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SUMMARY

Chaotic dynamics have been implicated in several biological phenomena including epidemics (Olsen &
Schaffer 1990), population dynamics (Schaffer & Kot 1985; Sugihara & May 1990), electro-
encephalograms (Mayer-Kress & Layne 1987) and certain physiological rhythms (Glass & Mackey
1988). In this paper I show that animal behaviour may also be chaotic. The attractor of the movement
activity of single, isolated Leptothorax allardyce: ants has a small, non-inter dimension characteristic of low-
dimensional chaos. The activity of entire colonies of ants yields an integer dimension that is consistent with
periodicity in activity. First-return maps of the activity of single ants are highly non-random suggesting
that the interpretation of determinism in these activity patterns is realistic. By contrast the first-return
maps of whole-colony activity records show no pattern, a fact consistent with the interpretation of noisy

periodicity in colony activity rhythms.

1. INTRODUCTION

Animal behaviour is among the most complex of
biological processes. Variation in behaviour is due to
an intricate outcome of genetic, developmental, neural
and physiological processes as well as to environmental
effects. Whereas this complexity presents us with a rich
variety of phenomena, it also often limits our under-
standing of the evolution and operation of behaviour.
Attempts at a theoretical description of a behavioural
process may involve not only enormous numbers of
variables but interactions among them. In organisms
that live in social groups interactions among group
members produce an additional level of complexity in
behaviour. We can exploit this higher level of
behavioural organization to explore the consequences
of interactions between individuals for the behaviour of
both individuals and groups.

Complex systems, with many non-linear interac-
tions, such as those which produce behaviour, are
precisely those which may exhibit complicated dy-
namics including chaos. They are also the sort of
systems that would most benefit from simplification. If
we could discover chaos in complex animal behaviour
it would simplify the task of describing the dynamics of
behaviour because many complex variables and inter-
actions may be reduced to a more tractable number that
are sufficient to describe the dynamics. This would
improve our understanding of the operation and
evolution of behaviour in at least two ways: first, by
showing the type of models that are adequate to
describe behavioural changes, and second by guiding
the collection of data suitable for the models.

It can be difficult to examine behavioural data for
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evidence of chaos because of the problems of obtaining
long sequences of suitable data. To characterize
behaviour or a behavioural phenotype it is often both
appropriate and convenient to average the measure-
ment of a behavioural character over some time
interval. If the behaviour has a substantial stochastic
component it must be averaged over some relatively
large interval in order to discern whatever order exists.
However, for behaviour that varies temporally this
procedure will obscure any short-term pattern. In this
paper I shall examine the complex temporal pattern of
movement activity in individuals and groups of a social
species, the ant Leptothorax allardycer (Mann).

Data are acquired by an automatic digitizing
camera that produces a 640 x 128 pixel image, and
counts the number of differences between successive
images of the camera (Cole 19914, b). The number of
pixel differences is a measure of the activity in the
image; measurements on images of motionless ants fall
to the instrumental noise level, whereas a high level of
activity produces large number of pixel differences.

Activity records of single ants and colonies of ants
and their spectrograms are shown in fig. 1. Single ants
have patterns of activity characterized by isolated,
spontaneous bursts of activity followed by relatively
long periods of inactivity. In colonies of ants there are
rhythmic episodes of activity. The spectrograms il-
lustrate that individual ants show no clear spectral
peaks, whereas intact colonies have peaks of power at
distinct frequencies (the height of the highest peaks are
highly significant by Fisher’s test, p < 0.001, Shimshoni
(1971)). The activity cycles of colonies of ants are
sustained and show a typical period of approximately
25 min. These cycles are similar to those observed in
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Figure 1. (a, b) Activity records for two intact colonies. Each time unit represents 30 s in all activity records. The
measure of activity is the number of pixels in a MicronEye image that have changed during the interval. (e, f) Power
spectra for the colony activity records. (¢, d) Activity records for two single ant activity records. (g, ) Power spectra

for these two single ant activity records.

