efficiency.
(d) When the robbers’ efficiency is large, the plant–robber system persists in periodic oscillations

4 Coexistence

In this section, we are concerned about permanence of the plant-pollinator-robber
system, i.e., the dissipation and uniform persistence of (1) in the positive cone.

The dissipation of (1) is shown as follows. By the first equation of (1), we have
dN1/dt < N1(r1 − d1N1 + α12/b), thus the comparison principle (Cosner 1996) im-
plies that lim supt→∞ N1(t) ≤ (br1 + α12)/(bd1). Since dN1/dt |N1=(r1+α12/b)/d1 <

0, we obtain N1(t) ≤ (br1 + α12)/(bd1). Denote d0 = min{d2, d3}. By (1), a straight-
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forward computation shows that when t is large

d

dt

(
N1 + α12

α21
N2 + β2

α31
N3

)

= N1(r1 − d1N1) + 2α12N1N2

1 + aN1 + bN2
− β1N1N2 − α12

α21
d2N2 − β2

α31
d3N3

< N1

(
r1 + 2α12

b

)
− d0

(
α12

α21
N2 + β2

α31
N3

)

<

(
d0 + r1 + 2α12

b

)
br1 + α12

bd1
− d0

(
N1 + α12

α21
N2 + β2

α31
N3

)
. (11)

Then the comparison principle (Cosner 1996) implies that

lim sup
t→∞

(
N1 + α12

α21
N2 + β2

α31
N3

)
≤ 1

d0

(
δ + br1 + α12

bd1

)(
d0 + r1 + 2α12

b

)
.

Thus, we conclude the following result.

Theorem 4.1 The plant-pollinator-robber system (1) is dissipative.

To examine the uniform persistence of (1), we need to analyze the dynamics on the
boundaries of the positive cone, which consist of three coordinate planes. As men-
tioned in Sect. 2 of this paper, the coordinate planes are forward invariant. Stability
of equilibria of (1) on the boundaries is determined by the Jacobian matrix

J (N1,N2,N3) =
⎛
⎜⎝

f11 − cβ2N3
(c+N1)

2 f12 − β2N1
c+N1

f21 f22 0
− cα31N3

(c+N1)
2 0 α31N1

c+N1

⎞
⎟⎠ (12)

where fij are given in (3).
(a) On the axes, there are two equilibria O(0,0,0) and E1(r1/d1,0,0). O is a

saddle point since the Jacobian matrix J (O) has eigenvalues r1,−d2 and −d3. Thus,
the (N2,N3)-plane is the stable manifold and the N1-axis is the unstable manifold.
J (E1) has eigenvalues

μ
(1)
1 = −r1, μ

(1)
2 = α21r1

d1 + ar1
− d2, μ

(1)
3 = α31r1

cd1 + r1
− d3,

where μ
(1)
j denotes the eigenvalue of equilibrium E1 with the eigenvector in the Nj -

axis direction, j = 1,2,3. In the following analysis of this paper, let μ
(i)
j denote the

eigenvalue of equilibrium Ei with the eigenvector in the Nj -axis direction.
(b) On the (N1,N2)-plane, there may exist equilibria E12 := (N+

1 ,N+
2 ,0) and

E−
12 := (N−

1 ,N−
2 ,0), in which N±

i are given in (5). When they exist, E12 is locally
asymptotically stable and E−

12 is a saddle point (Theorem 3.2). Their eigenvalues with
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the eigenvector in the N3-axis direction are

μ
(12)
3 = α31N

+
1

c + N+
1

− d3, μ
(12−)
3 = α31N

−
1

c + N−
1

− d3.

(c) On the (N1,N3)-plane, equilibrium E13 := (N#
1 ,0,N#

3 ) exists if μ
(1)
3 > 0

(Proposition 3.4), while N#
i are given in (8). E13 is globally asymptotically stable

when condition (9) holds, and is unstable when condition (10) holds. By (12), its
eigenvalue with the eigenvector in the N2-axis direction is

μ
(13)
2 = α21N

#
1

1 + aN#
1

− d2. (13)

It follows from Proposition 3.4 that when μ
(13)
2 > 0 and condition (10) holds, there

exists a periodic orbit (φ1(t),0, φ3(t)), which is denoted by Eφ(t). By Proposi-
tion 3.4(iii), Eφ(t) is asymptotically stable on the (N1,N3)-plane. Thus, we only
need to consider its stability in the N2-axis direction. It follows from the Floquet
multipliers (cf. Perko 2001) that when

μ
(φ)
2 = 1

T

∫ T

0

α21φ1(t)

1 + aφ1(t)
dt − d2 < 0 (14)

Eφ(t) is locally asymptotically stable in R3+. When μ
(φ)
2 > 0, Eφ(t) is unstable in the

