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Ecologists have long believed that differences in the sizes of ecologically similar
species may provide or reflect differences in their niches sufficient to permit
coexistence (e.g., Lack 1944; Brown and Wilson 1956). Hutchinson (1959) first
used the ratio of the larger to the smaller of each pair of species to characterize
these differences. He suggested that, in order to coexist, species depending on
size alone for niche separation must differ by ratios of at least 1.28 in some linear
measurement. This was an empirically derived rule, based on the observation of a
number of similar species that had apparently diverged in size in areas of sym-
patry. This suggestion has generated a great deal of research into questions of
limiting similarity and community structure. It has also provoked a controversy
whose most beneficial effect has perhaps been to illuminate the very different
ways in which ecologists work (Lewin 1983a,b).

As reviewed by Simberloff (1983) and Simberloff and Boecklen (1981), Hutchin-
son’s suggestion has been interpreted by various researchers to mean that similar,
coexisting species differ by minimum ratios, constant ratios, or both. In most
cases, these ratios have been presented to corroborate or merely act as metaphors
for more-substantial characterizations of species’ differences and similarities. In
some cases, however, the 1.28 ratio in linear dimensions, or doubling in weight,
has been used as a standard against which actual data were compared in order to
make inferences about the ecology and evolution of organisms. For example,
Enders (1976) concluded that successive instars of certain spiders must compete
with one another for food because they differed by size ratios of less than 1.28.
Oksanen et al. (1979) inferred that bird species had disappeared from particular
feeding guilds because some size ratios in those guilds were much larger than 1.28.
(This requires the additional, unstated assumption that species are packed tightly
in niche space.) More commonly, however, authors have used ratios of between
1.2 and 1.5 or more as evidence that animals do not compete for food (e.g.,
Diamond 1973). These authors all may be correct in their assertions; however, we
question whether they can make such inferences from size ratios alone.

There is good reason to be cautious when making inferences from size ratios.
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The size of an animal may reflect adaptation to any of a wide range of factors, of
which interspecific competition for food is but one. Body sizes may also be
influenced by physiological, mechanical, reproductive, behavioral, and defensive
factors (Peters 1983; Calder 1984). The selective benefits that accrue from most of
these mechanisms are independent of the sizes of other species in the community.
Therefore, the sizes of two sympatric species may be set independently by factors
other than competition, in which case their size ratio, whether large or small,
would be irrelevant to questions of competition and coexistence. If size ratios are
to be used as indexes of morphological, and hence ecological, displacement, then
methods must be found to distinguish ratios of ranked, independent body sizes
from those of species constrained from being too similar.

In this paper, we first explore the statistical properties of size ratios under the
null hypothesis that the sizes of species within guilds are independent of one
another. We show that this leads to predictions about ratio distributions different
from those of the alternative hypothesis that species’ sizes are constrained to be
dissimilar. Second, we ask which of the two models better explains several large
data sets. Finally, we argue that previously described tests for constant or
minimum ratios in single guilds depend critically on the assumed but unknown
underlying size distribution, and are therefore of little use. We conclude that size
ratios alone are of limited explanatory power and that they can be used only to
identify broad patterns in large data sets. If one wishes to determine the role that
body-size differences play in permitting particular species to coexist, then these
ratios must be supplemented, if not replaced, by more-detailed ecological data.

THE MODEL

Suppose each species in a guild has evolved to an optimal size, not dependent
on the sizes of the other species in the guild. Suppose, in addition, that no two
species are exactly the same size. Given these two assumptions, it is clear that the
species can be ranked in order of increasing size, and the ratios of successive pairs
computed. Two questions arise immediately. What distributions of ratios are
generated under this simple hypothesis of independent body sizes? Does this
hypothesis explain the data better than a competitive model, in which species’
sizes are not independent of one another?

In order to answer these questions, we must specify some underlying distribu-
tion of species sizes from which guilds of size »n are independently and randomly
drawn. This underlying distribution can be viewed in either of two ways: (1) there
is an actual pool of species with this size distribution; (2) species evolve to
different sizes at frequencies reflected in the distribution.

In the first case, our selection of species is analogous to the colonization of an
island or new habitat from some actual species pool. In the second case, the pool
is not a reality, only a potentiality. Either way, body sizes can be treated as
random variables independently drawn from some specified underlying distribu-
tion. The shape of this distribution subsumes all the biologically important effects
of body size within it.

