







### Lattice QCD

- Best first principle-tool to extract predictions for the theory of strong interactions in the non-perturbative regime
- Uncertainties:
  - Statistical: finite sample, error  $\sim 1/\sqrt{\text{sample size}}$
  - Systematic: finite box size, unphysical quark masses
- Given enough computer power, uncertainties can be kept under control
- Results from different groups, adopting different discretizations, converge to consistent results
- Unprecedented level of accuracy in lattice data

 Lattice action: parametrization used to discretize the Lagrangian of QCD on a space-time grid

$$N_t = \frac{1}{aT}$$
 $N_s = L/a$ 



 Lattice action: parametrization used to discretize the Lagrangian of QCD on a space-time grid

$$N_t = \frac{1}{aT}$$

$$N_s = L/a$$

 Repeat the simulations on finer lattices (smaller a ←→ larger N<sub>t</sub>)



 Lattice action: parametrization used to discretize the Lagrangian of QCD on a space-time grid

$$N_t = \frac{1}{aT}$$
 $N_s = L/a$ 

 Repeat the simulations on finer lattices (smaller a ←→ larger N<sub>t</sub>)





 Lattice action: parametrization used to discretize the Lagrangian of QCD on a space-time grid

$$N_t = \frac{1}{aT}$$
 $N_s = L/a$ 

 Repeat the simulations on finer lattices (smaller a ←→ larger N<sub>t</sub>)





 Observables are affected by discretization effects differently





 Observables are affected by discretization effects differently

In quantitative predictions, finite-N<sub>t</sub> results can lead to misleading information





 Observables are affected by discretization effects differently

In quantitative predictions, finite-N<sub>t</sub> results can lead to misleading information

 Message: continuum extrapolated data always preferable



### Low temperature phase: HRG model

Dashen, Ma, Bernstein; Prakash, Venugopalan, Karsch, Tawfik, Redlich

- Interacting hadronic matter in the ground state can be well approximated by a non-interacting resonance gas
- The pressure can be written as:

$$p^{HRG}/T^4 = \frac{1}{VT^3} \sum_{i \in mesons} \ln \mathcal{Z}_{\boldsymbol{m_i}}^M(T, V, \mu_{X^a}) + \frac{1}{VT^3} \sum_{i \in baryons} \ln \mathcal{Z}_{\boldsymbol{m_i}}^B(T, V, \mu_{X^a})$$

where

$$\ln \mathcal{Z}_{\boldsymbol{m_i}}^{M/B} = \mp \frac{V d_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp \boldsymbol{z_i} e^{-\boldsymbol{\varepsilon_i}/T}) ,$$

with energies  $\varepsilon_i = \sqrt{k^2 + m_i^2}$ , degeneracy factors  $d_i$  and fugacities

$$z_i = \exp\left(\left(\sum_a X_i^a \mu_{X^a}\right)/T\right) .$$

- $X^a$ : all possible conserved charges, including the baryon number B, electric charge Q, strangeness S.
- Up to which temperature do we expect agreement with the lattice data?

### High temperature limit

QCD thermodynamics approaches that of a non-interacting, massless quark-gluon gas:

$$\left(\frac{P}{T^4}\right)_{\text{ideal}} = \frac{8\pi^2}{45} + \sum_{f=u,d,s} \left[ \frac{7\pi^2}{60} + \frac{1}{2} \left(\frac{\mu_f}{T}\right)^2 + \frac{1}{4\pi^2} \left(\frac{\mu_f}{T}\right)^4 \right]$$

- We can switch on the interaction and systematically expand the observables in series of the coupling g
- Resummation of diagrams (HTL) or dimensional reduction are needed, to improve convergence

Braaten, Pisarski (1990); Haque et al. (2014); Hietanen et al (2009)

At what temperature does perturbation theory break down?

## QCD Equation of state at $\mu_B=0$





- EoS available in the continuum limit, with realistic quark masses
- Agreement between stout and HISQ action for all quantities

WB: S. Borsanyi et al., 1309.5258, PLB (2014) HotQCD: A. Bazavov et al., 1407.6387, PRD (2014) 6/26

### Sign problem

 The QCD path integral is computed by Monte Carlo algorithms which samples field configurations with a weight proportional to the exponential of the action

$$Z(\mu_B, T) = \operatorname{Tr}\left(e^{-\frac{H_{\text{QCD}} - \mu_B N_B}{T}}\right) = \int \mathcal{D}U e^{-S_G[U]} \det M[U, \mu_B]$$