L. acervorum (Franks et al. 1990). As larger numbers of
ants are included in an aggregate, the synchrony of
activity among individuals increases.

2. MEASURING THE DIMENSION OF THE
ATTRACTOR

Chaotic systems are deterministic ones which are
constrained to an attractor. Purely random fluctua-
tions, by contrast, are not constrained to a low-
dimensional surface, but are space filling. Finally,
periodic or quasiperiodic trajectories evolve on surfaces
of integer dimension. We can reconstruct the attractor
of movement activity and measure its dimension.

The measurement of the dimension of an attractor is
frequently made by using the method of Grassberger
and Procaccia (see, for example, Olsen & Schaffer
(1990); Schaffer & Truty (1988)). Although the
method is in widespread use and gives reliable results
for certain types of data, it can give misleading results
for other types of data. Some of the pitfalls of using the
Grassberger—Procaccia algorithm have been detailed
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elsewhere (for examples, see Albano et al. (1988);
Moller et al. (1989); Sugihara & May (1990). One of
the situations in which using Grassberger—Procaccia
can give misleading results is when the data are too
noisy. When the signal to noise ratio (sNr) of the data
record is less than about 20 dB (measured as: 10 log,,
[var(signal) + var(noise)]), then Grassberger—Pro-
caccia is inapplicable (Hediger e al. 1990) because
there is not a well-defined scaling region in the
calculations of the correlation integral. There is
instrumental noise associated with the measurement of
ant activity. For the activity records of intact colonies,
I have estimated the sNr to be about 35 dB, or well
within the range of what Grassberger—Procaccia can
tolerate. However, the sNr of individual ants is in the
neighborhood of 10 dB. This level of noise makes it
inappropriate to use Grassberger—Procaccia.

Other techniques for measuring dimension have
been developed. To measure the dimension of the
attractor of individual ants I shall use the Local
Intrinsic Dimension (Lip) method of Hediger et al.
(1990). Their procedure, as does Grassberger—



Table 1. Dimension calculations for ant activity records
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number of dimension SNR

estimates estimate 2 s.c. db method
whole colonies 10 3.09 0.24 35 Grassberger—Procaccia
single ants 10 2.43 0.30 12 local intrinsic dimension

Procaccia, begins by lagging the data against itself in
some number of embedding dimensions. The embed-
ding dimension must be greater than 2m+ 1, where m
is the dimension of the attractor to ensure that the
properties of the attractor are preserved (Takens 1981
Broomhead & King 1986). One estimates the di-
mension as the number of orthogonal directions along
which the data are arrayed in the local neighborhood
of a randomly selected point. The mean of a number of
such points around the attractor is the rip. If the
embedding dimension is 7, then we take some number,
n, closest neighbours of a randomly chosen point (n is
typically three times the embedding dimension, Albano
et al. 1988; Hediger et al. 1990). The matrix of the
coordinates of the n points in r dimensions forms the
data matrix, M. The eigenvalues of the standardized
variance—covariance matrix, (M M), are related to
the fraction of variation that occurs along principal
axes. The contribution of Hediger et al. (1990) was to
use a result from signal processing which makes use of
an information theoretic criterion, the Minimum
Description Length (Mpr, Wax & Kailath 1985) to
estimate which of the axes are associated with the
signal and which are associated with noise. In other
words, the variation along the first several axes are
associated with the dispersion of data around the
attractor, the remaining axes are associated with
random variation around the attractor. The MpL
criterion of Schwarz (1978) and Rissanen (1978) has
been found to give the best results. It involves finding
the value £ that minimizes the quantity:

wo=-wfi )
1

1 r (r—k)q ng

( by ul)} }+(kr—k2/2+k/2+l)ﬁ,
(r—k) isen 2

where u, is the ¢th eigenvalue of the variance-
covariance matrix. One then repeats this procedure for
many points. The mean of the values for a number of
points approximates the dimensions of the attractor.
Hediger et al. show that this procedure gives a good
estimate of the dimension of several well-studied
chaotic systems. The important advantage of the LID
technique is that it can be used even when the sNr in
the system is as high as 5 dB, i.e. when the noise is as
much as 30 times as great as can be tolerated by
Grassberger—Procaccia. The method will overestimate
the dimension of the attractor when the sNR exceeds
about 15 dB as the method concludes that more of the
axes are ‘real.’

