Lattice QCD

- Best first principle-tool to extract predictions for the theory of strong interactions in the non-perturbative regime

- Uncertainties:
 - Statistical: finite sample, error $\sim \frac{1}{\sqrt{\text{sample size}}}$
 - Systematic: finite box size, unphysical quark masses

- Given enough computer power, uncertainties can be kept under control

- Results from different groups, adopting different discretizations, converge to consistent results

- Unprecedented level of accuracy in lattice data
Importance of continuum limit

- Lattice action: parametrization used to discretize the Lagrangian of QCD on a space-time grid

\[N_t = \frac{1}{aT} \]

\[N_s = \frac{L}{a} \]
Importance of continuum limit

- Lattice action: parametrization used to discretize the Lagrangian of QCD on a space-time grid

\[N_t = \frac{1}{aT} \]

\[N_s = \frac{L}{a} \]

- Repeat the simulations on finer lattices (smaller \(a \) \(\leftrightarrow \) larger \(N_t \))
Importance of continuum limit

- Lattice action: parametrization used to discretize the Lagrangian of QCD on a space-time grid

\[N_t = \frac{1}{aT} \]

\[N_s = \frac{L}{a} \]

- Repeat the simulations on finer lattices (smaller \(a \) ↔ larger \(N_t \))

![Graph showing data points and lines with equations:]

\[f_1(N_t) = A + B \exp(-C/N_t^2) \]

\[f_2(N_t) = A + B/N_t^2 + C/N_t^2 \log(N_t) \]

linear for \(N_t \leq 20 \)
Importance of continuum limit

- Lattice action: parametrization used to discretize the Lagrangian of QCD on a space-time grid

\[N_t = \frac{1}{aT} \]

\[N_s = \frac{L}{a} \]

- Repeat the simulations on finer lattices (smaller \(a \) \(\leftrightarrow \) larger \(N_t \))
Importance of continuum limit

- Observables are affected by discretization effects differently
Importance of continuum limit

- Observables are affected by discretization effects differently.

- In quantitative predictions, finite-N_t results can lead to misleading information.

![Graph showing χ^2 as a function of $1/N_t^2$](image)
Importance of continuum limit

- Observables are affected by discretization effects differently

- In quantitative predictions, finite-N_t results can lead to misleading information

- **Message**: continuum extrapolated data always preferable
Low temperature phase: HRG model

Interacting hadronic matter in the ground state can be well approximated by a non-interacting resonance gas.

The pressure can be written as:

\[\frac{p^{HRG}}{T^4} = \frac{1}{VT^3} \sum_{i \in \text{mesons}} \ln Z^M_{m_i} (T, V, \mu X^a) + \frac{1}{VT^3} \sum_{i \in \text{baryons}} \ln Z^B_{m_i} (T, V, \mu X^a) \]

where

\[\ln Z^M_{m_i}/B = \mp \frac{Vd_i}{2\pi^2} \int_0^\infty dk k^2 \ln \left(1 \mp z_i e^{-\varepsilon_i/T} \right) \]

with energies \(\varepsilon_i = \sqrt{k^2 + m_i^2} \), degeneracy factors \(d_i \) and fugacities

\[z_i = \exp \left(\frac{\sum_{a} X^a_{i} \mu X^a}{T} \right) \]

\(X^a \): all possible conserved charges, including the baryon number \(B \), electric charge \(Q \), strangeness \(S \).

Up to which temperature do we expect agreement with the lattice data?
High temperature limit

- QCD thermodynamics approaches that of a non-interacting, massless quark-gluon gas:

\[
\left(\frac{P}{T^4} \right)_{\text{ideal}} = \frac{8\pi^2}{45} + \sum_{f=u,d,s} \left[\frac{7\pi^2}{60} + \frac{1}{2} \left(\frac{\mu_f}{T} \right)^2 + \frac{1}{4\pi^2} \left(\frac{\mu_f}{T} \right)^4 \right]
\]

- We can switch on the interaction and systematically expand the observables in series of the coupling \(g \)

- Resummation of diagrams (HTL) or dimensional reduction are needed, to improve convergence

 Braaten, Pisarski (1990); Haque et al. (2014); Hietanen et al (2009)

- At what temperature does perturbation theory break down?
QCD Equation of state at $\mu_B=0$

