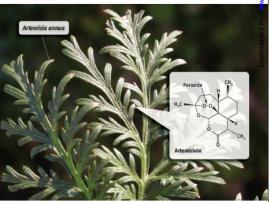
Why study genetics ??

human health (human genome project) agriculture (crop, livestock improvement) conservation biology

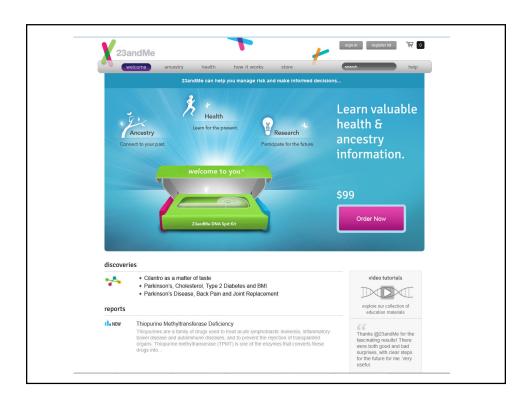
PLANT SCIENCE

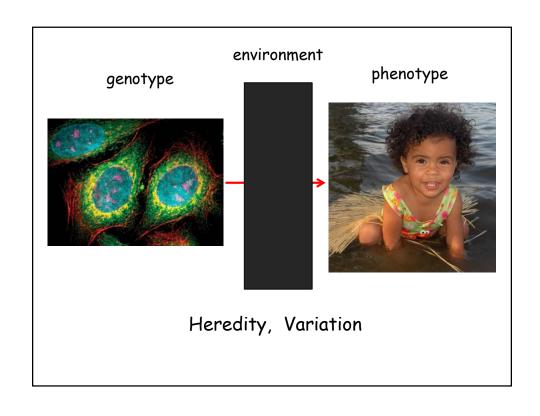
The Botanical Solution for Malaria

or thousands of years, Chinese herbal-ists used leaves from the plant Artemi-sia annua to treat numerous illnesses, including malaria. Today, the plant's natural antimalarial compound—a sesquiterpene lactone (and endoperoxie) called artemis-nin—is the most effective drug for combat-ing malarial infections (see the figure). A way to but his issue this consequent to see ing malarial infections (see the figure). A major hundle in using this compound to treat malaria—estimated to cause 300 to 500 million cases and over 1 million deaths each year, worldwide—has been producing enough artemismin to meet world demand. Attempts to efficiently extract sufficient quantities have been slowly improving. Now Graham et al. (1) have pawed the way to fast-track breeding sufficient quantities of the demand and the provincient of the provincient (f) have paved the way to fast-track breeding varieties of the A. annua plant with highly desirable genetic traits. On page 328 of this issue, the authors report a genetic map of the plant and identify key loci that could improve agricultural yields, decrease production costs, ensure a steady global supply of the drug, and improve grower confidence in the crop.


Graham et al. recognized that the yield of artemisinin varied by geographic origin and was inheritable when the super leafy strains possessing bountful glandular trichomes—

possessing bountiful glandular trichomes— outgrowth structures where artemisinin is pro-duced and stored by the plant—were crossed.


¹College of Public Health, University of South Florida, Tampa, FL 33612, USA. ²Walter Reed Army Institute of Research, Silver Spring, MD 20910−7500, USA. E-mail: wmilhous@health.usf.edu


Improved breeding of a plant that produces a major antimalarial compound is now possible based on knowledge of its genetic map.

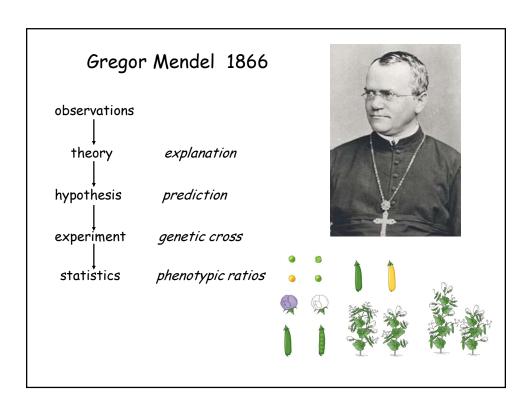
They used a pedigree plant (Artemis) to establish the first genetic linkage and quantitative trait loci (QTL) maps for the plant species, and then validated positive QTL for artemisinin yield. The authors used deep sequencing of the plant transcriptome (all mRNA mol-ecules present in the organism) to success-fully identify genes and markers, which will

