Phylogenetic Networks

Luay Nakhleh
Department of Computer Science
Rice University

Bioinformatics for Biologists
University of Houston
9 November 2011
The Phylogeny Reconstruction Problem

U: AGGGCAT
V: TAGCCCA
W: TAGACTT
X: TGCACAA
Y: TGCGGCTT
The Phylogeny Reconstruction Problem

U
AGGGCAT

V
TAGCCCCA

W
TAGACTT

X
TGCACAA

Y
TGCCTT

Diagram showing a phylogenetic tree with sequences U, V, W, X, and Y.
Gene Trees in Species Trees

What Tree is Being Reconstructed?

[Tree diagram on the left with labels: human, chicken, Xenopus, Catostomus, Drosophila, Artemia, Hydra.]

[Tree diagram on the right with labels: human 1, chicken 1, Xenopus 1, Catostomus 1, human 2, chicken 2, human 3, chicken 3, Drosophila, Artemia, Hydra.]
The Pre-Genomic Era

A
B
C
D
E

Locus i
The **Pre-Genomic Era**

A
B
C
D
E

Locus i

Gene Tree

A
B
C
D
E
The **Pre-Genomic Era**

Gene Tree

Species Phylogeny
However...

In This Lecture

Horizontal transfer
The post-genomic era
The post-genomic era
The **post-genomic era**
The post-genomic era

Locus 1 Locus 2 Locus 3 Locus 4 Locus 5 Locus 6

Gene Trees

Species Phylogeny
Outline of the Talk

• The phylogenetic network model

• From trees to networks

• From sequences to networks

• Should we build a network

• Summary
Phylogenetic Networks

• When HGT occurs, the evolutionary history reconstructed from the genomic sequences is more appropriately represented as a **phylogenetic network**
Phylogenetic Networks

- Phylogenetic networks generalize trees and allow for modeling vertical and non-vertical evolution in a variety of scenarios.
A phylogenetic network N on set \mathcal{X} of taxa is an ordered pair (G, f), where

- $G = (V, E)$ is a directed, acyclic graph (DAG) with $V = \{r\} \cup V_L \cup V_T \cup V_N$, where
 - $\text{indeg}(r) = 0$ (r is the root of N);
 - $\forall v \in V_L$, $\text{indeg}(v) = 1$ and $\text{outdeg}(v) = 0$ (V_L are the leaves of N);
 - $\forall v \in V_T$, $\text{indeg}(v) = 1$ and $\text{outdeg}(v) \geq 2$ (V_T are the tree nodes of N); and,
 - $\forall v \in V_N$, $\text{indeg}(v) = 2$ and $\text{outdeg}(v) = 1$ (V_N are the reticulation nodes of N),

and $E \subseteq V \times V$ are the network’s edges (we distinguish between reticulation edges, edges whose heads are reticulation nodes, and tree edges, edges whose heads are tree nodes).

- $f : V_L \to \mathcal{X}$ is the leaf-labeling function, which is a bijection from V_L to \mathcal{X}.
From Trees to Networks
Central Observation

• At the lowest level of “atomicity”: every nucleotide in a genome has evolved down a tree

• More generally: barring recombination, the evolutionary history of an individual gene is treelike

• Hence, a phylogenetic network is viewed as the reconciliation of the gene trees
Trees and Networks

\[N \xrightarrow{\text{T}(N)} \]
• Tells about the different gene genealogies and sequence evolution (more later)

• Given a network, it is easy to compute the set of induced trees
From a Set of Trees to Their Containing Network

- Amounts to reconstructing the evolutionary history (of genomes, species, etc.)
- Given a set of trees, it is very hard (in general) to compute a “good” network that contains them
From a Set of Trees to Their Containing Network

- The **Subtree Prune and Regraft (SPR)** operation mimics the effect of a reticulation event.
From a Set of Trees to Their Containing Network

- The **Subtree Prune and Regraft (SPR)** operation mimics the effect of a reticulation event.
From a Set of Trees to Their Containing Network

- The **Subtree Prune and Regraft** (SPR) operation mimics the effect of a reticulation event.