N2-axis direction.
By (11), there exists a constant G > 0 (e.g., G = [(br1 + α12)/(bd1)](d0 + r1 +

2α12/b)/d0), which satisfies that d
dt

(N1 + α12N2/α21 + β2N3/α31) < 0 when N1 +
α12N2/α21 + β2N3/α31 ≥ G. Denote

� =
{
(N1,N2,N3) : 0 ≤ N1 + α12

α21
N2 + β2

α31
N3 ≤ G,Ni ≥ 0, i = 1,2,3

}

then the set � is forward invariant and all ω-limit points of (1) are in � .
The following result (Theorem 4.2) exhibits the plant-pollinator-robber coexis-

tence when pollinators (resp. robbers) can persist in the absence of robbers (resp. in
the absence of pollinators), while the proof is in Appendix B.

Theorem 4.2 Let r1/d1 > max{d2/(α21 − ad2), cd3/(α31 − d3)}.
(i) When α21 > d2(a +1/N#

1 ), α31 > d3(1+ c/N#
1 ) and condition (9) holds, system

(1) is permanent.
(ii) When α21 > d2(a + 1/N#

1 ), α31 > d3(1 + c/N#
1 ),μ

(φ)
2 > 0 and condition (10)

holds, system (1) is permanent.
(iii) When α21 < d2(a + 1/N#

1 ) and condition (9) holds, E13(N
#
1 ,0,N#

3 ) is globally
asymptotically stable in the positive cone.

(iv) When α21 < d2(a + 1/N#
1 ),μ

(φ)
2 < 0 and condition (10) holds, every solution of

(1) with N2(0) > 0 satisfies limt→∞ N2(t) = 0.
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(v) When α21 < d2(a + 1/N#
1 ) and μ

(φ)
2 > 0, or, when α21 > d2(a + 1/N#

1 ) and

μ
(φ)
2 < 0, system (1) is not persistent.

In circumstances considered by Theorem 4.2, conditions r1/d1 > max{d2/(α21 −
ad2), cd3/(α31 − d3)} imply that the plants alone (i.e., without pollination mutu-
alisms) can provide sufficient resources for the robbers’ survival, while the pollinators
can persist in the absence of robbers. In this work, our discussions focus on indirect
interactions between pollinators and robbers through the host plants, i.e., the animals’
efficiencies α21 and α31, and the negative effect β1. Similar discussions can be given
for other parameters. In Theorem 4.2, the robbers can invade the plant-pollinator
system although the pollinators have a negative effect on the plants. The underlying
reason derived from the proof of Theorem 4.2 is that the pollinators’ negative effect
β1 is small such that the plants can still support the robbers’ survival (i.e., N+

1 > N#
1

with ∂N+
1 /∂β1 < 0).

The condition μ
(φ)
2 > 0 can be explained as follows. μ

(φ)
2 could be calculated by

(14) when Eφ(t) is obtained. Since (14) can be rewritten as

α21 > d2T

[∫ T

0

φ1(t)

1 + aφ1(t)
dt

]−1

the biological meaning of μ
(φ)
2 > 0 is that the pollinators’ efficiency should be suf-

ficiently large for their persistence in the presence of robbers, as shown in Theo-
rem 4.2(ii). Otherwise, when μ

(φ)
2 < 0, the pollinators will be driven into extinction

by the robbers’ invasion, as in Theorem 4.2(iv).
Theorem 4.2 demonstrates that the pollinators can persist (i) when the pollinators’

efficiency is large (α21 > d2(a + 1/N#
1 ) but the robbers’ efficiency is intermediate

(d3(1 + cd1/r1) < α31 ≤ d3(1 + cd1/r1)/(1 − cd1/r1)), or (ii) when the pollinators’
efficiency is extremely large (α21 > d2(a + 1/N#

1 ) and μ
(φ)
2 > 0) but the robbers’

efficiency is large (α31 > d3(1 + cd1/r1)/(1 − cd1/r1)). The pollinators would be
driven into extinction by the robbers’ invasion (iii) when the pollinators’ efficiency
is small (α21 < d2(a + 1/x#

1)) but the robbers’ efficiency is intermediate; (iv) when

the pollinators’ efficiency is extremely small (α21 < d2(a + 1/x#
1) and μ

(φ)
2 < 0)

but the robbers’ efficiency is large. Theorem 4.2(v) shows that when the pollinators’
efficiency is not extremely large (μ(13)

2 μ
(φ)
2 < 0) but the robbers’ efficiency is large,

the pollinators go to extinction. In all circumstances of Theorem 4.2, we assume
the plant–pollinator system persists in the absence of robbers. Thus, the pollinators’
extinction in Theorem 4.2(iii)(iv)(v) is caused by the robbers’ invasion.