Suppose a guild of n species is drawn from this effective species pool. The
species sizes are independent random variables, denoted by Yy, Y5, . . ., ¥,,. We
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Fi6. 1.—Assumed distribution of body sizes in the species pool. Above, all body sizes
between two values are equally likely or common, as represented by the uniform (a, b)
distribution. Below, small- or intermediate-sized species are more likely, as described by
some Weibull (¢, o) distribution.

define a new set of statistics, the order statistics, such that X; = min(Y,), . . ., X,
= max(Y;). These are the species sizes ranked in increasing order, which are no
longer independent of one another. The variables of interest are the size ratios,
definedas Z; = X;. /X;,fori = 1,2,...,n — 1. Ifalarge number of guilds of size
n were drawn from the pool, it is clear that a sampling distribution would be
obtained for each ratio Z;. Rather than perform such repeated sampling, we have
obtained exact analytic solutions for two cases (fig. 1).

1. Uniform distribution.—All size classes between some upper and lower limits
are equally represented in the actual species pool, or are equally likely to evolve
from selection on size-related aspects of physiology, behavior, etc.

2. Weibull distribution.—Small- or intermediate-sized species are either more
abundant in the pool or more likely to evolve.

The Weibull distribution is defined by a shape parameter ¢ and a scale parame-
ter o (Johnson and Kotz 1970), where ¢ and « are both positive. At ¢ = 1, the
distribution reduces to the negative exponential distribution; as ¢ increases, it
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becomes first approximately lognormal and then increasingly symmetrical about a
single mode (fig. 1). Distributions of species’ sizes from higher taxa can easily be
fit by this distribution (e.g., Schoener and Janzen 1968; Van Valen 1973; May
1978). Given the flexibility of the two-parameter Weibull distribution, and the
likely paucity of bimodal size distributions in nature, we believe the two cases
above cover most biologically plausible possibilities for a species pool.

In Appendix A, we derive the probability density function for ratio values,
assuming that the underlying species’ sizes are uniformly distributed. If a and b
are the smallest and largest sizes attainable and Z; ,, = X, . /X;, the ratio of the (i +
Dth-smallest to the ith-smallest species out of n, then the probability density
function of Z; ,, is given by

h(zin) = (b — a)" " 'N(b — a@)"Z'] [(ib/z) + a(n — )], (1)

where z ranges from 1 to b/a.

If the species pool can be approximated by some Weibull (¢, o) distribution,
then the probability density of ratios of successive, randomly selected species is
given by

| c—1 !
h(zi,) = nlcz X‘ 1

i Zn—0)+s

(n—i-0 ] - +n

r=1

@

(Appendix B). Notice that only the shape parameter c is important; the scaling
parameter « is eliminated when ratios are taken. When the derivation is repeated
for a Weibull distribution truncated at a and b, the relevant parameters are c, a/«,
and b/a; only the positions of the endpoints relative to the scaling parameter, not
their absolute values, are important. The following discussion is based on the non-
truncated distribution, since for ¢ much larger than 2, the probabilities of very
large and very small species become very small.

By taking the appropriate derivatives of equations (1) and (2), it is possible to
show that they share three qualitative features (see the appendixes). Distributions
or histograms of ratios of ranked independent variables (1) decrease monotoni-
cally from a peak at the lower limit, z = 1, and (2) are concave upward. Further-
more, (3) the average value of all ratios decreases as the number of species per
guild increases. These three patterns do not depend on particular parameter
values, but they are true for all ratios z;, . . . , 2,—1, in all uniform (a, b) and
Weibull (¢, o) distributions, provided that ¢ = 1 (exponential) or ¢ > 1 (unimodal)
in the latter case. These three features are illustrated in figure 2.

These results can be generalized immediately. It is clear that any (finite) uni-
modal size distribution yields relatively more small ratios in random draws than
does a uniform distribution. Therefore, ratios of ranked independent variables
from any unimodal size distribution should have frequency distributions that
decline monotonically (feature 1). Feature (3) is also general; if species are added
to a guild independently of their sizes, their average similarity must increase. We
have not been able to extend feature (2) to all unimodal distributions, but it should
not be affected by small deviations from a uniform or Weibull size distribution.