![Diagram of SPR operation](image)

- The **SPR distance** (the minimum number of SPR moves required to transform one tree into another) is taken as a proxy for the (minimum) number of reticulation events.
Programs for Computing (exactly or heuristically) the SPR Distance

- EEEP: Beiko and Hamilton.

- HorizStory: MacLeod, Charlebois, Doolittle, and Bapteste.

- HorizTrans: Hallett and Lagergren.

- SPRDist: Wu.

- TNT: Goloboff.

- ...
The SPR Distance

- Very hard to compute (NP-hard)

- Several fast heuristics exist, with very good performance in practice, including our own RIATA-HGT
Issues with the SPR Distance:
(1) Underestimation
Issues with the SPR Distance:
(2) Ordered Trees

T_1
a

T_2
b c d

T_3
a b

c d
Issues with the SPR Distance:

(2) Ordered Trees
Issues with the SPR Distance:
(3) Time-inconsistent Moves
Issues with the SPR Distance:
(3) Time-inconsistent Moves
Issues with the SPR Distance:

(3) Time-inconsistent Moves
Issues with the SPR Distance:
(3) Time-inconsistent Moves
Issues with the SPR Distance:
(3) Time-inconsistent Moves
Issues with the SPR Distance:
(3) Time-inconsistent Moves
Issues with the SPR Distance:
(4) Multiple Trees

- Recall:

Gene Trees

Species Phylogeny
Issues with the SPR Distance:
(4) Multiple Trees

• However, SPR is defined on a pair of trees.

• The problem now becomes: **Given an input set G of gene trees, find a phylogenetic network N with the minimum number of reticulation nodes such that G ⊆ T(N).**
Issues with the SPR Distance:
(4) Multiple Trees

\[G = \{ \text{A B C D E}, \text{A B C D E} \} \]
Issues with the SPR Distance:
(4) Multiple Trees

\[G = \{ \begin{array}{c}
\text{trees 1, 2, 3, 4, 5, 6} \\
\text{and 7, 8, 9, 10, 11, 12}
\end{array} \} \]

\[N = \begin{array}{c}
\text{tree 12}
\end{array} \]
Issues with the SPR Distance:
(4) Multiple Trees

\[G = \{ A, B, C, D, E \} \]

\[N = \]

\[T(N) = \{ A, B, C, D, E \} \]
Issues with the SPR Distance:
(4) Multiple Trees

• Programs that allow for multiple trees in the input:
 • CASS: van Iersel and Kelk.
 • MURPAR: Park, Jin, and Nakhleh
 • PIRN: Wu.
Issues with the SPR Distance:
(5) Unknown Species Tree

- To guarantee that an SPR move reflects an HGT event, it must be computed on a gene tree with respect to the species tree.

- In practice, the species tree may not be known.

- Heuristics:
 - Take the consensus of all gene trees to be the candidate for species tree (Warning: May necessitate dealing with non-binary trees).
 - Take the gene tree with the highest frequency to be the candidate for species tree (May be problematic under certain settings).
 - Try each of the gene trees as a species tree candidate, infer networks, and choose the one that is optimal over all choices of gene trees.
From Sequences to Networks
Recall: The actual phylogenetic network reconstruction problem is...
The approach we have shown thus far is...
Optimization Criteria in Phylogenetics

- Maximum parsimony
- Character compatibility
- Maximum likelihood
- ...

...
Optimization Criteria in Phylogenetics

- Maximum parsimony
- Character compatibility
- Maximum likelihood
- ...

Question: How do we generalize these to network?
Generalizing Optimization Criteria to Networks

• Back to the central observation...
Generalizing Optimization Criteria to Networks

• Back to the central observation...
Generalizing Optimization Criteria to Networks

• The evolution of a site (or, more practically, a block of sites) on a network is best represented by one of the trees inside the network.