- EoS available in the continuum limit, with realistic quark masses
- Agreement between stout and HISQ action for all quantities

WB: S. Borsanyi et al., 1309.5258
HotQCD: A. Bazavov et al., 1407.6387, PRD (2014)
The QCD path integral is computed by Monte Carlo algorithms which samples field configurations with a weight proportional to the exponential of the action

\[Z(\mu_B, T) = \text{Tr} \left(e^{-\frac{H_{QCD} - \mu_B N_B}{T}} \right) = \int \mathcal{D}U e^{-S_G[U]} \det M[U, \mu_B] \]

- $\det M[\mu_B]$ complex \rightarrow Monte Carlo simulations are not feasible

- We can rely on a few approximate methods, viable for small μ_B/T:
 - Taylor expansion of physical quantities around $\mu=0$ (Bielefeld-Swansea collaboration 2002; R. Gavai, S. Gupta 2003)
 - Reweighting (complex phase moved from the measure to observables) (Barbour et al. 1998; Z. Fodor and S, Katz, 2002)
 - Simulations at imaginary chemical potentials (plus analytic continuation) (Alford, Kapustin, Wilczek, 1999; de Forcrand, Philipsen, 2002; D'Elia, Lombardo 2003)
Equation of state at $\mu_B > 0$

- Expand the pressure in powers of μ_B
 \[
 \frac{p(\mu_B)}{T^4} = c_0 + c_2 \left(\frac{\mu_B}{T} \right)^2 + c_4 \left(\frac{\mu_B}{T} \right)^4 + c_6 \left(\frac{\mu_B}{T} \right)^6 + \mathcal{O}(\mu_B^8)
 \]

- Continuum extrapolated results for c_2, c_4, c_6 at the physical mass
Equation of state at $\mu_B>0$

- Calculate the EoS along the constant S/N trajectories
QCD phase diagram

Curvature κ defined as:

$$\frac{T_c(\mu_B)}{T_c(\mu = 0)} = 1 - \kappa \left(\frac{\mu_B}{T_c(\mu_B)} \right)^2 + \lambda \left(\frac{\mu_B}{T_c(\mu_B)} \right)^4 \ldots$$

Recent results:

$$\kappa = 0.0149 \pm 0.0021$$
Curvature κ defined as:

$$\frac{T_c(\mu_B)}{T_c(\mu = 0)} = 1 - \kappa \left(\frac{\mu_B}{T_c(\mu_B)} \right)^2 + \lambda \left(\frac{\mu_B}{T_c(\mu_B)} \right)^4 \ldots$$

Recent results:

$$\kappa = 0.020(4)$$

P. Cea et al., 1508.07599
QCD phase diagram

Curvature κ defined as:

$$\frac{T_c(\mu_B)}{T_c(\mu = 0)} = 1 - \kappa \left(\frac{\mu_B}{T_c(\mu_B)} \right)^2 + \lambda \left(\frac{\mu_B}{T_c(\mu_B)} \right)^4 \ldots$$

Recent results:

$$\kappa = 0.020(4)$$

P. Cea et al., 1508.07599

$$\kappa = 0.0135(20)$$

C. Bonati et al., 1507.03571
QCD phase diagram

1. Kaczmarek et al., Nf=2+1, p4 staggered action, Taylor expansion, $\mu_s=0$, $N_t=8$
2. Falcone et al., Nf=2+1, p4 staggered action, analytic continuation, $\mu_s=\mu_u=\mu_d$, $N_t=4$
3. Bonati et al., Nf=2+1, stout staggered action, analytic continuation, $\mu_s=0$, continuum extrapolated
4. Bellwied et al. (WB), Nf=2+1, 4stout staggered action, analytic continuation, $<n_s>=0$, cont. extrap.
5. Cea et al., Nf=2+1, HISQ staggered action, analytic continuation, $\mu_s=\mu_u=\mu_d$, cont. extrapolated
Evolution of a Heavy Ion Collision

- **Chemical freeze-out**: inelastic reactions cease: the chemical composition of the system is fixed (particle yields and fluctuations)
- **Kinetic freeze-out**: elastic reactions cease: spectra and correlations are frozen (free streaming of hadrons)
- Hadrons reach the detector
Hadron yields