70 THE AMERICAN NATURALIST

>_

g 2 FROM
z UNIFORM (10, 50)
o

>_

=

2

[e0]

<

[e0]

O

[0

a

>_

5 2 FROM
z WEIBULL (C=3)
(@]

>._

=

=

m

<<

m

o

[0

[« W

RATIO VALUE

FiG. 2.—Distribution of ratios of the second-smallest to the smallest species, assuming that
sizes are independent random draws from a uniform probability density (above) and from a
Weibull probability density (below). a, Two-species guilds; b, four-species guilds.

Finally and most important, all three properties of the curves are additive. If
species’ sizes within different guilds are drawn independently from different
uniform and Weibull distributions, the summed distribution of ratios from these
guilds still displays the same three properties. The converse, of course, is not
necessarily true.

Therefore, we make the following general predictions. Suppose that actual or
potential species pools are uniform or unimodal in shape. If the sizes in subsets of
this pool (e.g., those that are sympatric) are independent of one another, then
distributions of their ratios will be monotonically declining and concave upward
(i.e., approximately negative exponential in shape), and the average value of all
ratios will decrease as the number of species per guild increases.

These predictions can be contrasted with those expected when species’ sizes
within guilds are not independent of one another but exhibit minimum or constant
ratios. When ratios are constrained to differ, frequency distributions of ratios are
unimodal, with a peak at 1.2, 1.3, or some other intermediate value; they are
therefore neither monotonically declining nor concave upward. Furthermore,
ratios in larger guilds should be the same as those in smaller guilds, if not larger
owing to increased levels of diffuse competition (Pianka 1974). The two sets of
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Fic. 3.—Frequency distribution of bill-size ratios for sympatric, congeneric bird species
listed by Schoener (1965). The total number of ratios is 410.

predictions, based on a large role for Hutchinson’s rule in the one case and a
complete independence of species’ sizes in the other, are quite different from one
another. It is now a straightforward matter to compare distributions of real ratios
with these two models.

COMPARISON WITH DATA

Schoener (1965) analyzed the bill lengths of 684 species of birds. He divided the
birds into guilds, that is, groups of two to six sympatric congeners. These data
were biased both from the inclusion in guilds of congeners that really do not
belong and from the exclusion of non-congeners that do belong in the guilds.
These factors tend to bias ratios to smaller and larger values, respectively, and
may cancel each other. In any case, there is no way to correct these problems. It
should be pointed out that, by presenting all sets of sympatric congeners he could
find, Schoener was unbiased in his selection process, and that these data represent
a sizable fraction of the world avifauna.

The frequency distribution of all ratios in this data set, 410 in all, is plotted in
figure 3. There is no tendency for ratios to predominate in any band between 1.15
and 1.40; in fact, the median value is only 1.10. The distribution is essentially
monotonically decreasing and concave upward, fitting the null model quite well.

The third prediction of the null model, that ratio values decrease with guild size,
is also satisfied. Table 1 shows the mean and median values for each of the ratios
for each guild size. Note that when all the ratios in each guild size are combined,
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TABLE 1

MEAN (AND MEDIAN) RATIO FOR GUILDS OF DIFFERENT SIZES (FROM SCHOENER 1965)

Si1ZE RANKING OF SPECIES IN RATIO
No. oF SPECIES

IN GUILD 2:1 3:2 4:3 5:4 Combined N

2 1.20 — — — 1.20 181
(1.14) (1.14)

3 1.17 1.17 — — 1.17 122
(1.10) (1.13) (1.12)

4 1.13 1.07 1.11 — 1.10 69
(1.06) (1.06) (1.08) (1.06)

5 1.06 1.10 1.08 1.12 1.09 28
(1.01) (1.08) (1.06) (1.10) (1.05)

6 — — — — 1.04 10
(1.03)

Note.—Only summary statistics are presented for the two six-species guilds.

their mean values decrease from 1.20 in two-species guilds to 1.04 in six-species
guilds. This is a consistent trend with no reversals. There is significant variation
among the medians (K-sample-median test, P < 0.001), and their ordering is
significantly correlated with guild size, in the direction predicted (Kendall rank
correlation, P < 0.05). The same trend is clear if one looks only at the ratios of the
second-smallest to the smallest across different guild sizes (K-sample-median test,
P < 0.05), but it cannot be detected in the other ratios.