Nectar robbers are not always able to invade the plant–pollinator system. The fol-
lowing result (Theorem 4.3) exhibits criteria for the robbers’ invasion, while the proof
is in Appendix C.

Theorem 4.3 Let r1/d1 > d2/(α21 − ad2), r1/d1 < cd3/(α31 − d3).

(i) When α31 > d3(1 + c/N+
1 ), system (1) is permanent.

(ii) When α31 < d3(1 + c/N+
1 ), equilibrium E12(N

+
1 ,N+

2 ,0) is globally asymptoti-
cally stable in the positive cone.
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In the circumstance considered by Theorem 4.3, condition r1/d1 < cd3/(α31 −d3)

implies that plants alone cannot provide sufficient resources for the robbers’ survival.
That is, the robbers’ persistence depends on pollination mutualisms. On the other
hand, condition r1/d1 > d2/(α21 − ad2) implies that pollination mutualisms can per-
sist in the absence of robbers. Theorem 4.3(i) shows that when the robbers’ efficiency
is large (α31 > d3(1 + c/N+

1 )), the robbers can invade the plant–pollinator system
but will not drive the pollinators into extinction. The underlying reason is that the
plants alone cannot support the robbers’ survival. When the robbers’ efficiency is
small (α31 < d3(1 + c/N+

1 )), Theorem 4.3(ii) exhibits that the robbers cannot invade
the plant-pollinator system and will go to extinction, while the plants and pollinators
persist.

The unidirectional interactions between plants and pollinators could determine
the three-species coexistence. Our discussion focuses on the negative effect β1,
while a similar discussion is possible for the positive effect α12. Indeed, condition
α31 > d3(1 + c/N+

1 ) can be rewritten as N+
1 > cd3/(α31 − d3). Since ∂N+

1 /∂β1 < 0
(Proposition 3.3), Theorem 4.3 shows that when the negative effect is small such
that N+

1 > cd3/(α31 − d3), the robbers can invade the plant–pollinator system and
the three species coexist. Otherwise, when the negative effect is large such that
N+

1 < cd3/(α31 − d3), the robbers will go to extinction.
The following result (Theorem 4.4) demonstrates a circumstance in which the

robbers’ invasion will lead to the pollinators’ extinction, while the proof is in Ap-
pendix D.

Theorem 4.4 Let r1/d1 < d2/(α21 − ad2), r1/d1 > cd3/(α31 − d3). Solutions of (1)
with N2(0) > 0 satisfy limt→∞ N2(t) = 0.

In the circumstance considered by Theorem 4.4, condition r1/d1 < d2/(α21 −ad2)

implies that the pollinators can persist in the plant-pollinator system only if their
initial density is sufficiently high and efficiency is as large as those in Theo-
rem 3.2(ii)(iii). On the other hand, condition r1/d1 > cd3/(α31 − d3) implies that
the plants alone can support the robbers’ survival. Thus the robbers can invade the
plant-pollinator system and the pollinators cannot persist in the presence of robbers.
This is because the pollinators’ efficiency is relatively small (i.e., the robbers’ effi-
ciency is relatively large) since the two conditions in Theorem 4.4 can be rewritten
as α21 < ad2 + d1d2/r1, α31 > d3(1 + cd1/r1). Because pollinators with high ini-
tial densities can survive in the absence of robbers, their extinction is caused by the
robbers’ invasion.

The following result (Theorem 4.5) displays a circumstance in which the three-
species coexistence is density-dependent, while the proof is in Appendix E.

Theorem 4.5 Let r1/d1 < d2/(α21 − ad2), r1/d1 < cd3/(α31 − d3). Let S−
12 be the

stable manifold of E−
12(N

−
1 ,N−

2 ,0) as it is a boundary equilibrium of (1).

(i) When Δ1 < 0 or a1 ≥ 0, E1 is globally asymptotically stable in the positive
cone.

(ii) When Δ1 > 0, a1 < 0 and α31 < d3(1 + c/N+
1 ), the two-dimensional manifold

S−
12 divides intR3+ into two regions: one is the basin of attraction of E1, while

the other is that of E12.
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(iii) When Δ1 > 0, a1 < 0 and d3(1 + c/N+
1 ) < α31 < d3(1 + c/N−

1 ), the two-
dimensional manifold S−

12 divides intR3+ into two regions: one is the basin of
attraction of E1, while system (1) is uniformly persistent in the other region.

(iv) When Δ1 > 0, a1 < 0 and α31 > d3(1 + c/N−
1 ), E1 is globally asymptotically

stable in the positive cone.