- \(E=mc^2 \): lots of particles are created
- **Particle counting** (average over many events)
- Take into account:
 - detector inefficiency
 - missing particles at low \(p_T \)
 - decays

HRG model: test hypothesis of hadron abundancies in equilibrium

\[
N_i = -T \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i V}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp[(E_i - \mu_i)/T]} \pm 1
\]
The thermal fits

- Fit is performed minimizing the χ^2
- Fit to yields: parameters T, μ_B, V
- Fit to ratios: the volume V cancels out

Changing the collision energy, it is possible to draw the freeze-out line in the T, μ_B plane.
Fluctuations of conserved charges

- **Definition:**

\[
\chi_{lmn}^{BSQ} = \frac{\partial^{l+m+n} p/T^4}{\partial (\mu_B/T)^l \partial (\mu_S/T)^m \partial (\mu_Q/T)^n}.
\]

- **Relationship between chemical potentials:**

\[
\begin{align*}
\mu_u &= \frac{1}{3} \mu_B + \frac{2}{3} \mu_Q; \\
\mu_d &= \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q; \\
\mu_s &= \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q - \mu_S.
\end{align*}
\]

- They can be calculated on the lattice and compared to experiment.
Connection to experiment

- **Fluctuations** of conserved charges are the **cumulants** of their event-by-event distribution

 - Mean: \(M = \chi_1 \)
 - Variance: \(\sigma^2 = \chi_2 \)
 - Skewness: \(S = \frac{\chi_3}{\chi_2^{3/2}} \)
 - Kurtosis: \(\kappa = \frac{\chi_4}{\chi_2^2} \)
 - \(S\sigma = \frac{\chi_3}{\chi_2} \)
 - \(\kappa\sigma^2 = \frac{\chi_4}{\chi_2} \)
 - \(M/\sigma^2 = \frac{\chi_1}{\chi_2} \)
 - \(S\sigma^3/M = \frac{\chi_3}{\chi_1} \)

- **Lattice QCD results** are functions of temperature and chemical potential
 - By comparing lattice results and experimental measurement we can **extract** the freeze-out parameters from first principles

Things to keep in mind

- Effects due to volume variation because of finite centrality bin width
 - Experimentally corrected by centrality-bin-width correction method
 - V. Skokov et al., PRC (2013)
- Finite reconstruction efficiency
 - Experimentally corrected based on binomial distribution
 - A.Bzdak, V.Koch, PRC (2012)
- Spallation protons
 - Experimentally removed with proper cuts in p_T
- Canonical vs Gran Canonical ensemble
 - Experimental cuts in the kinematics and acceptance
- Proton multiplicity distributions vs baryon number fluctuations
 - Recipes for treating proton fluctuations
 - M. Asakawa and M. Kitazawa, PRC(2012), M. Nahrgang et al., 1402.1238
- Final-state interactions in the hadronic phase
 - Consistency between different charges = fundamental test
 - J. Steinheimer et al., PRL (2013)
“Baryometer and Thermometer”

Let us look at the Taylor expansion of R_{31}^B

$$R_{31}^B(T, \mu_B) = \frac{\chi_3^B(T, \mu_B)}{\chi_1^B(T, \mu_B)} = \frac{\chi_4^B(T, 0) + \chi_{31}^{BQ}(T, 0)q_1(T) + \chi_{31}^{BS}(T, 0)s_1(T)}{\chi_2^B(T, 0) + \chi_{11}^{BQ}(T, 0)q_1(T) + \chi_{11}^{BS}(T, 0)s_1(T)} + \mathcal{O}(\mu_B^2)$$

- To order μ_B^2 it is independent of μ_B: it can be used as a thermometer

- Let us look at the Taylor expansion of R_{12}^B

$$R_{12}^B(T, \mu_B) = \frac{\chi_1^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} = \frac{\chi_2^B(T, 0) + \chi_{11}^{BQ}(T, 0)q_1(T) + \chi_{11}^{BS}(T, 0)s_1(T) \frac{\mu_B}{T}}{\chi_2^B(T, 0)} + \mathcal{O}(\mu_B^3)$$

- Once we extract T from R_{31}^B, we can use R_{12}^B to extract μ_B
Freeze-out parameters from B fluctuations

- **Thermometer:** \(\frac{\chi^B_3(T, \mu_B)}{\chi^B_1(T, \mu_B)} = S_B^3 \sigma_B^2 / M_B \)

- **Baryometer:** \(\frac{\chi^B_1(T, \mu_B)}{\chi^B_2(T, \mu_B)} = \sigma_B^2 / M_B \)

- **Upper limit:** \(T_f \leq 151 \pm 4 \text{ MeV} \)

- **Consistency** between freeze-out chemical potential from electric charge and baryon number is found.