www.sciencemag.org SCIENCE VOL 327 15 JANUARY 2010

Forward genetics

choose a phenotype of interest

find variants of that phenotype


check variants for single gene inheritance

identify time and place of action of genes

molecular nature of gene by genomic (DNA) analysis

Outline

- Mendel and transmission genetic theory
- segregation of alleles in single trait crosses
- independent assortment of alleles
- using probability to predict outcomes
- statistical analysis of hypotheses

Genetics Terminology

gene/locus: DNA sequence which affects a trait [locus A]

allele: variant form of a gene 'allele for purple, allele for white'

 $[A, a \text{ or } A_1, A_2]$

phenotype: an individual's 'apperance' for a particular trait [purple, white]

genotype: which pair of alleles an individual carries at a particular locus

[AA, Aa, aa]

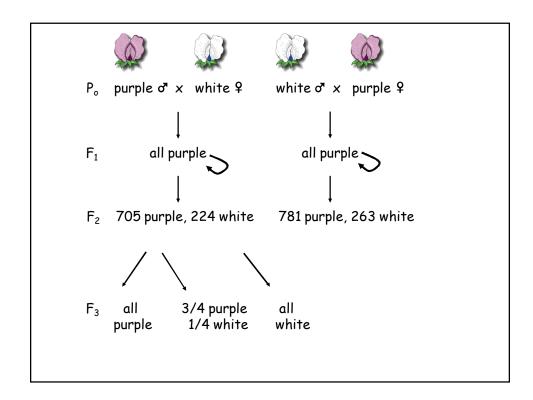
phenotype # genotype!

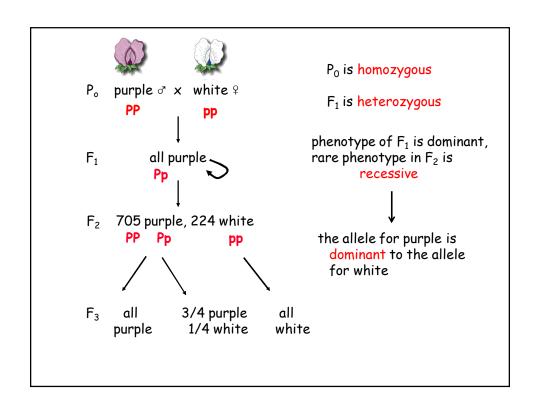
homozygous: a genotype where both alleles are the same [AA, aa]

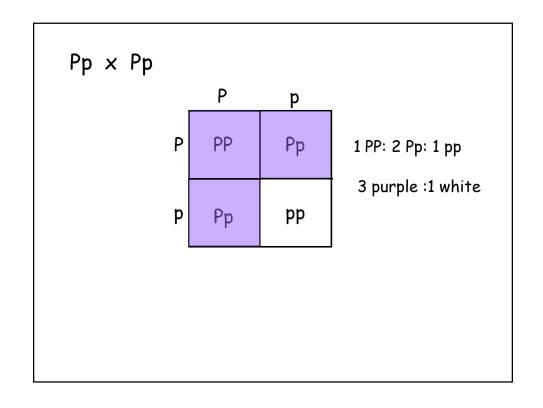
heterozygous: a genotype where the alleles are different [Aa]

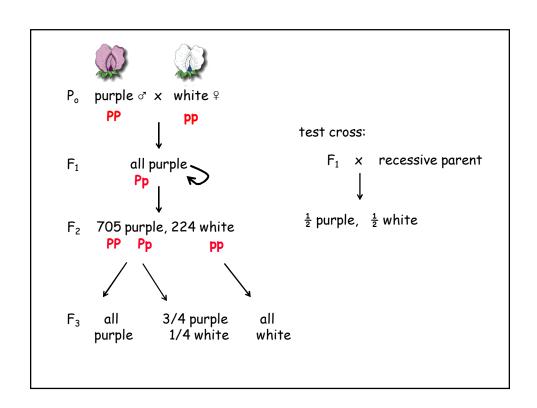
dominant: one copy of the allele is sufficient to express the phenotype