In summary, the distribution of ratios is monotonically decreasing and concave
upward, and ratios tend to be smaller in larger guilds. We conclude that, if
constant ratios do occur as some sort of ecological law among certain kinds of
guilds, these guilds are poorly represented in Schoener’s data. Competition may
still be important in many or all of these guilds; however, it has not typically led to
minimum differences in bill sizes. An alternative hypothesis, that birds’ bill sizes
respond to selective factors that are independent of the sizes of other guild
species, appears to explain the evidence much better.

T. Tomasi (in prep.) has presented 62 body-size ratios for sympatric species of
insectivorous bats. The distribution of the data is shown in figure 4. Here, also,
the distribution appears to conform to the null expectations.

The only other analysis of a large set of size ratios illustrates the power of our
approach. Schoener (1984) showed that the distribution of wing lengths for all 47
species of Accipiter hawks in the world is unimodal. Furthermore, by drawing
species pairs, trios, and quartets at random from this pool, he showed that wing-
length ratios of sympatric species should be more or less negative exponential in
form, if species associate independently of size. Since the actual ratios of sym-
patric Accipiters are distributed unimodally, he concluded that there are often
limits to similarity among these birds. Here the null distribution was derived from
the observed distribution, not independently of it, and the observed distribution
may have been altered by the competitive processes being tested for. Schoener
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Fi6. 4.—Frequency distribution of body-size ratios for sympatric, insectivorous bats from
T. Tomasi (in prep.). The total number of ratios is 61.

was well aware of this potential problem (considered a fatal flaw by some; e.g.,
Gilpin and Diamond 1984). Indeed, he suggested that ‘‘a better approach would be
somehow to deduce a null expectation from knowledge of evolutionary and
ecological processes’ (Schoener 1984, p. 275). Although we cannot offer such a
model, we can state on statistical grounds that almost any species pool will yield
the predicted null distribution of ratios, so that Schoener’s conclusions are unaf-
fected by these concerns.

DISCUSSION

Individual guilds catalogued by Schoener (1965) or T. Tomasi (in prep.) may
maintain minimum or constant ratios as a result of interspecific competition;
however, their presence could easily be masked by a large number of guilds that
do not show this pattern. How can one detect these guilds, on the basis of their
size ratios alone? The only possibility is to devise a statistical test for use on
individual guilds. Several authors have proposed such tests (e.g., Roth 1981;
Simberloff and Boecklen 1981), and other tests could be imagined, based for
example on tests for the nonrandom division of the unit interval (e.g., Poole and
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Rathcke 1979; for a review, see David 1981). We believe that these tests are
unsuccessful and, furthermore, that their deficiencies cannot be corrected with
current knowledge. This places a limit on the use of size ratios alone to make
inferences about the role of size differences in permitting coexistence. We present
some general criticisms below. These criticisms apply with equal force to tests for
nonrandom flowering times in plant communities, since these tests are also based
on (unreplicated) order statistics.

First, when dealing with a few species in a single guild, the determination of
whether body sizes are more different than one would expect by chance alone
depends inherently on what one would expect by chance alone. A guild that
appears to be significantly displaced toward constant ratios, under the null model
that body sizes are uniformly distributed, may be indistinguishable from random
when large body sizes are assumed to be less common than small ones. Unfortu-
nately, we do not know what the distribution of body sizes would be in the
absence of competition. To determine this, we need a greater knowledge of how
various factors affect the evolution of body size. (If we had that information, the
sort of analysis discussed here would be unnecessary.)

Researchers have typically assumed that, in the absence of competition, all
body sizes between two limits are equally likely or common; the analogue for the
analysis of community flowering patterns is that, in the absence of competition for
pollinators, all days in the season are equally likely to be the dates of peak
flowering. This assumption simplifies the statistical analysis, but it is hardly
realistic. We know of no biological data that are uniformly distributed, nor have
we any reason to expect that here. Seasonal and developmental factors conspire
to make very early and very late dates less desirable for flowering (Stiles 1979),
just as diminishing returns and various physiological and biomechanical con-
straints render very small and very large body sizes less desirable. The statistical
comparison of data against this unrealistic null hypothesis seems an empty enter-
prise, though we cannot specify precisely a better null distribution.