WB: S. Borsanyi et al., PRL (2014)
STAR collaboration, PRL (2014)
Freeze-out parameters from B fluctuations

- Thermometer: \(\frac{\chi^B_3(T, \mu_B)}{\chi^B_1(T, \mu_B)} = S_B \sigma_B^3/M_B \)
- Baryometer: \(\frac{\chi^B_1(T, \mu_B)}{\chi^B_2(T, \mu_B)} = \sigma_B^2/M_B \)

- Upper limit: \(T_f \leq 151\pm4 \) MeV
- Consistency between freeze-out chemical potential from electric charge and baryon number is found.

WB: S. Borsanyi et al., PRL (2014)
STAR collaboration, PRL (2014)
Freeze-out parameters from B fluctuations

- Thermometer: $\frac{\chi_3^B(T, \mu_B)}{\chi_1^B(T, \mu_B)} = S_B \sigma_B^3/M_B$
- Baryometer: $\frac{\chi_1^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} = \sigma_B^2/M_B$

- Upper limit: $T_f \leq 151\pm4$ MeV
- Consistency between freeze-out chemical potential from electric charge and baryon number is found.

*WB: S. Borsanyi et al., PRL (2014)
STAR collaboration, PRL (2014)*
Curvature of the freeze-out line

- Parametrization of the freeze-out line:
 \[T_f(\mu_B) = T_{f,0} \left(1 - \kappa_2^f \mu_B^2 - \kappa_4^f \mu_B^4 \right) \]

- Taylor expansion of the “ratio of ratios” \(R_{12}^{QB} = \left[\frac{M_Q}{\sigma_Q^2} \right] / \left[\frac{M_B}{\sigma_B^2} \right] \)
 \[R_{12}^{QB} = R_{12}^{QB,0} + \left(R_{12}^{QB,2} - \kappa_2^f T_{f,0} \frac{dR_{12}^{QB,0}}{dT} \right) \hat{\mu}_B^2 \]
Curvature of the freeze-out line

- Parametrization of the freeze-out line:
 \[T_f(\mu_B) = T_{f,0} \left(1 - \kappa_2^f \tilde{\mu}_B^2 - \kappa_4^f \tilde{\mu}_B^4 \right) \]

- Taylor expansion of the “ratio of ratios” \(R_{12}^{QB} = \frac{[M_Q/\sigma_Q^2]}{[M_B/\sigma_B^2]} \)

\[R_{12}^{QB} = \left(\kappa_2^f < 0.011 \right) \left(\tilde{\mu}_B^2 \right) \]

\[T_{f,0} = (147 \pm 2) \text{ MeV} \]

\[\kappa_P \sigma_P^2 < S_P \sigma_P \]

A. Bazavov et al., 1509.05786
STAR0.8: PRL (2013)

STAR2.0: X. Luo, PoS CPOD 2014
PHENIX: 1506.07834
Freeze-out line from first principles

- Use T- and μ_B-dependence of R_{12}^Q and R_{12}^B for a combined fit:

$$R_{12}^Q(T, \mu_B) = \frac{\chi_1^Q(T, \mu_B)}{\chi_2^Q(T, \mu_B)} = \frac{\chi_{11}^Q(T, 0) + \chi_2^Q(T, 0)q_1(T) + \chi_{11}^Q(T, 0)s_1(T)}{\chi_2^Q(T, 0)} \frac{\mu_B}{T} + \mathcal{O}(\mu_B^3).$$

$$R_{12}^B(T, \mu_B) = \frac{\chi_1^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} = \frac{\chi_{11}^B(T, 0) + \chi_{11}^B(T, 0)q_1(T) + \chi_{11}^B(T, 0)s_1(T)}{\chi_2^B(T, 0)} \frac{\mu_B}{T} + \mathcal{O}(\mu_B^3).$$

WB: S. Borsanyi et al., in preparation
What about strangeness freeze-out?

