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Gene Trees in Species Trees

[Source: W.P. Maddison, Syst. Biol. 46(3):523-536,1997.]
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What Tree is Being Reconstructed?
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The Pre-Genomic Era
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However...

Lineage 
sorting 

[Source: W.P. Maddison, Syst. Biol. 46(3):523-536,1997.]
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In This Lecture
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Outline of the Talk

• The phylogenetic network model

• From trees to networks

• From sequences to networks

• Should we build a network

• Summary
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Phylogenetic Networks

• When HGT occurs, the evolutionary history reconstructed from the genomic 
sequences is more appropriately represented as a phylogenetic network
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Phylogenetic Networks

• Phylogenetic networks generalize trees and allow for modeling vertical and 
non-vertical evolution in a variety of scenarios
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Phylogenetic Networks

A phylogenetic network N on set X of taxa is an ordered pair (G, f), where

• G = (V,E) is a directed, acyclic graph (DAG) with V = {r} ∪ VL ∪ VT ∪ VN , where

– indeg(r) = 0 (r is the root of N );

– ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the leaves of N );

– ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the tree nodes of N ); and,

– ∀v ∈ VN , indeg(v) = 2 and outdeg(v) = 1 (VN are the reticulation nodes of N ),

and E ⊆ V × V are the network’s edges (we distinguish between reticulation edges,
edges whose heads are reticulation nodes, and tree edges, edges whose heads are tree nodes.

• f : VL → X is the leaf-labeling function, which is a bijection from VL to X .
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From Trees to Networks
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Central Observation

• At the lowest level of “atomicity”: every nucleotide in a genome has evolved 
down a tree

• More generally: barring recombination, the evolutionary history of an 
individual gene is treelike

• Hence, a phylogenetic network is viewed as the reconciliation of the gene 
trees
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Trees and Networks
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From a Network to Its Constituent Trees
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• Tells about the different gene genealogies and sequence evolution (more later)

• Given a network, it is easy to compute the set of induced trees

16



From a Set of Trees to Their Containing Network
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• Amounts to reconstructing the evolutionary history (of genomes, species, etc.)

• Given a set of trees, it is very hard (in general) to compute a “good” network that 
contains them
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From a Set of Trees to Their Containing Network

• The Subtree Prune and Regraft (SPR) operation mimics the effect of a 
reticulation event
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From a Set of Trees to Their Containing Network

• The Subtree Prune and Regraft (SPR) operation mimics the effect of a 
reticulation event
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• The SPR distance (the minimum number of SPR moves required to transform 
one tree into another) is taken as a proxy for the (minimum) number of 
reticulation events  
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Programs for Computing (exactly or heuristically) 
the SPR Distance

• EEEP: Beiko and Hamilton. 

• HorizStory: MacLeod, Charlebois, Doolittle, and Bapteste. 

• HorizTrans: Hallett and Lagergren. 

• RIATA-HGT: Nakhleh, Ruths, and Wang.

• SPRDist: Wu.

• TNT: Goloboff. 

• ... 
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The SPR Distance

• Very hard to compute (NP-hard)

• Several fast heuristics exist, with very good performance in practice, 
including our own RIATA-HGT 
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Issues with the SPR Distance: 
(1) Underestimation
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Issues with the SPR Distance: 
(2) Ordered Trees
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Issues with the SPR Distance: 
(3) Time-inconsistent Moves
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Issues with the SPR Distance: 
(4) Multiple Trees
• Recall:
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Issues with the SPR Distance: 
(4) Multiple Trees

• However, SPR is defined on a pair of trees. 

• The problem now becomes: Given an input set G of gene trees, find a 
phylogenetic network N with the minimum number of reticulation nodes such 
that G⊆T(N).  
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Issues with the SPR Distance: 
(4) Multiple Trees

• Programs that allow for multiple trees in the input:

• CASS: van Iersel and Kelk. 

• MURPAR: Park, Jin, and Nakhleh

• PIRN: Wu.
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Issues with the SPR Distance: 
(5) Unknown Species Tree

• To guarantee that an SPR move reflects an HGT event, it must be computed 
on a gene tree with respect to the species tree. 

• In practice, the species tree may not be known. 

• Heuristics:

• Take the consensus of all gene trees to be the candidate for species tree 
(Warning: May necessitate dealing with non-binary trees).

• Take the gene tree with the highest frequency to be the candidate for 
species tree (May be problematic under certain settings).

• Try each of the gene trees as a species tree candidate, infer networks, and 
choose the one that is optimal over all choices of gene trees. 
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From Sequences to Networks

30



Locus 1 Locus 2 Locus 3 Locus 4 Locus 5 Locus 6

B
A

E
D
C

A B C D E

Species
Phylogeny

Recall: The actual phylogenetic network reconstruction problem is...
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The approach we have shown thus far is...
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• Maximum parsimony

• Character compatibility

• Maximum likelihood

• ...

Optimization Criteria in Phylogenetics
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• Maximum parsimony

• Character compatibility

• Maximum likelihood

• ...

Optimization Criteria in Phylogenetics

Question: How do we generalize these to network? 
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Generalizing Optimization Criteria to Networks

• Back to the central observation...
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Generalizing Optimization Criteria to Networks

• The evolution of a site (or, more practically, a block of sites) on a network is 
best represented by one of the trees inside the network
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Generalizing Optimization Criteria to Networks
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Maximum Parsimony on Phylogenetic Networks

A phylogenetic network N on set X of taxa is an ordered pair (G, f), where

• G = (V,E) is a directed, acyclic graph (DAG) with V = {r} ∪ VL ∪ VT ∪ VN , where

– indeg(r) = 0 (r is the root of N );

– ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the leaves of N );

– ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the tree nodes of N ); and,

– ∀v ∈ VN , indeg(v) = 2 and outdeg(v) = 1 (VN are the reticulation nodes of N ),

and E ⊆ V × V are the network’s edges (we distinguish between reticulation edges,
edges whose heads are reticulation nodes, and tree edges, edges whose heads are tree nodes.