 $[AA = Aa \rightarrow A' phenotype]$


recessive: two copies of the allele are necessary to express the phenotype


[$aa \rightarrow a'$ phenotype]


Mendel's Theory of Particulate Inheritance


- --- genes determine the phenotype
- --- genes exist as pairs of alleles at a locus
- --- each gamete carries a single allele at a locus (i.e., A or a)
- --- gametes unite independent of which alleles they are carrying [different alleles, same locus]
- --- alleles at different loci assort independently into the gametes* [different loci]
- -inheritance of parental characteristics by offspring
- -variation among offspring;

differences between offspring and parents

single-gen	e phenotypic ratios
phenotype dis	t ⁿ parent genotypes
1 "A" :0 "a	" AA × aa AA × AA AA × Aa
3 "A" :1 "a	" Aa × Aa
1 "A" :1 "a'	' Aa × aa

Mendel's law of independent assortment:

two independent traits (dihybrid cross):

$$P_0$$
 purple tall x white short p/p T/T p/p t/t
 F_1 purple tall P/p T/t
 F_2 purple tall purple short white tall where P_1 P_2 purple tall P_3 P_4 P_5 P_5 P_6 P_7 P_8 P_8 P_8 P_8 P_8 P_8 P_9 P_9

two independent traits (dihybrid cross):

$$F_2$$
 purple tall purple short white tall white short 315 108 101 32 P/- T/- P/- t/t p/p T/- p/p t/t

```
*look at traits individually in the F2:
purple: white 423:133 3:1
tall: short 416:140 3:1
```

Outline

- Mendel and transmission genetic theory
- segregation of alleles in single trait crosses
- independent assortment of alleles
- using probability to predict outcomes
- statistical analysis of goodness of fit: χ^2 test

Using probability to predict genetic transmission ratios

when outcomes are independent, multiply the individual probabilities

$$pr(a \text{ and b}) = pr(a) \times pr(b)$$

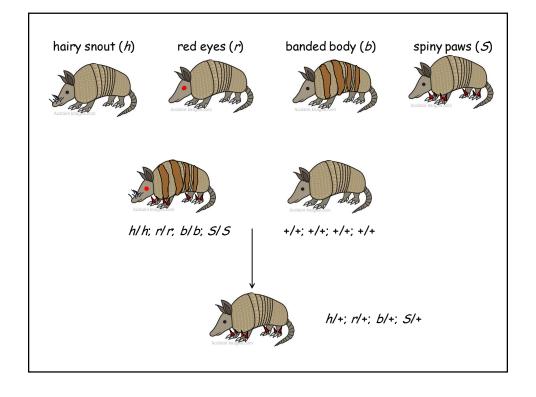
when outcomes are equivalent, add the individual probabilities

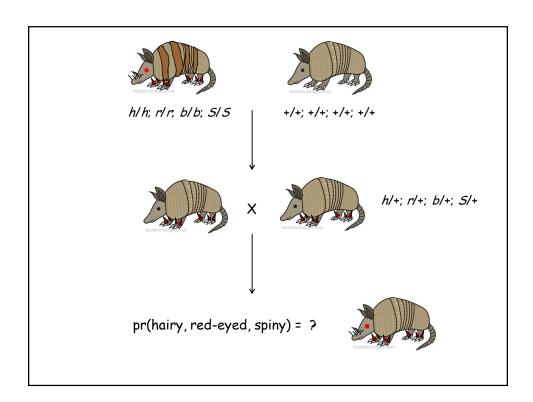
conditional probability: only a subset of outcomes are relevant

if
$$pr(a) + pr(b) + pr(c) + pr(d) = 1$$

then pr(a or b) = [pr(a) + pr(b)]/[1 - pr(d)]