- □ detM[ $\mu_B$ ] complex  $\rightarrow$  Monte Carlo simulations are not feasible
- □ We can rely on a few approximate methods, viable for small  $\mu_B/T$ :
  - Taylor expansion of physical quantities around μ=0 (Bielefeld-Swansea collaboration 2002; R. Gavai, S. Gupta 2003)
  - Reweighting (complex phase moved from the measure to observables)
     (Barbour et al. 1998; Z. Fodor and S, Katz, 2002)
  - Simulations at imaginary chemical potentials (plus analytic continuation) (Alford, Kapustin, Wilczek, 1999; de Forcrand, Philipsen, 2002; D'Elia, Lombardo 2003)

# Equation of state at $\mu_{\rm B}$ >0



Expand the pressure in powers of  $\mu_{R}$ 

$$egin{split} rac{p(\mu_B)}{T^4} &= c_0 + c_2 \left(rac{\mu_B}{T}
ight)^2 + \ &+ c_4 \left(rac{\mu_B}{T}
ight)^4 + c_6 \left(rac{\mu_B}{T}
ight)^6 + \mathcal{O}(\mu_B^8) \end{split}$$

- Continuum extrapolated results for c<sub>2</sub>, c<sub>4</sub>, c<sub>6</sub> at the physical mass
- Radius of convergence:



WB: S. Borsanyi et al., preliminary

## Equation of state at $\mu_B > 0$

#### Calculate the EoS along the constant S/N trajectories



### Alternative methods for thermodynamics





- Gradient flow: EoS in the quenched approximation
- Twisted mass Wilson fermions:
   EoS available so far for heavierthan-physical quark masses and N<sub>f</sub>=2





Curvature k defined as:

$$\frac{T_c(\mu_B)}{T_c(\mu=0)} = 1 - \kappa \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 + \lambda \left(\frac{\mu_B}{T_c(\mu_B)}\right)^4 \dots$$

Recent results:

$$\kappa = 0.0149 \pm 0.0021$$



Curvature k defined as:

$$\frac{T_c(\mu_B)}{T_c(\mu=0)} = 1 - \kappa \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 + \lambda \left(\frac{\mu_B}{T_c(\mu_B)}\right)^4 \dots$$

Recent results:

$$\kappa = 0.020(4)$$

P. Cea et al., 1508.07599





#### Curvature k defined as:

$$\frac{T_c(\mu_B)}{T_c(\mu=0)} = 1 - \kappa \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 + \lambda \left(\frac{\mu_B}{T_c(\mu_B)}\right)^4 \dots$$

#### Recent results:

$$\kappa = 0.020(4)$$

$$\kappa = 0.0135(20)$$

P. Cea et al., 1508.07599



- Kaczmarek et al., Nf=2+1, p4 staggered action, Taylor expansion,  $\mu_s$ =0,  $N_t$ =8
- Falcone et al., Nf=2+1, p4 staggered action, analytic continuation,  $\mu_s = \mu_u = \mu_d$ ,  $N_t = 4$
- Bonati et al., Nf=2+1, stout staggered action, analytic continuation,  $\mu_s$ =0, continuum extrapolated
- Bellwied et al. (WB), Nf=2+1, 4stout staggered action, analytic continuation, <n<sub>s</sub>>=0, cont. extrap.
- Cea et al., Nf=2+1, HISQ staggered action, analytic continuation,  $\mu_s = \mu_u = \mu_d$ , cont. extrapolated

### Fluctuations of conserved charges

Definition:

$$\chi_{lmn}^{BSQ} = \frac{\partial^{l+m+n} p/T^4}{\partial (\mu_B/T)^l \partial (\mu_S/T)^m \partial (\mu_Q/T)^n}.$$

Relationship between chemical potentials:

$$\mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q};$$

$$\mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q};$$

$$\mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}.$$

They can be calculated on the lattice and compared to experiment

### Connection to experiment

 Fluctuations of conserved charges are the cumulants of their eventby-event distribution

mean : 
$$M=\chi_1$$
 variance :  $\sigma^2=\chi_2$  skewness :  $S=\chi_3/\chi_2^{3/2}$  kurtosis :  $\kappa=\chi_4/\chi_2^2$  
$$S\sigma=\chi_3/\chi_2 \qquad \kappa\sigma^2=\chi_4/\chi_2$$
 
$$M/\sigma^2=\chi_1/\chi_2 \qquad S\sigma^3/M=\chi_3/\chi_1$$

- Lattice QCD results are functions of temperature and chemical potential
  - By comparing lattice results and experimental measurement we can extract the freeze-out parameters from first principles