• f : VL → X is the leaf-labeling function, which is a bijection from VL to X .

PS(N,S) =
�

Si∈S

�
min

T∈T (N)
PS(T, Si)

�

N∗ = argminNPS(N,S)

1

A phylogenetic network N on set X of taxa is an ordered pair (G, f), where

• G = (V,E) is a directed, acyclic graph (DAG) with V = {r} ∪ VL ∪ VT ∪ VN , where

– indeg(r) = 0 (r is the root of N );

– ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the leaves of N );

– ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the tree nodes of N ); and,

– ∀v ∈ VN , indeg(v) = 2 and outdeg(v) = 1 (VN are the reticulation nodes of N ),

and E ⊆ V × V are the network’s edges (we distinguish between reticulation edges,
edges whose heads are reticulation nodes, and tree edges, edges whose heads are tree nodes.

• f : VL → X is the leaf-labeling function, which is a bijection from VL to X .

PS(N,S) =
�

Si∈S

�
min

T∈T (N)
PS(T, Si)

�

N∗ = argminNPS(N,S)

1

36



Maximum Likelihood on Phylogenetic Networks
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Maximum Likelihood on Phylogenetic Networks
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Maximum Likelihood on Phylogenetic Networks
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Issues With Sequence-based Inference:
(1) Computational Complexity

• The problems are NP-hard, even when the network is given. 

• The network space is much larger than the tree space. 

• No techniques currently exist for searching the network space (the equivalent 
of SPR, TBR, and NNI in searching the tree space).
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Issues With Sequence-based Inference:
(2) Overfitting

• The more [HGTs], the merrier! That is, adding more HGTs to the network can 
either improve the fit of the data or keep it unchanged, but never makes it 
worse. 

• Have to control for complexity of the model

138 Nakhleh

Let N be an X -network, and let N
′ be another X -network obtained by adding a

set H of edges to N, where each edge in H is posited between a pair of edges whose
heads are tree-nodes in N. Then, we have

T (N) ⊆ T (N ′).

This result is illustrated in Figure 10.

ba dc fe

h h'

ba dc fe

N N
′

Fig. 10 Two X -networks N and N
′ such that N

′ is obtained by adding an additional edge
to N from edge h to edge h

′. We have T (N) = {T1,T2} and T (N′) = {T1,T2,T3,T4}, where
T1 = ((a,(b,c)),(d,(e, f ))), T2 = (((a,b),c),(d,(e, f ))), T3 = ((a,((b,c),d)),(e, f )), and T4 =
(((a,b),(c,d)),(e, f )). Clearly, T (N) ⊆ T (N ′).

From this fact it follows that, for a given labeling λ k of a set X of taxa, we have

PS(N′,λ k) ≤ PS(N,λ k).

This simple observation has a significant implication on the use of the MP crite-
rion for inferring networks, as defined above. It basically implies that adding more
edges to a network “never hurts” under the MP criterion as defined above: the par-
simony length either decreases or stays the same as more edges are added. This in
turn implies that while making networks more “complex” improves their parsimony
lengths, using the MP criterion in this fashion would inevitably result in a gross
over-estimation of the amount of reticulation in the evolutionary history of a data
set. This had led to refining the definition of the MP criterion so that adding edges
to a network is accepted only if the parsimony length is improved beyond a given
threshold [51]. Currently, such a threshold is dataset-specific and is determined by
inspection of the trend of parsimony length decrease as the complexity of networks
is increased. Such an approach has produced very promising results, on both syn-
thetic and biological data sets [51, 98].
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To Network, or Not to Network, That Is the Question
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Recall

Source: W.P. Maddison, Syst. Biol., 
46(3): 523-536, 1997.
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But...

• Horizontal gene transfer is only one possible cause
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But...

• Horizontal gene transfer is only one possible cause
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But...

• Horizontal gene transfer is only one possible cause

Lineage
sorting

In these cases, the gene trees should not be reconciled into a phylogenetic 
network, but rather reconciled within the branches of the species tree
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The Main Question

• Given a collection of gene trees, determine (rather than assume) the cause(s) 
of incongruence, and reconcile the trees accordingly

• Gives rise to the need for a stochastic framework that explains the observed 
patterns of gene trees

• A natural candidate is the coalescent, which allows for computing gene tree 
probabilities, among other things 

• However, it needs to be augmented to allow for events such horizontal gene 
transfer, gene duplication/loss, ... 

• Work is emerging in this area. 
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Summary

• Phylogenetic networks generalize trees to allow for modeling of non-treelike 
(reticulate) evolutionary histories

• The SPR operation and distance are the most commonly used tools for 
estimating reticulation from pairs of trees, yet they suffer from several issues 

• Optimization criteria can be generalized in a straightforward manner to 
networks by considering the trees inside the network

• Incongruence is not necessarily a reflection of reticulate evolution; stochastic 
frameworks for determining the cause of incongruence are necessary; the 
coalescent is a natural candidate
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Thank You!

http://www.cs.rice.edu/~nakhleh/
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http://www.cs.rice.edu/~nakhleh/Papers/EvolPhyloNets.pdf
http://www.cs.rice.edu/~nakhleh/Papers/EvolPhyloNets.pdf