Because the sNr of the activity records of ant colonies
is high enough to be analysed by Grassberger—
Procaccia, and is too high to be analysed by Lip, I have
calculated the correlation dimension using the im-
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plementation of Schaffer ¢t al. (1988) and the multi-
dimensional tree-searching algorithm of Bingham &
Kot (1989). The values obtained are summarized in
table 1. Because it is difficult to obtain any sort of
estimate of the error of any particular Grassberger—
Procaccia estimate, I have used the replicate estimates
of the correlation dimension of a number of ant
colonies to estimate the distribution of the correlation
dimension. The dimension of colony activity records
(mean = 3.0940.24) is not significantly different from
a value of three dimensions (¢=10.24, d.f. =9, p>
0.4). The activity of colonies is consistent with nearly
periodic motion about a toroidal attractor.

The dimension calculations for single ant activity
records are summarized in table 1. To obtain a reliable
estimate of dimension using the LD method, it is
necessary to have a high density of points around the
attractor. This is required because, if one uses an
embedding dimension of 10, it is necessary that the 30
nearest points to a chosen point be in the local
neighborhood of that point of interest. If the data
density is low about the attractor, the 30 nearest points
will be some distance away, and the cloud of points will
not be locally linear. This will result in an overestimate
of the dimension of the attractor. The data for single
ant activity records are substantially longer (6 h versus
4 h) and involve larger numbers of data points (about
7200 points per record). For each single ant activity
record I embed the record in ten dimensions. The lag
interval, ¢, that I use is 33 time units; each time unit
represents 3 s. The time window of any particular
data point is £, = (r—1) ¢, where 7 is the embedding
dimension. The length of the time window that should
be used is a matter of some discussion (Broomhead &
King 1986; Mees et al. 1987; Albano et al. 1988), but
one guideline is to use a value of 2-3 times the
correlation time, {,, the time of the first zero of the
autocorrelation function. The autocorrelation function
reaches the first zero for these single ant activity
records at a lag of approximately ¢, = 100-150. The
lag interval that I use gives a time window of 300.

The dimension calculations are robust to variation
in the lag used in the LD method. In figure 2 I show the
estimated dimension over a range of lag intervals, from
t, = 25—45 (which corresponds to a time window of
225-405) for three individual ant activity records. The
estimates are standardized so that the estimate at ¢, =
33 is one. Over a broad range, the estimate of the
dimension does not change any systematic manner.
The standard errors on these points have been omitted
from the figure for clarity, but none of the estimates
change as a function of time lag.

The mean dimension of the attractor of single and
activity records is 2.43 (+0.30 = 2 s.e.). This value is
significantly different from the integer values of either
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Figure 2. The Local Intrinsic Dimension calculated from
three single ant activity records (inverted triangles, S5323;
upright triangles, S2912; circles, S113) over a range of time
lags. The dimension estimates that are summarized in table
1 use a time lag of 33 time units. The values in the figure are
standardized to the estimate obtained from ¢, = 33. Although
the standard deviations are omitted from this figure for
clarity, none of the estimates differ from one another across
the range of time lags. Because the estimates are based on
cmbedding the data in ten dimensions, the time window
ranges from 225-405 time units.

two (¢ =2.90, p < 0.01, one-tailed) or three (¢ = 3.84,
p < 0.005, one-tailed) as well as significantly different
from that of colony records (¢ = 3.49, d.f. =18, p <
0.01).

