

defining life

Oparin-Haldane model

RNA as an early life-form

evolution of cells

origins of the major branches in the tree of life

Cambrian "explosion"

E	xperimental evolution supports the hypothesis that RNA or a similar molecule may have been the initial information storage molecule
E	xperimental chemistry suggests that the first replicators may not have been RNA; other bases and sugars may have been easier to assemble although less efficient
E	arly cells may have arisen from fatty acids micelles
Н	orizontal gene transfer was important in the early evolution of life
С	omplex life arose fairly late in Earth's history; the Cambrian explosion represents an explosion of morphological diversity rather than lineage diversity