A second, related problem is that the statistical significance of observed sizes in
single guilds depends on the range of body sizes possible. To use a different
example, suppose that five plant species flower at precise 5-day intervals starting
on July 6 and ending on July 26. If the season during which flowering is possible
runs from July 1 to July 31, then the species have spaced themselves perfectly
through the season. On the other hand, if the season lasts from March to October,
then the peak flowering dates are markedly clumped in time. An intermediate-
length season could lead one to conclude that flowering times are essentially
random. Until we better understand the factors determining flowering times, or
body sizes, we cannot determine what the possible endpoints are; yet our conclu-
sions depend on what we assume these endpoints to be. To overcome this
difficulty, researchers have taken the first and last species in the sequence, be it in
flowering times (Poole and Rathcke 1979; Cole 1981) or in body size (Simberloff
and Boecklen 1981), as the endpoints. They have then asked the slightly altered
question of whether the remaining n — 2 species are placed nonrandomly between
the first and last in the sequence. Unfortunately, this apparently commonsense
solution introduces several new problems that further weaken the statistical
analysis.
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The most obvious difficulty with using the first and last species in the sequence
as the endpoints is that one loses two data points. Since guilds are typically small
to begin with, one has little information left with which to draw any conclusions.
In the limit, one is testing the statistical significance of a single data point, the
second of three species (e.g., Simberloff and Boecklen 1981, table 1).

The second difficulty with this approach has not been discussed before. If one
wishes to treat body sizes as independent random variables in some null model, it
is inconsistent to treat the sizes of intermediate-ranked species as statistically
independent of the endpoints, the first and last species. As pointed out earlier,
once the body sizes are ranked in the order of increasing size, they are no longer
independent of one another; the fact that a species is the second smallest in a
series presupposes that one other species in the draw is smaller, and the rest are
larger. A proper null model would not ask whether the intermediate-sized species
are, for example, uniformly distributed between the largest and the smallest
species; rather, it would compare their values against a more complex null
distribution that reflects this interdependence.

An example is useful here. Suppose the sizes of four species are independent
random variables from a uniform (a, b) distribution. Then, by equation (1), the
ratio X3/X, of the third to the second species will have the probability density

hz24) = [(b — a2)* /1 (b — a)* 2%] 2blz + 2a). (3)

However, if one doesn’t know the values of a and b, but treats the sizes of the
second and third species as independent random variables from a uniform distri-
bution defined over the interval [ X, X4], one expects the probability density of X3/
X, to be

hzi2) = [(xa — x12) [ (x4 — x1)%2) (xolz + x1), 4

where a = x| = x4 = b. Clearly, the two equations are not the same, and it would
not be valid to compare statistically the observed ratio of the third-smallest to the
second-smallest species against the latter distribution. However, this is precisely
what Poole and Rathcke (1979), Simberloff and Boecklen (1981), and others have
done when they chose the first and last species in a sequence as endpoints for the
underlying distribution. The first-order and last-order statistics are the maximum-
likelihood estimates of the low and high endpoints in random samples from a
uniform distribution, but they are biased estimates (Carlton 1946). Furthermore, it
seems unreasonable to try to estimate the endpoints and the significance of
observed ratios from the same limited data. This seems an insoluble problem.

The statistical analysis of size ratios within individual guilds depends on the
shape of the underlying size distribution, and on its endpoints. Neither of these is
known, and the assumptions that authors have made about them are probably
wrong and internally inconsistent. Unfortunately, these problems are inherent,
and we see no way around them. This places a severe limit on the inferences that
can be made from size ratios alone.

There is one circumstance in which we could envision the possibility of drawing
inferences about ratios from a single or few guilds. This is the case of island
colonization from a known source in which there has been no subsequent size
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change (Schoener, in prep.). In this event the possible sizes are known and the
problem becomes one of simple combinatorial mathematics.

We have assumed merely that species’ sizes can be approximated by some
uniform (a, b) or unimodal Weibull (¢, «) distribution, and that the sizes of
sympatric species are independent of one another. Given only this, we can make
three qualitative predictions about distributions of large numbers of ratios, and
these predictions are nearly independent of the form of the underlying species
pool. This independence should not be surprising. From a statistical point of view,
size ratios are ratios of order statistics. Order statistics such as the minimum,
median, and maximum are relatively distribution-free; this explains their wide-
spread use in nonparametric statistics. In taking ratios of order statistics, we
eliminate even further any ‘‘memory’’ of the distribution from which they were
drawn.

This reveals both the strengths and the weaknesses of our approach. Our
predictions are nearly independent of the actual form of the underlying species
pool. If they are not met, as in the world’s Accipiters, then we have strong
evidence that species are constrained to be dissimilar. In answer to our original
question, such ratios could be considered reasonable evidence of the nonrandom
structuring of guilds due to competition or other factors.