3. CONSTRUCTION OF RETURN MAPS

Prediction of the long-term course of a chaotic
process is not possible due to the fact that nearby
trajectories diverge exponentially with time. However,
it may be possible to make short-term predictions
about the dynamics of a chaotic system by constructing
a first-return map of successive excursions about the
attractor. The return map of a chaotic process will
typically show a non-random pattern. Observation of
a non-random pattern does not guarantee the presence
of chaos, but in combination with other evidence, such
as the non-integer dimension of the attractor, is
strongly indicative. Poincaré sections are produced
from the reconstructed attractor by cutting through
the attractor with a plane. The plot of successive values
of the trajectory against one another as they pass
through this plane is the first-return map. Poincaré
sectioning of the attractor, embedded in three dimen-
sions, is illustrated in figure 3 for two single ant activity
records (the return maps for these sections are shown in
figure 54, b). In figure 4 I show two first-return
(Poincaré) maps of two activity records of intact
colonies. The return maps show no indication of
pattern in successive peaks. This is expected from noisy
periodicity. However, the first-return maps of single
ant activity records (e.g. figure 5) seem to show clearly
non-random patterns.

Although a pattern may appear to be non-random,
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(®) 1

Figure 3. (a, ) Two reconstructed attractors from single ant
activity records. The data set (X) is lagged against itself to
produce a trajectory embedded in three dimensions (X, ¥ =
X+1, Z= X+2t, where ¢ is the time lag). The intersection of
the trajectory with the illustrated planes (the Poincaré
sections) are used to produce the return maps shown in
figures 5a, b, below.

it is important to recognize that pattern can be
apparent in random sequences and therefore to
determine whether the apparent non-randomness is
significant. Quantifying the extent of the non-
randomness is not straightforward. There are at least
two reasons for this difficulty. The first is that the
return map has an unspecified form. Therefore, the
null hypothesis against which the data are to be tested
is not known in advance. Second, the expected form of
the return map will likely not have an integer
dimension. This makes standard curve-fitting mean-
ingless. Several methods were used to test for patterns
in the return maps. The methods were all based on
randomizations and do not exhaust all the possibilities.
The first, following a suggestion by W. Schaffer, is to
use as a test statistic, the sum of the product of the x—y
coordinates of the points of the return map. This
statistic is tested against a randomized distribution.
The null distribution is formed by randomizing the x-
coordinates (equivalent to randomizing the successive
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Figure 4(a, b) First-return maps from Poincaré sections of whole colony activity records embedded in three
dimensions. The points are plotted on a relative scale with the largest value set equal to one. The value of the
trajectory in the Poincaré section is plotted against the next value of the Poincaré section. The pattern of successive
points is random.
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Figure 5 (a—d) First-return maps from four single ant activity records. In each case the return map can be shown
to have a non-random pattern. The axes and scale are as in figure 4.

passes through the Poincaré section), creating the
randomized return maps and calculating the statistic.
This procedure is sensitive to either an approximately

hyperbolic return map (figure 54, b), or to a return
map in which large excursions around the attractor
frequently succeed one another (figure 54).
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Figure 6 (a, $)) Minimum spanning trees of the first-return maps given in Figure 34, b. The length of these minimum
spanning trees is significantly less than that expected from randomized data. The axes and scale are as in figure 4.

Table 2. Results of statistical test for non-randomness in the
return maps shown in figure 3

The entries are the estimated significance levels from the
randomization tests described in the text. ‘Zero’ refers to the
number of squares with zero points in them; ‘cumu’ refers to
the maximum difference in the cumulative distribution
function of points per square; ‘prod’ refers to the sum of the
products of the x-y coordinates of the return maps; ‘spanning
tree’ refers to the length of the minimum spanning trees.)

spanning tree

activity signifi-
record  zero cumu  prod length  cance
S151 0.012 0.202 <0.001 20 0.02
S5333  0.144 0.04 0.3 3.31 0.068
S121 0.01 0.138 0.004 1.98 0.02

51422 0.46 0.1 0.002  4.41 0.60

The second procedure is to form the test statistic by
dividing the range of x- and y-coordinates into several
intervals and to count the number of boxes with 1, 2,
3,..., etc. points in them. The cumulative distribution
of the fraction of points that are found in boxes with
one point, two points, three points, etc. is found. To
obtain a test distribution, a large number (e.g. 500) of
randomized return maps are constructed and the
expected cumulative distribution function is calcu-
lated. The test statistic I use is the largest deviation of
the observed from the expected cumulative distri-
bution. The critical values must be estimated by
further randomization of the data to estimate the
distribution of the test statistic.