 F_2 purple tall purple short white tall white short 315 108 101 32 P/- T/- P/- t/t p/p T/- p/p t/t


*look at traits individually in the F2: purple: white 423:133 3:1 tall: short 416:140 3:1


two separate traits = independent outcomes

ex: pr (PP, TT) = pr (PP) x pr (TT) =
$$\frac{1}{4}$$
 x $\frac{1}{4}$ = 1/16

pr (PP, T/t) = pr (PP) x pr (
$$tT$$
 or t)
= pr (PP) x [pr (tT) + pr (t)]
= $\frac{1}{4}$ x [$\frac{1}{4}$ + $\frac{1}{4}$] = $\frac{1}{4}$ x $\frac{1}{2}$ = 1/8

pr (purple, tall) = pr (purple) × pr (tall)
= pr (P/-) × pr (T/-)
=
$$\frac{3}{4} \times \frac{3}{4} = 9/16$$

pr(hairy, red-eyed, spiny) = ?

= pr(h/h; r/r; S/-)
= pr(h/h) × pr(r/r) × pr(S/-)
= $\frac{1}{4}$ × $\frac{3}{4}$ = 3/64

Outline

- Mendel and transmission genetic theory
- segregation of alleles in single trait crosses
- independent assortment of alleles
- using probability to predict outcomes
- statistical analysis of hypotheses

when do the data meet mendelian expectations?

if cross two heterozygotes, expect 3:1 phenotypic ratio in offspring

- -how closely do the numbers need to match???
- -importance of statistical analysis

Chi-square tests: goodness-of-fit to mendelian ratios

See also pp. 47 - 50 in text

Some examples:

observed		expec.	ted
short	long	short	long
118	42	120	40
28	9	27.75	9.25
46	16	45.75	15.25

all are approximately 3:1,

but none is <u>exact</u>

for the sample size, how unlikely is result?

Compare observed and expected numbers with a goodness of fit chi-square test with n-1 degrees of freedom

$$\chi^2_{\text{dof}} = \sum \frac{(\text{observed number - expected number})^2}{(\text{expected number})}$$

dof = degrees of freedom

= number of independent classes

= number of classes - 1

obse	erved	expec	ted	
short	long	short	long	
118	42	120	40	
28	9	27.75	9.25	
46	16	45.75	15.25	

$$\chi_1^2 = \frac{(118 - 120)^2}{120} + \frac{(42 - 40)^2}{40}$$

0.033 + 0.1

0.133

scientific method -- reject null hypothesis

H₀: data fit a 3:1 ratio consistent with heterozygous parents statistics: test how well data fit hypothesis

two possible outcomes:

- correct inference
- incorrect inference

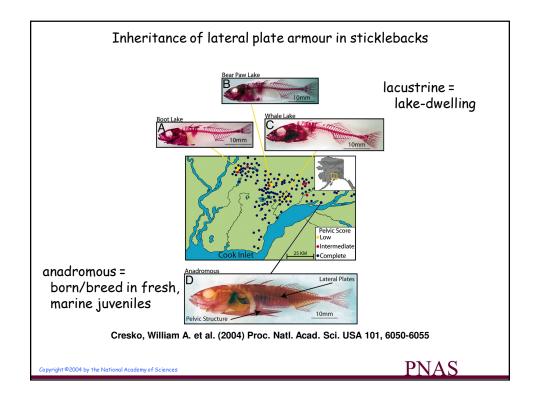
 - --reject H_0 that is true --accept H_0 that is false