In circumstances considered by Theorem 4.5, condition r1/d1 < cd3/(α31 − d3)

implies that plants alone cannot provide sufficient resources for the robbers’ sur-
vival. That is, the robbers’ persistence depends on pollination mutualisms. However,
condition r1/d1 < d2/(α21 − ad2) implies that the pollination mutualisms persist
only if the pollinators’ efficiency is large and the initial densities of the plants and
pollinators are above a threshold (Theorem 3.2(ii)(iii)). Theorem 4.5(i) shows that
when the pollination mutualisms do not persist, the robbers cannot survive. Theo-
rem 4.5(ii) exhibits that when the pollination mutualisms could persist in the ab-
sence of robbers, the robbers cannot invade the plant–pollinator system if their ef-
ficiency is too small (α31 < d3(1 + c/N+

1 )). However, if the efficiency is too large
(α31 > d3(1 + c/N−

1 )), Theorem 4.5(iv) displays that the robbers can invade the
plant-pollinator system, but they will drive the pollinators into extinction and eventu-
ally lead to extinction of themselves. This is because the plants alone cannot support
the robbers’ survival. Theorem 4.5(iii) shows that when the robbers’ efficiency is in-
termediate (d3(1 + c/N+

1 ) < α31 < d3(1 + c/N−
1 )), the three species coexist if their

initial densities are in an appropriate region.
The unidirectional interactions between plants and pollinators are crucial to the

three-species coexistence. Indeed, the condition d3(1 + c/N+
1 ) < α31 < d3(1 +

c/N−
1 ) in Theorem 4.5(iii) can be rewritten as N−

1 < cd3/(α31 − d3) < N+
1 . Since

∂N−
1 /∂β1 > 0 and ∂N+

1 /∂β1 < 0 (Proposition 3.3), the three species can coexist
when β1 is intermediate such that the above inequalities are satisfied. On the other
hand, if β1 is too large such that N−

1 < N+
1 < cd3/(α31 − d3), Theorem 4.5(ii)

shows that the robbers cannot invade the plant-pollinator system, while the plants
and pollinators persist. If β1 is too small such that cd3/(α31 − d3) < N−

1 < N+
1 ,

Theorem 4.5(iv) shows that the robbers’ invasion will lead to extinction of both the
pollinators and robbers. A similar discussion is possible for the positive effect α12.

5 Discussion and Application

In this paper, we considered the plant–pollinator–robber system, where the plant–
pollinator subsystem is described by a unidirectional C–R model and the plant–robber
subsystem is described by a predator–prey model. Pollinators and robbers interact
indirectly through consumption of the same limiting resource. By qualitative analysis
on the model, we showed global dynamics of the system, which lead to circumstances
under which the three species could coexist.

Persistence of the plant–pollinator–robber system consists of persistence of all
three species. The plant is always persistent in our analysis since it is assumed that
both the pollinator and robber rely on the plant for survival. This is assured through
the assumption of a source of propagation other than pollination from the pollinator
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in the model. There are three circumstances under which the plant–pollinator–robber
system is persistent, which are described as follows. (i) When a pollination mutual-
ism can persist in the plant–pollinator subsystem, and when the plants alone (in the
absence of the pollinator) can support the robbers’ survival, the pollinators could co-
exist with the robbers if their efficiency in translating plant-pollinator interaction into
fitness is relatively larger than that of the robbers. (ii) When the pollination mutualism
can persist but the plants alone cannot support the robbers’ survival, the pollination
mutualism may lead to invasion and persistence of the robbers, and the pollinators
will not be driven into extinction by the robbers’ invasion. (iii) When persistence of
the pollination mutualism depends on initial population densities and the plants alone
cannot support the robbers’ survival, the robbers and pollinators could coexist if the
robbers’ efficiency is intermediate and initial density is small.

Unidirectional interactions between plants and pollinators could determine the
robbers’ invasibility. We focus on the circumstances in Theorem 4.3, while simi-
lar discussions can be given for the others. In Theorem 4.3, the plants alone cannot
support the robbers’ survival, while the pollination mutualism can persist in the ab-
sence of robbers. Thus, when the pollinators’ negative effect on the plants is small,
the robbers could survive. Otherwise, the robbers would go to extinction. For exam-
ple, as mentioned in Sect. 1 in this paper, larvae might be abundant over the short
term. When their negative effect on the plants is large, the robber cannot invade the
plant-pollinator system and will go to extinction. Conversely, in the situation when
the environmental conditions do not favor larval survival, the negative effect is small
and the robber’s invasion would succeed (Holland and DeAngelis 2006).