### Things to keep in mind

- Effects due to volume variation because of finite centrality bin width
  - Experimentally corrected by centrality-bin-width correction method
    - V. Skokov et al., PRC (2013)

- Finite reconstruction efficiency
  - Experimentally corrected based on binomial distribution A.Bzdak, V.Koch, PRC (2012)
- Spallation protons
  - Experimentally removed with proper cuts in p<sub>T</sub>
- Canonical vs Gran Canonical ensemble
  - Experimental cuts in the kinematics and acceptance V. Koch, S. Jeon, PRL (2000)
- Proton multiplicity distributions vs baryon number fluctuations
  - Recipes for treating proton fluctuations
     M. Asakawa and M. Kitazawa, PRC(2012), M. Nahrgang et al., 1402.1238
- Final-state interactions in the hadronic phase
  - Consistency between different charges = fundamental test

J.Steinheimer et al., PRL (2013)

### Freeze-out parameters from B fluctuations

Thermometer:  $\frac{\chi_3^B(T, \mu_B)}{\chi_1^B(T, \mu_B)}$  =  $S_B \sigma_B^3 / M_B$ 



Baryometer:  $\frac{\chi_1^B(T,\mu_B)}{\chi_2^B(T,\mu_B)}$  =  $\sigma_{\rm B}^2/{\rm M_B}$ 



WB: S. Borsanyi et al., PRL (2014) STAR collaboration, PRL (2014)

- Upper limit: T<sub>f</sub> ≤ 151±4 MeV
- Consistency between freeze-out chemical potential from electric charge and baryon number is found.

### Freeze-out parameters from B fluctuations

Thermometer:  $\frac{\chi_3^B(T,\mu_B)}{\chi_1^B(T,\mu_B)}$  =  $S_B \sigma_B^3/M_B$  0.2  $[M_Q/\sigma_Q^2]/[M_B/\sigma_B^2]$  0.15  $M_B \sim M_B \sim M_$ 

Baryometer: 
$$\frac{\chi_1^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} = \sigma_B^2 / M_B$$



WB: S. Borsanyi et al., PRL (2014) STAR collaboration, PRL (2014)

Upper limit: T<sub>f</sub> ≤ 151±4 MeV

160

180

200

140

Consistency between freeze-out chemical potential from electric charge and baryon number is found.

240

T [MeV]

220

### Freeze-out parameters from B fluctuations

Thermometer:  $\frac{\chi_3^B(T, \mu_B)}{\chi_1^B(T, \mu_B)} = S_B \sigma_B^3 / M_B$ 



Baryometer: 
$$\frac{\chi_1^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} = \sigma_B^2 / M_B$$

| $\sqrt{s}[GeV]$ | $\mu_B^f$ [MeV] (from $B$ ) | $\mu_B^f$ [MeV] (from $Q$ ) |
|-----------------|-----------------------------|-----------------------------|
| 200             | $25.8 \pm 2.7$              | $22.8{\pm}2.6$              |
| 62.4            | $69.7 \pm 6.4$              | $66.6 {\pm} 7.9$            |
| 39              | $105 \pm 11$                | $101 \pm 10$                |
| 27              | -                           | $136 \pm 13.8$              |

Upper limit: T<sub>f</sub> ≤ 151±4 MeV

WB: S. Borsanyi et al., PRL (2014) STAR collaboration, PRL (2014)

Consistency between freeze-out chemical potential from electric charge and baryon number is found.

#### Curvature of the freeze-out line

Parametrization of the freeze-out line:

$$T_f(\mu_B) = T_{f,0} \left( 1 - \kappa_2^f \bar{\mu}_B^2 - \kappa_4^f \bar{\mu}_B^4 \right)$$

□ Taylor expansion of the "ratio of ratios"  $R_{12}^{QB} = [M_Q/\sigma_Q^2]/[M_B/\sigma_B^2]$ 

$$R_{12}^{QB} = R_{12}^{QB,0} + \left( R_{12}^{QB,2} - \kappa_2^f T_{f,0} \frac{\mathrm{d}R_{12}^{QB,0}}{\mathrm{d}T} \bigg|_{T_{f,0}} \right) \hat{\mu}_B^2$$
 solves [GeV]



A. Bazavov et al., 1509.05786 STAR0.8: PRL (2013)



#### Curvature of the freeze-out line

Parametrization of the freeze-out line: Talk by F. Karsch on Monday

$$T_f(\mu_B) = T_{f,0} \left( 1 - \kappa_2^f \bar{\mu}_B^2 - \kappa_4^f \bar{\mu}_B^4 \right)$$