- Yield fits seem to hint at a higher temperature for strange particles.
Initial analysis of LHC data

- Fluctuation data not yet available
- Assuming Skellam distribution, can use yields: $\tilde{\chi}_N = \frac{1}{\sqrt{T^3}} \left(\langle N_q \rangle + \langle N_{-q} \rangle \right)$

- Slightly higher temperature than at RHIC: $(150 < T_f < 163)$ MeV
- Looking forward to fluctuation measurements at the LHC

P. Braun-Munzinger et al., PLB (2015)
Missing strange states?

- Quark Model predicts not-yet-detected (multi-)strange hadrons
- QM-HRG improves the agreement with lattice results for some observables but it worsens it for some other ones
- The effect is only relevant at finite μ_B
- Feed-down from resonance decays neglected

A. Bazavov et al., PRL (2014)

R. Bellwied et al., in preparation
Flavor-dependent freeze-out?

Lattice data hint at possible flavor-dependence in transition temperature

Possibility of strange bound-states above T_c?

See talk by R. Bellwied on Thursday
Onset of deconfinement for charm quarks:

- Partial meson and baryon pressures described by HRG at T_C and dominate the charm pressure then drop gradually. **Charm quark only dominant dof at $T>200$ MeV**

A. Bazavov et al., PLB (2014)

S. Mukherjee, P. Petreczky, S. Sharma 1509.08887
Fluctuations at high temperatures

HTL: N. Haque et al., JHEP (2014); DR: S. Mogliacci et al., JHEP (2013)
Conclusions

- Unprecedented precision in lattice QCD data allows a direct comparison to experiment for the first time

- QCD thermodynamics at $\mu_B=0$ can be simulated with high accuracy

- Extensions to finite density are under control up to $O(\mu_B^6)$

- Challenges for the near future
 - Sign problem
 - Real-time dynamics
Transport properties

- Matter in the region \((1-2)T_c\) is highly non-perturbative
- Significant modifications of its transport properties
- Common problem:
 - Transport properties can be explored through the analysis of certain correlation functions:

\[
G_H(\tau, \vec{p}, T) = \int_0^\infty \frac{d\omega}{2\pi} \rho_H(\omega, \vec{p}, T) \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)} = \int d^3x \ e^{i\vec{p}\cdot\vec{x}} \langle J^\alpha(0, 0) J^{\beta\dagger}(\tau, \vec{x}) \rangle
\]

- **Challenge**: integrate over discrete set of lattice points in \(\tau\) direction
- Use inversion methods like Maximum Entropy Method or modeling the spectral function at low frequencies
Quarkonia properties

- Three main approaches:
 - *Potential models* with heavy quark potential calculated on the lattice
 - Solve Schrödinger’s equation for the bound state two-point function
 - Extract *spectral functions* from Euclidean temporal correlators
 - Study *spatial correlation functions* of quarkonia and their in-medium screening properties
Inter-quark potential

- Static quark-antiquark free-energy

Borsanyi et al. JHEP(2015)

- Continuum extrapolated result with $N_f=2+1$ flavors at the physical mass
Inter-quark potential

- Quark-antiquark potential in $N_f=2+1$ QCD

- Real part of the complex potential lies close to the color singlet free energy

- Central potential: combination of pseudoscalar and vector potentials:

$$V_C(r) = \frac{1}{4}V_{PS} + \frac{3}{4}V_V$$

Burnier et al. (2014)
Allton et al. (2015)
Charmonium spectral functions in quenched approximation and preliminary studies with dynamical quarks yield consistent results: all charmonium states are dissociated for $T \gtrsim 1.5T_c$.

Bottomonium ($N_f=2+1$, $m_\pi=400$ MeV), MEM:

- S-wave ground state survives up to $1.9 T_c$, P-wave ground state melts just above T_c.