However, if the data do not differ from our predictions under the general null
model, this does not tell us much. There may be individual guilds of species whose
sizes are strongly influenced by competition, but whose presence is masked. Our
method cannot detect such guilds, if they are rare. If we were to make stronger
assumptions about the underlying species pool, we could define more clearly the
null distribution and obtain better resolution in these tests for ‘‘nonrandomness.”’
Unfortunately, we do not know enough about the determinants of body size to
make these stronger assumptions.

The only way to identify individual ‘‘competitive’’ guilds is to devise a statisti-
cal test for constant or minimum ratios that can be used with single guilds. We
have argued that any such test is necessarily sensitive to assumptions of the
underlying size distribution, about which nothing is usually known. This is in
direct contrast to our results for large sets of ratios, which are insensitive to the
underlying size distribution. We question whether one can ever determine if the
sizes of species within single guilds are independent of one another, on the basis of
size ratios alone. It is important to note that most of the controversy over the
ecological significance of size ratios has concerned ratios in single, often small
guilds. We submit that neither side has a case, in these instances, if it relies solely
on size-ratio data. One can no more assert that the ratios are structured by
competition than assert that they are not.

Empirical laws concerning the relative sizes of ranked objects abound in biol-
ogy (for reviews, see Horn and May 1977; Roth 1979; Cole 1980). They include the
notions that successive instars of arthropods differ by ratios of either 1.26 or 1.6 in
linear dimensions, the observation that cell nuclei increase in size by a factor of
the square root of two between different tissues, and the discredited ideas that
brain volumes and body volumes increase by a factor of two in stepwise fashion in
evolution. We suspect that the ubiquity of such rules is not accidental. To the
extent that humans classify objects into groups of relatively small numbers of
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similarly sized objects, the ratios of the ranked sizes of these objects will be a little
larger than one and will readily appear to obey such laws. It is not easy statisti-
cally to distinguish real patterns of this sort from ones that would be generated
entirely at random in taking ratios of order statistics.

SUMMARY

Size ratios are convenient indexes of the morphological differences between
species. They have been variously used to predict multidimensional niche separa-
tion, explain coexistence, and even indicate ‘‘missing species,”’ depending on
whether they are small, moderate, or large. From a statistical viewpoint, ratios of
ranked species’ sizes are ratios of successive order statistics, which are largely
independent of the underlying size distribution. We derive probability density
functions for these ratios, assuming that species’ sizes are independently drawn
from uniform or unimodal distributions. In the absence of frequent character
displacement, distributions of ratios should be negative exponential in form, with
average values decreasing with increasing guild size. These predictions, which
differ from those under a purely competitive model, are tested with several large
data sets. In contrast, the statistical analysis of ratios in small data sets, such as
individual guilds, depends on arbitrary assumptions about the shape and end-
points of the underlying size distribution. We conclude that size ratios alone are of
limited explanatory power and should be supplemented with other data in studies
of character displacement and community structure.
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APPENDIX A

Let f(x) be some continuous probability density on the interval [a, b], and let F(x) =
Jaf(Odt be the corresponding cumulative distribution function. Suppose n numbers are
drawn at random from this distribution and then ranked in order of increasing size to yield
the order statistics X; < X, < ... < X,,. (In the continuous case, ties X; = X, occur with
probability 0 and can be ignored.) If j = i + 1, then the joint density of X; and X is given by

gij(xis xj) = [n!/ G = DWn = DN IFET ' = Fl"f(xfx)

(Hogg and Craig 1970). The probability that the ratio X;/X; will be less than or equal to Z is
given by a new cumulative distribution function H(z), where H(z) = [ gi;(xi, x))dx;dx; and
the domain D is defined by 1 =< x;/x; = z (fig. Al). This integral has two parts:

az Xj

n-r (xj)]"’jf(xj)J [F ()l ™ f(xddxidx;

a

H@) = [n!'/ (G - Din —j)!]f
b

+ [0/ G = Ditn — HY J{ Z[1 - Fy)I"f(x)) L J/Z[F )™ f (e dxidx;

1.
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Fi6. Al.—The stippled area is the domain D in which the order statistics X; and X;, , (a <
X; = X;, = b) satisfy the relation 1 = X, ,/X; = Z. The cumulative distribution function of z
is obtained by integrating the joint density g(X;, X;.,) over D.