Taylor expansion of the "ratio of ratios"  $R_{12}^{QB} = [M_Q/\sigma_Q^2]/[M_B/\sigma_B^2]$ 



### Freeze-out line from first principles

Talk by S. Borsanyi on Monday

Use T- and μ<sub>B</sub>-dependence of R<sub>12</sub>Q and R<sub>12</sub>B for a combined fit:

$$R_{12}^Q(T,\mu_B) = \frac{\chi_1^Q(T,\mu_B)}{\chi_2^Q(T,\mu_B)} = \frac{\chi_{11}^{QB}(T,0) + \chi_2^Q(T,0)q_1(T) + \chi_{11}^{QS}(T,0)s_1(T)}{\chi_2^Q(T,0)} \frac{\mu_B}{T} + \mathcal{O}(\mu_B^3).$$

$$R_{12}^B(T,\mu_B) = \frac{\chi_1^B(T,\mu_B)}{\chi_2^B(T,\mu_B)} = \frac{\chi_2^B(T,0) + \chi_{11}^{BQ}(T,0)q_1(T) + \chi_{11}^{BS}(T,0)s_1(T)}{\chi_2^B(T,0)} \frac{\mu_B}{T} + \mathcal{O}(\mu_B^3)$$



- Fluctuation data not yet available
- Assuming Skellam distribution, can use yields:  $\hat{\chi}_N = \frac{1}{VT^3} \left( \langle N_q \rangle + \langle N_{-q} \rangle \right)$





P. Braun-Munzinger et al., PLB (2015)

- Slightly higher temperature than at RHIC: (150<T<sub>f</sub><163) MeV
- Looking forward to fluctuation measurements at the LHC

### Fluctuations at high temperatures

HTL: N. Haque et al., JHEP (2014); DR: S. Mogliacci et al., JHEP (2013)





### Degrees of freedom from fluctuations

Talk by P. Petreczky on Monday

Onset of deconfinement for charm quarks:



A. Bazavov et al., PLB (2014)

S. Mukherjee, P. Petreczky, S. Sharma 1509.08887

Partial meson and baryon pressures described by HRG at T<sub>C</sub> and dominate the charm pressure then drop gradually. Charm quark only dominant dof at T>200 MeV

### Transport properties

- Matter in the region (1-2)T<sub>c</sub> is highly non-perturbative
- Significant modifications of its transport properties
- Common problem:
  - Transport properties can be explored through the analysis of certain correlation functions:

$$G_H(\tau, \vec{p}, T) = \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \, \rho_H(\omega, \vec{p}, T) \, \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)} = \int \mathrm{d}^3x \, e^{i\mathbf{p}\mathbf{x}} \langle J^\alpha(0, 0)J^{\beta\dagger}(\tau, \mathbf{x}) \rangle$$

- Challenge: integrate over discrete set of lattice points in τ direction
- Use inversion methods like Maximum Entropy Method or modeling the spectral function at low frequencies

### Quarkonia properties

- Three main approaches:
  - Potential models with heavy quark potential calculated on the lattice
    - Solve Schroedinger's equation for the bound state two-point function
  - Extract spectral functions from Euclidean temporal correlators
  - Study spatial correlation functions of quarkonia and their in-medium screening properties

### Inter-quark potential

Static quark-antiquark free-energy



Borsanyi et al. JHEP(2015)

 Continuum extrapolated result with N<sub>f</sub>=2+1 flavors at the physical mass

### Inter-quark potential

Quark-antiquark potential in N<sub>f</sub>=2+1 QCD





 Real part of the complex potential lies close to the color singlet free energy



Central potential: combination of pseudoscalar and vector potentials: 1 3

### Quarkonia spectral functions

□ Charmonium spectral functions in quenched approximation and preliminary studies with dynamical quarks yield consistent results: all charmonium states are dissociated for T≥1.5T<sub>c</sub>

H. Ding et al., PRD (2012)

G. Aarts et al., PRD (2007)

WB: S. Borsanyi et al., JHEP (2014)

Bottomonium ( $N_f=2+1$ ,  $m_{\pi}=400$  MeV), MEM:



S-wave ground state survives up to 1.9 T<sub>c</sub>, P-wave ground state melts just above T<sub>c</sub>

### Quarkonia spectral functions

Charmonium spectral functions in quenched approximation and preliminary studies with dynamical quarks yield consistent results: all charmonium states are dissociated for T≥1.5T<sub>c</sub>
 H. Ding et al., PRD (2012)