H. Ding et al., PRD (2012)
G. Aarts et al., PRD (2007)
WB: S. Borsanyi et al., JHEP (2014)

G. Aarts et al. JHEP (2014)
Quarkonia spectral functions

- Charmonium spectral functions in quenched approximation and preliminary studies with dynamical quarks yield consistent results: all charmonium states are dissociated for $T \gtrsim 1.5 T_c$

- Bottomonium ($N_f=2+1$, $m_{\pi}=160$ MeV), Bayesian method:
 - $\Upsilon(1S)$ signal survives at $T=249$ MeV
 - $\chi_b(1P)$ signal survives at $T=249$ MeV

- S-wave ground state and P-wave ground state survive up to $T \sim 250$ MeV

H. Ding et al., PRD (2012)
G. Aarts et al., PRD (2007)
WB: S. Borsanyi et al., JHEP (2014)

S. Kim et al. PRD (2015)

Talk by A. Rothkopf on Tuesday 23/26
Electric conductivity and charge diffusion

- Definitions:

\[\sigma = \frac{C_{em}}{6} \lim_{\omega \to 0} \lim_{p \to 0} \omega \sum_{i=1}^{3} \rho_{ii}(\omega, p, T) \]

\[D_Q = \frac{\sigma}{\chi_2^Q} \]

- Electric conductivity measures the response of the medium to small perturbations induced by an electromagnetic field.
Viscosity

- Shear viscosity in the pure gauge sector of QCD

- Challenge: very low signal-to-noise ratio for the Euclidean energy-momentum correlator

![Graph showing shear viscosity over temperature]

- Meyer’07
- Meyer’09
- Haas’13
- Nakamura & Sakai ‘05
- S. Borsanyi et al. ‘14
Freeze-out parameters from Q fluctuations

- Studies in HRG model: the different momentum cuts between STAR and PHENIX are responsible for more than 30% of their difference.
- Using continuum extrapolated lattice data, lower values for T_f are found.

A. Bazavov et al. (2014)
WB: Borsanyi et al. PRL (2013)
F. Karsch et al., 1508.02614
Effects of kinematic cuts

- Rapidity dependence of moments needs to be studied for $1<\Delta\eta<2$
- Difference in kinematic cuts between STAR and PHENIX leads to a 5% difference in T_f

V. Koch, 0810.2520

Talk by J. Thaeder on Monday

Talk by F. Karsch on Monday
Strangeness fluctuations

Lattice data hint at possible flavor-dependence in transition temperature

Possibility of strange bound-states above T_c?

Additional strange hadrons

Discrepancy between lattice and HRG for μ_S/μ_B can be understood by introducing higher mass states predicted by the Quark Model.

Discrepancy between QM predictions and lattice data for χ_4^S/χ_2^S needs to be understood.

Their effect on freeze-out conditions needs to be investigated taking into account their decay feed-down into stable states.

A. Bazavov et al., PRL (2014)

Poster by P. Alba

P. M. Lo et al., 1507.06398
Columbia plot

- Pure gauge theory: $T_c=294(2)$ MeV
 Francis et al., 1503.05652

- $N_f=2$ QCD at $m_\pi>m_\pi^{\text{phys}}$:
 - O(a) improved Wilson, $N_t=16$
 - $m_\pi=295$ MeV $T_c=211(5)$ MeV
 - $m_\pi=220$ MeV $T_c=193(7)$ MeV
 Brandt et al., 1310.8326

- Twisted-mass QCD
 - $m_\pi=333$ MeV $T_c=180(12)$ MeV
 Burger et al., 1412.6748

- $N_f=2+1$ O(a) improved Wilson
 - Continuum results
 Borsanyi et al., 1504.03676

- HISQ action, $N_t=6$, no sign of 1st order phase transition at $m_\pi=80$ MeV
 HotQCD, 1312.0119, 1302.5740
Equation of state at $\mu_B > 0$

- Expand the pressure in powers of μ_B (or $\mu_L = 3/2(\mu_u + \mu_d)$)

\[
\frac{p(T, \{\mu_i\})}{T^4} = \frac{p(T, \{0\})}{T^4} + \frac{1}{2} \sum_{i,j} \frac{\mu_i \mu_j}{T^2} \chi_{ij}^2
\]

with

\[
\chi_{ij}^2 \equiv \frac{T}{V T^2} \left. \frac{\partial^2 \log Z}{\partial \mu_i \partial \mu_j} \right|_{\mu_i = \mu_j = 0}
\]

- Continuum extrapolated results at the physical mass

S. Borsanyi et al., JHEP (2012)
Alternative methods for thermodynamics

- **Gradient flow**: EoS in the quenched approximation
- **Twisted mass Wilson fermions**: EoS available so far for heavier-than-physical quark masses and $N_f=2$