The third method is to divide the range of x- and y-
coordinates as above. Here I count the number of
boxes that have no points in them. Many randomized
return maps are formed and the distribution of the
number of empty boxes in the randomized data is used
as the null distribution to test the observation. If the
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data are constrained to some portion of the potential
region, the number of empty boxes will be larger in the
observed data.

The fourth procedure is to use the length of the
minimum spanning tree as the test statistic. The
minimum spanning tree (figure 6) connects the points
such that the sum of the distances is as small as possible.
The order of the points is randomized and the length
of the minimum spanning tree calculated. The dis-
tribution of the length of the minimum spanning trees
of randomized points is used to estimate the significance
of the observed statistic. In patterned data the lengths
of the minimum spanning tree may be less than that in
randomized data.

The results of these tests are given in table 2 for the
illustrated return maps (figure 5). It is possible that a
unimodal map may even provide a good initial
approximation of the data of figure 54, . Given that
the estimated dimension of single ant activity is about
2.4, the first-return maps ought to be nearly one
dimensional. We expect that there ought to be pattern
in a two-dimensional portrait of the return map.

4. DISCUSSION

In contrast to the activity patterns of intact colonies
the activity of single ants appears to be chaotic. The
fractal dimension of the reconstructed attractor and
the existence of non-random first return maps is highly
suggestive of chaos. In order to show conclusively that
behaviour is chaotic one would like to develop a model
for activity that (i) is chaotic under the appropriate
range of parameters and (ii) reproduces the transition
from chaotic to cyclic activity when interactions among
worker ants are allowed. Further, one would like to
show, empirically, that cycles of activity can become
chaotic when the appropriate behavioural variables
are changed.

The existence of chaos in animal behaviour can have



several important implications. Variation in the tem-
poral component of individual behaviour may not be
due simply to chance variation in a stochastic world,
but to deterministic processes that depend on initial
conditions. Although the behaviour of an organism
may appear to be quite variable both between
individuals and even within an individual from one
time to another, the relevant behavioural phenotype
may be the geometry of the attractor which may be
considerably less variable.

Chaos implies deterministic constraints. The be-
haviour of individual ants appears to be chaotic,
whereas the behaviour of colonies of ants differs
markedly in having a rhythm. The transition from the
chaos of individuals to the rhythmicity of colonies
presumably occurs due to interactions among the
colony members. The transition from periodicity to
chaos that can be observed in dynamical systems may
be played out in the structure of an ant colony. The
colony as a social unit may be regarded as a self-
organizing structure in which order is maintained by
the predictable outcome of interactions among indivi-
duals (Cole 1991a, b).

The perception of animal behaviour as randomly
varying, noisy, or governed by uncontrollable en-
vironmental influences could be fundamentally altered
by these observations. For example, the temporal
pattern of other types of behaviour such as locomotion,
feeding or mating may display evidence of low-
dimensional chaotic processes. If some of the variation
in behaviour is due to the sensitive dependence on
initial conditions characteristic of chaotic processes,
rather than chance variation in behavioural state or
environmental conditions, it suggests that individual
responses to stimuli may be generated by fundament-
ally different processes. This source of variation would
have to be considered in our efforts to understand the
evolution of behaviour.

I thank Diane Wiernasz, Bill Schaffer, Jon Seger, Joe Travis,
Bob May and George Sugihara for numerous comments and
suggestions at various stages of this work.
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