Initial population densities of the three species may be crucial to their coexistence.
As shown in Theorem 4.5, when the plants alone cannot support the robbers’ survival
and persistence of the pollination mutualism is density-dependent, the three-species
system persists only if their initial densities are in an appropriate region. Otherwise,
(a) if initial densities of the plants and pollinators are too small, the pollinators cannot
survive, which will lead to extinction of the robbers. (b) If the initial densities are
large but the robbers’ initial density is too large, the robbers will drive the pollinators
into extinction, which eventually leads to extinction of the robbers themselves. Thus,
only when the initial densities of the plants and pollinators are large and the robbers’
initial density is relatively small, the three species could coexist.

When in coexistence, the three species may be at a steady state or in oscillations.
Indeed, the dissipation of solutions and uniform persistence of (1) guarantee that the
system has a unique positive equilibrium (Butler et al. 1986). When the equilibrium
is asymptotically stable, the system persists at a steady state. If the equilibrium loses
its stability, a stable limit cycle emerges by the Hopf bifurcation theorem and the
three species persist in a form of periodic oscillations, as shown in Fig. 3. Thus, the
results in this paper can be used to show more complex dynamics of the system. Since
our focus is on plant-pollinator-robber coexistence, we do not extend the discussion
further.

Acknowledgements We are grateful to the anonymous reviewers for their careful reading, helpful com-
ments and suggestions that really helped us to improve the presentation of the paper. This work was
supported by NSFC of P.R. China (No. 11171355) to Y. Wang, and was supported by NSF grant DEB-
081423 and NSF grant DEB-0814523 to J.N. Holland and D.L. DeAngelis. D.L. DeAngelis acknowledges
the support of the US Geological Survey Southeastern Ecological Science Center.



2158 Y. Wang et al.

Fig. 3 Population dynamics of
the plant–pollinator–robber
system (1). Fix r1 = 1.8,
d2 = d3 = 0.45, d1 = 0.01,
α12 = 0.10, α21 = 0.25,
α31 = 1.25, a = 0.35,
b = 0.2, c = 90, β1 = 0.001,
β2 = 0.5. Numerical simulations
show that the three-species
system persists in periodic
oscillations

Appendix A

Proof of Theorem 3.2

(i) Since α21 < d2(d1 + ar1)/r1, we obtain a2 > 0 and P1 is locally asymptotically
stable. Thus, if −a1 ≤ 0 or Δ1 < 0, it follows from (5) that there is no positive
root. By Proposition 3.1, P1 is globally asymptotically stable.

(ii) It follows from a1 < 0 and Δ1 > 0 that there are two positive equilibria P −
12

and P12. By (3), we obtain tr(J (P12)) < 0. A long but straightforward compu-
tation shows that

detJ (P12) = d2N
+
2

b(α21 − ad2)2
Λ, Λ = α21a0

(
1 + bN+

2

)2 − α12b.

By (5), we have

Λ = bα21(2a0 − ba1)

(
N+

2 − 2ba2 − B

2a0 − ba1

)
.

It follows from a1 < 0 that

2a0 −ba1 = b

(
α12

α21
+ β1 + br1

α21 − ad2

)
> 0, 2ba2 −a1 = α12

α21
− β1 + br1

α21 − ad2
> 0.

Since

(2a0 − ba1)(−a1 + √
Δ1) − 2a0(2ba2 − a1) = (2a0 − ba1)

√
Δ1 + bΔ1 > 0,
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then

N+
2 = −a1 + √

Δ1

2a0
>

2ba2 − a1

2a0 − ba1
.

Thus, we have detJ (P12) > 0, which implies P12 is locally asymptotically sta-
ble.

While b2Δ1 − (2a0 − ba1)
2 = −4a2

0 + 4ba0a1 − 4b2a0a2 < 0, we obtain
b
√

Δ1 − (2a0 − ba1) < 0, and

(2a0 − ba1)
(−a1 − √

Δ1
) − 2a0(2ba2 − a1) = −(2a0 − ba1)

√
Δ1 + bΔ1

= √
Δ1

[
b
√

Δ1 − (2a0 − ba1)
]

< 0.

Hence, we have

N−
2 = −a1 − √

Δ1

2a0
<

2ba2 − a1

2a0 − ba1
.

Thus, detJ (P −
12) < 0, which implies P −

12 is a saddle point. By Proposition 3.1,
(ii) is proved.

(iii) It follows from B < 0 and Δ1 = 0 that there exists a unique positive equilibrium
P12, which is the coincide of equilibria P −

12 and P12. By the criterion for saddle-
node points (Theorem 7.1, Zhang et al. 1992), P12 is a saddle-node point. By
Proposition 3.1, (iii) is proved.

(iv) It follows from α21 > d2(d1 + ar1)/r1 that C < 0 and P1 is a saddle. By (5),
there is at most one interior equilibrium (N+

1 ,N+
2 ). It follows from Proposi-

tion 3.1 that there exists a unique interior equilibrium P12(N
+
1 ,N+

2 ) of system
(2), which is globally asymptotically stable in the positive quadrant. �

Appendix B

Proof of Theorem 4.2 By r1/d1 > max{d2/(α21 − ad2), cd3/(α31 − d3)}, we obtain
μ

(1)
2 > 0 and μ

(1)
3 > 0. Thus, E1 is a saddle point, and equilibria E12 and E13 exist.