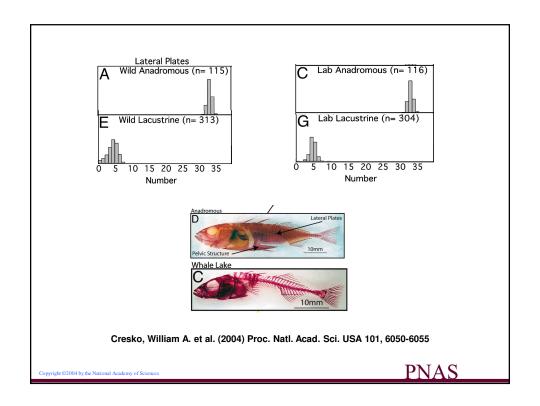
	P								
df	0.995	0.975	0.9	0.5	0.1	0.05	0.025	0.01	0.005
1	.000	.000	0.016	0.455	2.706	3.841	5.024	6.635	7.879
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378	9.210	10.597
3	0.072	0.216	0.584	2.366	6.251	7.815	9.348	11.345	12.838
4	0.207	0.484	1.064	3.357	7.779	9.488	11.143	13.277	14.860
5	0.412	0.831	1.610	4.351	9.236	11.070	12.832	15.086	16.750
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16.812	18.548
7	0.989	1.690	2.833	6.346	12.017	14.067	16.013	18.475	20.278
8	1.344	2.180	3.490	7.344	13.362	15.507	17.535	20.090	21.955
9	1.735	2.700	4.168	8.343	14.684	16.919	19.023	21.666	23.589
10	2.156	3.247	4.865	9.342	15.987	18.307	20.483	23.209	25.188
11	2.603	3.816	5.578	10.341	17.275	19.675	21.920	24.725	26.757
12	3.074	4.404	6.304	11.340	18.549	21.026	23.337	26.217	28.300
13	3.565	5.009	7.042	12.340	19.812	22.362	24.736	27.688	29.819
14	4.075	5.629	7.790	13.339	21.064	23.685	26.119	29.141	31.319
15	4.601	6.262	8.547	14.339	22.307	24.996	27.488	30.578	32.801

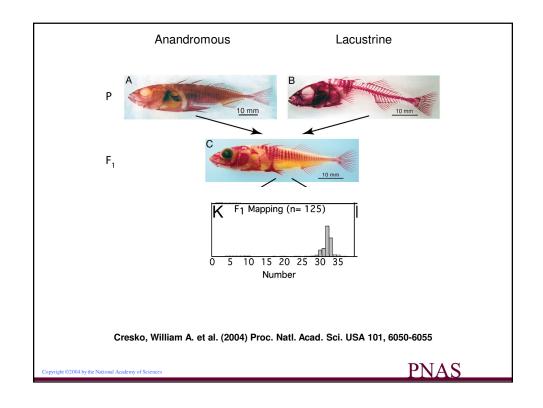
$$\chi_1^2 = \frac{(118 - 120)^2}{120} + \frac{(42 - 40)^2}{40}$$

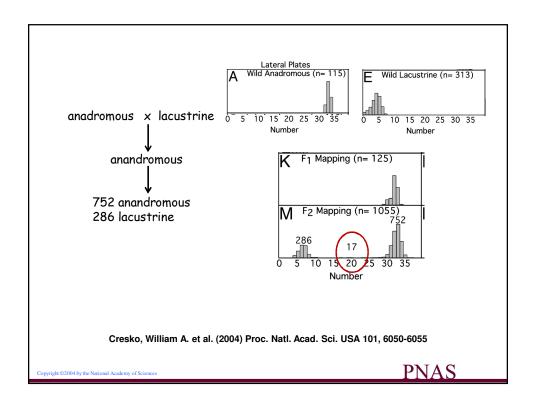
= 0.033 + 0.1

= 0.133 p > 0.5


reject only if p < 0.05


Forward genetics


choose a phenotype of interest


find variants of that phenotype

check variants for single gene inheritance

$$\chi_1^2 = (\frac{752 - 791.25}{1055})^2 + (\frac{303 - 263.75}{1055})^2$$

Take home points

Mendel's theory of particulate inheritance can explain both the inheritance of parental characteristics by offspring, and the differences between offspring and parents

heterozygous offspring display the dominant phenotype

a cross of heterozygous individuals will produce a 3:1 ratio of the dominant : recessive phenotype

the pattern of inheritance of a trait can be determined by:
-reciprocal crosses of homozygous lines and their offspring
-analysis of many crosses with parents of unknown genotype*

probability can predict the frequency of a particular phenotype in the progeny of a cross