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Abstract 

This research aims at developing a methodology for identifying and accounting for 

multiple sequence alignment (MSA) uncertainties in phylogenetic reconstruction. The 

research consists of two parts: (a) characterization of alignment errors and their effect 

on subsequent phylogenetic reconstruction, and (b) development of methods to identify 

alignment errors and reduce their detrimental effects on phylogenetic reconstruction. 

Phylogenetic reconstruction is but one alignment-dependent analysis that may benefit 

from the identification and management of alignment errors. Therefore, the methods 

and results of this study have methodological implications in other alignment-dependent 

sequence-analysis problems. 

We describe and characterize multiple sequence alignment errors by comparing true 

native alignments from simulations of sequence evolution, with reconstructed 

alignments from ClustalW (Thompson et al., 1994a), which is the most widely used 

multiple sequence alignment reconstruction program. Reconstructed alignments are 

found to contain many errors. Error rates increase with sequence divergence, and 

rapidly span very large portions of reconstructed MSAs, so that even for intermediate 

sequence divergence more than half of the columns of reconstructed alignments can be 

expected to be erroneous. 

In closely related sequences, most errors consist of the erroneous positioning of a single 

indel event, and their extent is local. As sequences diverge, errors are the result of the 

simultaneous mis-reconstruction of many indel events, and the length of the affected 

MSA segments increase dramatically. We also found a systematic bias towards 
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underestimation of the number of gap characters, which lead to the shortening of 

reconstructed MSAs relative to their true MSA. 

Alignment errors are unavoidable even when the evolutionary parameters are known in 

advance. Correct reconstruction can be guaranteed only when the true alignment is 

uniquely optimal in terms of its likelihood. However, true alignment features are very 

frequently sub-optimal or co-optimal, with the result that optimal but erroneous features 

are incorporated into the reconstructed MSA. 

Progressive MSA utilizes an approximate phylogeny, or guide-tree, in the 

reconstruction of MSAs. We found that the quality of the guide-tree affects MSA error 

level only marginally, but that the guide-tree topology introduces a bias in the 

phylogenetic signal apparent in erroneous MSA columns. 

Exploring the effects of alignment errors on subsequent phylogenetic reconstruction, we 

show that when presented with high-quality alignments, current phylogenetic 

reconstruction methods, such as BioNJ (Gascuel, 1997), are quite adequate. However, 

phylogenetic reconstruction rates deteriorate rapidly as alignments become more 

ambiguous. We clear consciously lay the blame at the feet of the reconstructed 

alignments. 

To address the issue of MSA errors in real-life biological settings, we adopt a 

methodology that replaces the single reconstructed alignment with a set of alternative 

alignments for the same sequences. We propose that such a set should consist of equally 

likely alignments, and that its variability should reflect common types of reconstruction 

errors. A secondary requirement is that the alignment set should be of a moderate size to 
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render its analysis feasible. The alignment set we develop reflect two sources of MSA 

reconstruction errors: the addition order of sequences and the arbitrary choices from 

among co-optimal alignments. 

One use of the alignment set is to derive local reliability measures for candidate MSAs. 

Elements of a candidate MSA that are reproduced in many MSAs within the set, are 

considered reliable, whereas parts of the candidate MSA that are poorly supported by 

the set are down-scored. We define a family of reliability measures with four levels of 

resolution: residues-pairs, residues, columns and the entire MSA. The local reliability 

measures are found to be excellent estimators and classifiers of MSA errors, and to be 

superior to currently used MSA quality scores. 

We have tested the utility of the local reliability measures in phylogenetics by weighting 

and filtering a ClustalW MSA prior to phylogenetic reconstruction. Unfortunately, what 

we have found is that identification of alignment errors is not enough to boost the 

quality of MSA-dependent phylogenetic reconstruction. We explain this result by the 

observations that such filtering significantly reduce the sample size, and that the high-

quality portions of the alignment are also less informative from the phylogenetic 

perspective. We conclude that poor-quality MSAs can not be transformed into high-

quality ones merely by the identification of possible errors. 