Since μ
(1)
2 > 0, E12(N

+
1 ,N+

2 ,0) is globally asymptotically stable in the interior of

the (N1,N2)-plane (Theorem 3.2). We show μ
(12)
3 > 0 as follows. By the second

equation of (2), we have

−d2 + α21N
+
1

1 + aN+
1

> −d2 + α21N
+
1

1 + aN+
1 + bN+

2

= 0

then

−d2 + α21N
+
1

1 + aN+
1

> −d2 + α21N
#
1

1 + aN#
1

.
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By the monotonicity of function N1/(1 + aN1) that N+
1 > N#

1 . It follows from the
monotonicity of function N1/(c + N1) that

μ
(12)
3 = −d3 + α31N

+
1

c + N+
1

> −d3 + α31N
#
1

c + N#
1

= 0

which implies μ
(12)
3 > 0, i.e., E12 is unstable in the N3-axis direction.

When α21 < d2(a + 1/N#
1 ), we obtain μ

(13)
2 < 0. Then there is no positive equi-

librium of (1). Indeed, suppose E∗(N∗
1 ,N∗

2 ,N∗
3 ) is a positive equilibrium of (1). By

the third equation of (1), we obtain N∗
1 = N#

1 . It follows from (13) that

−d2 + α21N
∗
1

1 + aN∗
1 + bN∗

2
< −d2 + α21N

#
1

1 + aN#
1

= μ
(13)
2 < 0

which forms a contradiction by the second equation of (1).

(i) It follows from μ
(12)
3 > 0 that E12 is a saddle point: the (N1,N2)-plane is the

stable manifold and the N3-axis is the unstable manifold. Since μ
(13)
2 > 0 and

condition (9) holds, E13 is a saddle point: the (N1,N3)-plane is the stable mani-
fold and the N2-axis is the unstable manifold. Thus, the boundary equilibria can
not form a heteroclinic cycle. It follows from the acyclicity theorem of Butler et
al. (1986) that uniform persistence of (1) is guaranteed.

(ii) It follows from μ
(13)
2 > 0,μ

(φ)
2 > 0 and (10) that, E13 is unstable; Eφ is also

unstable: the (N1,N3)-plane is the stable manifold, and the N2-axis is the un-
stable manifold. Thus, the boundary equilibria and periodic orbits cannot form
a heteroclinic cycle. Similar to the proof of (i), (ii) is proved.

(iii) It follows from μ
(13)
2 < 0 and (9) that E13 is locally asymptotically stable in R3+.

Let �13 be the basin of attraction of E13 in � . Then �13 is open and forward
invariant, and � − �13 is closed and forward invariant in � . Suppose the inte-
rior of � −�13 (i.e., int(� −�13)) is not empty. Since the boundary equilibria
O,E, and E12 are hyperbolic saddle points and cannot form a heteroclinic cy-
cle, hypotheses of (H-1) to (H-4) derived by Butler et al. (1986) are satisfied
in � − �13. Thus, system (1) restricted on � − �13 is uniformly persistent
and has a positive equilibrium E∗ as a result of Butler et al. (1986). This forms
a contradiction since there is no positive equilibrium when μ

(13)
2 < 0. Thus,

int(� − �13) is empty and (iii) is proved.
(iv) It follows from μ

(φ)
2 < 0 and (10) that Eφ is locally asymptotically stable. Let

�φ consist of basins of attraction of E13 and Eφ in � . Similar to the proof in
(iii), int(� − �φ) is empty and (iv) is proved.

(v) It follows from μ
(13)
2 > 0 and μ

(φ)
2 < 0 that Eφ is locally asymptotically stable

in � . When μ
(13)
2 < 0 and μ

(φ)
2 > 0, E13 is stable in the N2-axis direction, and

there is a positive solution of (1) which converges to E13. Thus, system (1) is
not persistent. �
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Appendix C

Proof of Theorem 4.3 It follows from r1/d1 > d2/(α21 − ad2) and r1/d1 <

cd3/(α31 − d3) that μ
(1)
2 > 0 and μ

(1)
3 < 0. Then E1 is globally asymptotically stable

in the interior of the (N1,N3)-plane, and is unstable in the N2-axis direction; E12 is
globally asymptotically stable in the interior of the (N1,N2)-plane.