Integration over x; yields
b

H(@z) = [n!/iNn — j)!]J (1 — FO)I" /IF (x)Yf (x))dx;
b

— [n!/iln — 1 j 11 = Fe)l" IF (/) ()dx;

The first integral is simply the beta function B(i + 1, n — i) = il(n — j)!/n!, and the equation
simplifies to
b
n! n—j i
Hiz) =1 - W’l——j)!Lz[l - F(xj)] J[F(xj/Z)]f(xj)dxj-
We have not yet specified the underlying distribution of species’ sizes; the relation above is
a general one.

If species’ sizes are uniformly distributed over the interval [a, b], then f(x) = 1/(b — a)
and F(x) = (x — a)/(b — a). Substituting into the formula above (and omitting subscripts)
yields
b

Hz) =1-[n'/in — N[/ (B - a7 J (b - x)"(x — az)dx

[}

or
Hz)=1- (b —a2)"/ (b — a)7.
The probability density of z is simply the derivative h(z) = dH(z)/dz:

k@) = [(b — a2)"~' /(b — a)'2'] [(ibl2) + a(n — D].
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It is tedious but straightforward to demonstrate that 42'(z) < 0 and A"(z) > Oforall 1 < z <
bla, such that h(z) is a monotonically decreasing function of z and is concave upward.

APPENDIX B

Let f(x) and F(x) = [§f(t)dt define a probability function as before, except that x ranges
from 0 to infinity. The joint density of the order statistics X; and X;.; = Xjis the same, and
the probability that the ratio X;/X; is less than or equal to Z is given by

o

Hz) =1 - [n!/iln — J')Y]J0 [1 — FO)I" IF (/21 (x))dx;

where only the limits of integration are altered. Again, this equation is a general one, and it
applies to all continuous probability densities f(x) defined on [0, ). Suppose f(x) is the
Weibull probability density

() = (clo)(xlo)* ™ 'expl — (x/ar)]
F(x) = 1 — exp[— (&x/aw)], c,a>0.
Substituting these terms, and making the change of variable U = F(x/z), yields
1

1 = [n!/il(n — j)!]zCJ Uil — Uy =914y
0

H(z)

=1~ [n!/i(n - j)!]{z”F(i + DI'z(n = D] / Izn =) +i + 1]}

l—n!/{(n - DMz =D +i-... [%n-10+ 1]}.

Again, differentiation with respect to z yields the probability density of z,

i

_ nlezt ™! 1
h(z) = ] Zl =D +s
-]z =i+ n
r=1

Determining the signs of 4'(z) and A"(z) is a little more complex here. Consider first the
case in which the underlying distribution of body sizes is negative exponential, in which ¢
= 1. If we substitute u for z, and write

Au) = 1/ [utn — 0 + rl, dA,w) | du = —(n — DA W],
then

e =t/ (= 1 ] A D Aw,
r=1 s=1

W@ = [ — ont/ (i-py | | A,(u){[ > As(u)]2 - [As(u)]z},
r=1 s=1 s=1

Hw = [ — ot 1 — 1 | | A,(u){[ > As(u)]3 3D AW D AWP
r=1 s=1 s=1 s=1 .

= [As(u)]3}.

s=1
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Clearly, 4'(«) <0, and h"(«) > 0 when ¢ = 1. Next, letu = z¢,for z = 1, ¢ > 1. Then, by the
chain rule

dhw)/dz = WWduldz = h'(u) cz°7!
&h()/d? = W' W) dPuld? + B'w) (duldz)? = ¢z [(c — Dh'(W) + czh"W)].

The first derivative is negative for all z = 1. The second derivative is positive if and only if
the term in brackets is positive. After replacing z° with u, and factoring out common
elements, this reduces to the requirement

I

I

cutn — i) {[ > Ax(u)} 3D AW D AP +2 Y [As(u)P}
s=1 s=1 s=1 s=1

> - 1){[ > As(u)]z _— [As(u)]z}-

s=1 s=1

Using the relationships
i i

> AP = AW Y Aw  and [ As(m]z = idw) Y AW,
N s=1

i
s=1 s=1 s=1

we can show that the left side of the inequality is greater than or equal to

cu(n — i) (i + 2)A,»(u){[ Z As(u)]2 + Z [As(u)]z}.

s=1 s=1

Therefore, a sufficient condition for A”(«) > 0 is that this term exceeds the right side of the
inequality, that is, if

culn — i) G + DAy = M =G +2) -
uln — i) + i

This simplifies to
un — i)> i — i/ (ci+c+ 1),

which is always true, since u(n — i) = 1, and the right side is always less than one.
Therefore, h'(z) < 0 and A"(z) > 0, forall z > 1, ¢ = 1.