G. Aarts et al., PRD (2007)

WB: S. Borsanyi et al., JHEP (2014)

Bottomonium (N<sub>f</sub>=2+1, m<sub>π</sub>=160 MeV), Bayesian method:



S-wave ground state and P-wave ground state survive up to T∼250 MeV

### Electric conductivity and charge diffusion

#### Definitions:

$$\sigma = \frac{C_{em}}{6} \lim_{\omega \to 0} \lim_{\mathbf{p} \to 0} \sum_{i=1}^{3} \frac{\rho^{ii}(\omega, \mathbf{p}, T)}{\omega}$$

$$D_Q = \sigma/\chi_2^Q$$





 Electric conductivity measures the response of the medium to small perturbations induced by an electromagnetic field

### Viscosity

Shear viscosity in the pure gauge sector of QCD



 Challenge: very low signal-to noise ratio for the Euclidean energymomentum correlator

#### Conclusions

- Unprecedented precision in lattice QCD data allows a direct comparison to experiment for the first time
- QCD thermodynamics at μ<sub>B</sub>=0 can be simulated with high accuracy
- Extensions to finite density are under control up to O(μ<sub>B</sub><sup>6</sup>)
- Challenges for the near future
  - Sign problem
  - Real-time dynamics

### Freeze-out parameters from Q fluctuations



- Studies in HRG model: the different momentum cuts between STAR and PHENIX are responsible for more than 30% of their difference F. Karsch et al., 1508,02614
- Using continuum extrapolated lattice data, lower values for T<sub>f</sub> are found

#### Effects of kinematic cuts





- Rapidity dependence of moments needs to be studied for 1<Δη<2</li>
- Difference in kinematic cuts between STAR and PHENIX leads to a 5% difference in T<sub>f</sub>

Talk by F. Karsch on Monday

Talk by J. Thaeder on Monday

### Strangeness fluctuations

WB: R. Bellwied et al, PRL (2013)



- Lattice data hint at possible flavor-dependence in transition temperature
- Possibility of strange bound-states above T<sub>c</sub>?

### Additional strange hadrons



- Discrepancy between lattice and HRG for μ<sub>S</sub>/μ<sub>B</sub> can be understood by introducing higher mass states predicted by the Quark Model
- Discrepancy between QM predictions and lattice data for χ<sub>4</sub>S/χ<sub>2</sub>S needs to be understood
- Their effect on freeze-out conditions needs to be investigated taking into account their decay feed-down into stable states

### Columbia plot



Francis et al., 1503.05652



- $N_f=2$  QCD at  $m_{\pi}>m_{\pi}^{phys}$ :
- O(a) improved Wilson, N<sub>t</sub>=16
- $_{-}$  m<sub> $\pi$ </sub>=295 MeV T<sub>c</sub>=211(5) MeV
- $m_{\pi}$ =220 MeV  $T_{c}$ =193(7) MeV

Brandt et al., 1310.8326

- Twisted-mass QCD
- $m_{\pi}$ =333 MeV  $T_{c}$ =180(12) MeV

Burger et al., 1412.6748

- N<sub>f</sub>=2+1 O(a) improved Wilson
  - Continuum results

Borsanyi et al., 1504.03676

HISQ action,  $N_t$ =6, no sign of 1<sup>st</sup> order phase transition at  $m_{\pi}$ =80 MeV HotQCD, 1312.0119, 1302.5740

## Equation of state at $\mu_B > 0$

Expand the pressure in powers of  $\mu_B$  (or  $\mu_L$ =3/2( $\mu_u$ + $\mu_d$ ))

$$\frac{p(T,\{\mu_i\})}{T^4} = \frac{p(T,\{0\})}{T^4} + \frac{1}{2} \sum_{i,j} \frac{\mu_i \mu_j}{T^2} \chi_2^{ij} \qquad \text{with} \qquad \chi_2^{ij} \equiv \frac{T}{V} \frac{1}{T^2} \frac{\partial^2 \log \mathcal{Z}}{\partial \mu_i \partial \mu_j} \bigg|_{\mu_i = \mu_j = 0}$$

$$5 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, HRG}}$$

$$\frac{\mu_i = 0 \text{ MeV, HRG}}{\mu_i = 0 \text{ MeV, HRG}}$$

$$\frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, HRG}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, HRG}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, HRG}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, HRG}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, HRG}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, HRG}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, lattice}}{\mu_i = 0 \text{ MeV, lattice}}$$

$$10 \frac{\mu_i = 400 \text{ MeV, latti$$

Continuum extrapolated results at the physical mass