(i) It follows from α31 > d3(1 + c/N+
1 ) that μ

(12)
3 > 0. Then the equilibrium

E12(N
+
1 ,N+

2 ,0) is unstable in the N3-axis direction. Since the boundary equilib-
ria O,E1, and E12 are hyperbolic and cannot form a heteroclinic cycle, system
(1) is uniformly persistent as a result of Butler et al. (1986).

(ii) It follows from α31 < d3(1 + c/N+
1 ) that μ

(12)
3 < 0 and −d3 + α31N

+
1 /(c +

N+
1 ) < 0. Then E12 is locally asymptotically stable in R3+. Let �12 be the basin

of attraction of E12 in � . Then �12 is open and forward invariant, and � −�12
is closed and forward invariant in � . Suppose int(� − �12) is not empty. Since
the boundary equilibria O and E1 are hyperbolic and cannot form a heteroclinic
cycle, hypotheses of (H-1) to (H-4) derived by Butler et al. (1986) are satisfied
in � − �12. Thus, system (1) restricted on � − �12 is uniformly persistent and
has a positive equilibrium E∗(N∗

1 ,N∗
2 ,N∗

3 ) as a result of Butler et al. (1986). By
the first two equations of (1), E∗(N∗

1 ,N∗
2 ,N∗

3 ) satisfies

r1 − d1N
∗
1 + α12N

∗
2

1 + aN∗
1 + bN∗

2
− β1N

∗
2 > 0,

−d2
(
1 + aN∗

1 + bN∗
2

) + α21N
∗
1 = 0.

One the other hand, the equilibrium P12(N
+
1 ,N+

2 ) of (2) satisfies

r1 − d1N
+
1 + α12N

+
2

1 + aN+
1 + bN+

2

− β1N
+
2 = 0,

−d2
(
1 + aN+

1 + bN+
2

) + α21N
+
1 = 0.

It follows from the monotonicity of the functions (about N1) in the right-hand
sides of the above equations that N∗

1 ≤ N+
1 . By N∗

1 = N#
1 , we obtain N#

1 ≤ N+
1 .

Since

−d3 + α31N
+
1 /

(
c + N+

1

)
< 0, −d3 + α31N

#
1 /

(
c + N#

1

) = 0

it follows from the monotonicity of function N1/(c + N1) that N#
1 > N+

1 , which
forms a contradiction. Thus, int(� − �12) is empty and (ii) is proved. �

Appendix D

Proof of Theorem 4.4 Since r1/d1 < d2/(α21 − ad2) and r1/d1 > cd3/(α31 − d3),
we obtain μ

(1)
2 < 0 and μ

(1)
3 > 0. Then E1 is asymptotically stable on the (N1,N2)-

plane. It follows from Theorem 3.2 that, system (2) either has no positive equilibrium,
or has two positive equilibria.



2162 Y. Wang et al.

Let N(t) be a solution of (1) with Ni(0) > 0, i = 1,2,3. If there is no positive
equilibrium of (2) as shown in Theorem 3.2(i), E1 is globally asymptotically stable
in the interior of the (N1,N2)-plane. Let N̄(t) = (N̄1(t), N̄2(t)) be a solution of (2)
with N̄i(0) = Ni(0), i = 1,2, then limt→∞ N̄2(t) = 0. By a proof similar to that of
Theorem 4.3(ii), we obtain N2(t) ≤ N̄2(t) for t > 0, which implies limt→∞ N2(t)

= 0.
For the case that both P −

12(N
−
1 ,N−

2 ) and P12(N
+
1 ,N+

2 ) are positive equilibria of
(2) as shown in Theorem 3.2(iii), the stable manifold of equilibrium P −

12 divides
the (N1,N2)-plane into two regions. The region below the manifold, which is de-
noted by Ω1, is the basin of attraction of P1, while the other one, which is de-
noted by Ω12, is the basin of attraction of P12. Let N̄(t) = (N̄1(t), N̄2(t)) be a so-
lution of (2) with (N̄1(0), N̄2(0)) ∈ Ω1, then limt→∞ N̄2(t) = 0. By a proof similar
to that of Theorem 4.3(ii), we obtain limt→∞ N2(t) = 0 for solutions of (1) with
(N1(0),N2(0)) ∈ Ω1.

Let �1 ⊆ � be a set such that solutions of (1) with N(0) ∈ � satisfy
limt→∞ N2(t) = 0. Then �1 is open and forward invariant, and � − �1 is closed
and forward invariant in � . It follows from μ

(1)
2 < 0 and N#

1 < r1/d1 that μ
(13)
2 < 0.

Similar to the proof of Theorem 4.2, we obtain N±
1 > N#

1 and μ
(12)
3 > μ

(12−)
3 > 0.