LITERATURE CITED

Brown, W. L., and E. O. Wilson. 1956. Character displacement. Syst. Zool. 5:49-64.

Calder, W. A. 1984. Size, function, and life history. Harvard University Press, Cambridge, Mass.

Carlton, A. G. 1946. Estimating the parameters of a rectangular distribution. Ann. Math. Stat. 17:355-
358.

Cole, B. J. 1980. Growth ratios in holometabolous and hemimetabolous insects. Ann. Entomol. Soc.

Am. 73:489-491.

. 1981. Overlap, regularity, and flowering phenologies. Am. Nat. 117:993-997.

David, H. A. 1981. Order statistics. 2d ed. Wiley, New York.

Diamond, J. M. 1973. Distributional ecology of New Guinea birds. Science (Wash., D.C.) 179:759—
769.

Enders, F. 1976. Size, food-finding, and Dyar’s constant. Environ. Entomol. 5:1-10.

Gilpin, M. E., and J. M. Diamond. 1984. Are species co-occurrences on islands non-random and are
null hypotheses useful in community ecology? Pages 297-315 in D. R. Strong, D. Simberloff,




STATISTICAL ANALYSIS OF SIZE RATIOS 81

L. G. Abele, and A. B. Thistle, eds. Ecological communities: conceptual issues and the
evidence. Princeton University Press, Princeton, N.J.

Hogg, R. V., and A. T. Craig. 1970. Introduction to mathematical statistics. 3d ed. Macmillan, New
York.

Horn, H. S., and R. M. May. 1977. Limits to similarity among coexisting competitors. Nature (Lond.)
270:660-661.

Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? Am.
Nat. 93:145-159.

Johnson, N. L., and S. Kotz. 1970. Continuous univariate distributions. Vol. 1. Houghton Mifflin,
Boston.
Lack, D. 1944. Ecological aspects of species formation in passerine birds. Ibis 86:260-286.
Lewin, R. 1983a. Santa Rosalia was a goat. Science (Wash., D.C.) 221:636—639.
. 1983b. Predators and hurricanes change ecology. Science (Wash., D.C.) 221:737-740.
May, R. M. 1978. The dynamics and diversity of insect faunas. Symp. R. Entomol. Soc. Lond. 9:188—
204.

Oksanen, L., S. D. Fretwell, and O. Jiarvinen. 1979. Interspecific aggression and the limiting similarity
of close competitors: the problem of size gaps in some community arrays. Am. Nat. 114:117—
129.

Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge.

Pianka, E. R. 1974. Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. USA 71:2141-2145.

Poole, R. W., and B. J. Rathcke. 1979. Regularity, randomness, and aggregation in flowering

phenologies. Science (Wash., D.C.) 203:470-471.
Roth, V. L. 1979. Can quantum leaps in body size be recognized among mammalian species?
Paleobiology 5:318-336.
. 1981. Constancy in the size ratios of sympatric species. Am. Nat. 118:394-404.
Schoener, T. W. 1965. The evolution of bill size differences among sympatric congeneric species of
birds. Evolution 19:189-213.
. 1984. Size differences among sympatric, bird-eating hawks: a worldwide survey. Pages 254—
281 in D. R. Strong, D. Simberloff, L. G. Abele, and A. B. Thistle, eds. Ecological com-
munities: conceptual issues and the evidence. Princeton University Press, Princeton, N.J.
Schoener, T. W., and D. H. Janzen. 1968. Notes on environmental determinants of tropical versus
temperate insect size distributions. Am. Nat. 102:207-224.

Simberloff, D. 1983. Sizes of coexisting species. Pages 404-430 in D. J. Futuyma and M. Slatkin, eds.
Coevolution. Sinauer, Sunderland, Mass.

Simberloff, D., and W. Boecklen. 1981. Santa Rosalia reconsidered: size ratios and competition.
Evolution 35:1206—1228.

Stiles, F. G. 1979. Regularity, randomness, and aggregation in flowering strategies. Science (Wash.,
D.C.) 203:471.

Van Valen, L. 1973. Body size and numbers of plants and animals. Evolution 27:27-35.