<table>
<thead>
<tr>
<th></th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Generalizing Optimization Criteria to Networks

- The evolution of a site (or, more practically, a block of sites) on a network is best represented by one of the trees inside the network.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
The evolution of a site (or, more practically, a block of sites) on a network is best represented by one of the trees inside the network.
Generalizing Optimization Criteria to Networks

- The evolution of a site (or, more practically, a block of sites) on a network is best represented by one of the trees inside the network.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Diagram showing the network with nodes and edges.
Maximum Parsimony on Phylogenetic Networks

\[PS(N, S) = \sum_{S_i \in S} \left[\min_{T \in T(N)} PS(T, S_i) \right] \]

\[N^* = \text{argmin}_N PS(N, S) \]
Maximum Likelihood on Phylogenetic Networks

\[N \]

\[T_1 \]

\[T_2 \]

\[T_3 \]

\[T_4 \]
Maximum Likelihood on Phylogenetic Networks

\[
P(T_1 | N, \Gamma) = (1 - \gamma_1)(1 - \gamma_2) \quad P(T_2 | N, \Gamma) = \gamma_1(1 - \gamma_2) \quad P(T_3 | N, \Gamma) = (1 - \gamma_1)\gamma_2 \quad P(T_4 | N, \Gamma) = \gamma_1\gamma_2
\]
Maximum Likelihood on Phylogenetic Networks

\[
L(N, \Gamma, \lambda; S) = P(S|N, \Gamma, \lambda) = \prod_{S_i \in S} \left[\sum_{T \in T(N)} [P(S_i|T, \lambda) \cdot P(T|N, \Gamma)] \right]
\]

\[
(N^*, \Gamma^*, \lambda^*) = \arg\max_{(N, \Gamma, \lambda)} L(N, \Gamma, \lambda; S)
\]
Issues With Sequence-based Inference:
(1) Computational Complexity

- The problems are NP-hard, even when the network is given.
- The network space is much larger than the tree space.
- No techniques currently exist for searching the network space (the equivalent of SPR, TBR, and NNI in searching the tree space).
Issues With Sequence-based Inference:

(2) Overfitting

- **The more [HGTs], the merrier!** That is, adding more HGTs to the network can either improve the fit of the data or keep it unchanged, but never makes it worse.

![Diagram of networks](image)

- **Have to control for complexity of the model**
To Network, or Not to Network, That Is the Question
Recall

But...

- Horizontal gene transfer is only one possible cause
But...

- Horizontal gene transfer is only one possible cause

![Diagram showing duplication and extinction processes]

A B C D

Duplication/ extinction
But...

- Horizontal gene transfer is only one possible cause
But...

• Horizontal gene transfer is only one possible cause

In these cases, the gene trees should not be reconciled into a phylogenetic network, but rather reconciled within the branches of the species tree.
The Main Question

- Given a collection of gene trees, determine (rather than assume) the cause(s) of incongruence, and reconcile the trees accordingly.

- Gives rise to the need for a stochastic framework that explains the observed patterns of gene trees.

- A natural candidate is *the coalescent*, which allows for computing gene tree probabilities, among other things.

- However, it needs to be augmented to allow for events such as horizontal gene transfer, gene duplication/loss, ...

- Work is emerging in this area.
Summary

- Phylogenetic networks generalize trees to allow for modeling of non-treelike (reticulate) evolutionary histories

- The SPR operation and distance are the most commonly used tools for estimating reticulation from pairs of trees, yet they suffer from several issues

- Optimization criteria can be generalized in a straightforward manner to networks by considering the trees inside the network

- Incongruence is not necessarily a reflection of reticulate evolution; stochastic frameworks for determining the cause of incongruence are necessary; the coalescent is a natural candidate
Thank You!

http://www.cs.rice.edu/~nakhleh/