Then the boundary equilibria of (1) are hyperbolic and cannot form a heteroclinic
cycle. By a proof similar to that of Theorem 4.2(iii), the set int(� − �1) is empty.
That is, solutions of (1) with N2(0) > 0 satisfy limt→∞ N2(t) = 0. A similar proof
can be given for the case in Theorem 3.2(ii). �

Appendix E

Proof of Theorem 4.5 It follows from r1/d1 < d2/(α21 − ad2) and r1/d1 <

cd3/(α31 − d3) that μ
(1)
i < 0, i = 2,3. Then E1 is globally asymptotically stable

in the interior of the (N1,N3)-plane by Theorem 3.4(i).

(i) When Δ1 < 0 or a1 ≥ 0, it follows from Theorem 3.2(i) that equilibrium E1 is
globally asymptotically stable in the interior of the (N1,N2)-plane. By a proof
similar to that of Theorem 4.3(ii) and Theorem 4.4, we have limt→∞ Ni(t) =
0, i = 2,3.

(ii) It follows from α31 < d3(1 + c/N+
1 ) that μ

(12)
3 < 0. When Δ1 > 0 and a1 < 0,

E−
12(N

−
1 ,N−

2 ,0) and E12(N
+
1 ,N+

2 ,0) are boundary equilibria of (1). Since

function N1/(c+N1) is monotonic, we obtain μ
(12−)
3 < 0 by μ

(12−)
3 < μ

(12)
3 and

μ
(12)
3 < 0. Thus, E12 is asymptotically stable, while E−

12 is a saddle point with
a two-dimensional stable manifold S−

12. It follows from Theorem 3.2(iii) and
the comparison theorem that, every solution of (1) with N1(0) > 0 satisfies ei-
ther lim supt→∞ N1(t) ≤ r1/d1, lim supt→∞ N2(t) ≤ 0, or lim supt→∞ N1(t) ≤
N+

1 , lim supt→∞ N2(t) ≤ N+
2 . For the first case, we have limt→∞ N2(t) = 0

and then limt→∞ N3(t) = 0. For the second case, by a proof similar to that of
Theorem 4.3(ii), we obtain limt→∞ N3(t) = 0. By Theorem 3.2(iii), S−

12 divides
intR3+ into two regions. One region, which is denoted by �1, is the basin of at-
traction of E1. The other region, which is denoted by �12, is that of E12. Since
�1 and �12 are forward invariant, (ii) is proved.
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(iii) By a proof similar to that of (ii), �1 is the basin of attraction of E1. In �12,
E12 is unstable in the N3-axis direction since μ

(12)
3 > 0. Thus, system (1) is

uniformly persistent in �12.
(iv) Since function N1/(c + N1) is monotonic, we obtain μ

(12)
3 > 0 by μ

(12)
3 >

μ
(12−)
3 and μ

(12−)
3 > 0. Then equilibria E−

12 and E12 are saddle points. Since
E1 is locally asymptotically stable, we denote the basin of attraction of E1 in �

by �1. Then �1 is open and forward invariant, and � − �1 is closed and for-
ward invariant in � . By a proof similar to that of Theorem 4.2(i), system (1) is
uniformly persistent and has a positive equilibrium E∗(N∗

1 ,N∗
2 ,N∗

3 ) in � −�1

as a result of Butler et al. (1986).

We denote the solution of (2) with N̄i(0) = N∗
i by N̄(t), i = 1,2. By a proof

similar to that of Theorem 4.3(ii), we have N̄i(t) ≥ N∗
i for t > 0. It follows from

μ
(12−)
3 > 0 that −d3 + α31N

−
1 /(c + N−

1 ) > −d3 + α31N
∗
1 /(c + N∗

1 ) = 0. As shown
in Fig. 1c, we denote the N1-isocline of (2) by l1 : r1 − d1N1 + α12N2f = 0, and
the N2-isocline of (2) by l2 : −d2 + α21N1f = 0. The isocline l1 (resp. l2) and the
N1-axis intersects at P1(r1/d1,0) (resp. Q1(d2/(α21 − ad2),0)).

Since μ
(1)
2 < 0, we have r1/d1 < d2/(α21 − ad2). Thus, Q1 is at the right-hand

side of E1. Since there is no intersection of l1 and l2 as N1 < N−
1 , l2 is below l1 as

N1 < N−
1 . Since r1 − d1N1 +α12N2/(1 + aN1 + bN2)|Q1 < 0, the vector field of (2)

satisfies dN1/dt < 0 in the region below l1. Then l2 is below the stable manifold of
P −

12 when N1 < N−
1 , as shown in Fig. 1c. Since the point (N∗

1 ,N∗
2 ) with N∗

1 < N−
1 is

on l2, it is below the stable manifold. By Theorem 3.2(iii), we obtain limt→∞ N̄2(t) =
0. That is, N∗

2 = 0, which forms a contradiction. �
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