An alternative to filtering a single MSA is to derive a phylogeny directly from the set of 

MSAs. We reconstruct a phylogeny from each member of the alignment set, producing 

a set of alternative phylogenies. The consensus of these alternative phylogenies is than 

taken as the final reconstructed phylogeny. We note that this type of analysis utilizes 
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much more of the information contained in the alignment set than the scoring of a single 

MSA. 

The utility of the methods we developed is demonstrated on a database of biological 

sequence alignments, BaliBase (Bahr et al., 2001), which is routinely used for 

benchmarking alignment methods. We find that phylogenetic reconstruction based on 

alignment sets is significantly more accurate than the corresponding phylogeny derived 

from a single ClustalW MSA. 

My final conclusion is that only very closely related, long sequences, with few indels to 

be reconstructed, and long between-gap anchors, are amenable to meaningful alignment 

reconstruction. I propose, than, that the prudent approach is never to use a single 

reconstructed MSA as the basis for further analysis, but to rely on simultaneous analysis 

of sets of equally likely MSAs. 
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Chapter 1: Introduction 

Sequence alignment is the most basic analysis used in the comparative study of 

molecular sequences (nucleic acids and proteins). Prior to alignment, sequences can 

only be analyzed in isolation. Multiple sequence alignment relates sequence residues 

from several sequences, which enables analysis of a set of sequences as an ensemble.  

Sequence alignment is the first step in many biological analyses, such as derivation of 

sequence similarity measures, identification of homologous sites, phylogenetic 

reconstruction, identification of functional domains, homology-based structure 

prediction and primer design. In short, it is the starting point of almost every analysis 

that involves the comparison of molecular data (Mullan, 2002).  

 

 

Figure 1: The ClustalW paper and people.  
Number of citations sampled on June 1, 2005. 

The fundamental role of multiple sequence alignment is best demonstrated by noting 

that the paper describing the standard multiple-alignment reconstruction method, 
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ClustalW (Thompson et al., 1994a), is the most cited paper in biology over the eleven 

years since its publication (Figure 1, and see  

http://www.in-cites.com/scientists/DesHiggins.htm). 

Being fundamental ingredients in a wide variety of analyses, an issue of utmost 

importance is their reliability and accuracy: analyses based on erroneously 

reconstructed alignments are bound to be heavily handicapped (e.g., Morrison and Ellis, 

1997, O'Brien and Higgins, 1998, Hickson et al., 2000). 

Sequence evolution 

In the evolutionary context, sequence alignment is always coupled with a phylogeny. 

Together, the phylogeny-alignment pair provides a concise description of the evolution 

of a set of homologous sequences, as in Figure 2: 

Figure 2: A phylogeny and a section of a 16-OTU multiple sequence alignment. 
The sequences are related by the phylogeny (left). Each row is a 
sequence while columns are sets of homologous residues. 

The phylogeny summarizes the branching events that led from a single ancestral 

sequence and produced the several extant sequences. In the alignment, homologous 

residues in the several sequences are related to each other by the introduction of gaps 

into the sequence of actual extant residues. The introduced gaps represent insertion and 

http://www.in-cites.com/scientists/DesHiggins.htm
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deletion events (collectively termed indels, blue). All residues in a column are 

homologs, and may have experienced substitution events (red). Since sequences change 

along the branches of a phylogeny, its structure is reflected in the alignment (ellipses), 

though with some noise resulting from the accumulation of multiple changes.  

Were the detailed history of the evolution of a set of sequences known, it could have 

been represented in an MSA and a phylogeny, which we term the “True” MSA and 

phylogeny. For real sequences the true alignment-phylogeny pair is never known. 

Rather, those are the unknowns we set out to reconstruct, starting from the observed 

extant sequences. Thus, all empirical MSAs and phylogenies are “Reconstructed” ones. 

If one is exceptionally lucky, the reconstructed alignments and phylogenies will be 

identical to the true ones. The odds for that, as we shall see, are slim.  

Alignment Reconstruction 

The reconstruction of alignments of molecular sequences was first described by 

Needleman & Wunsch (1970). Since then the theory and art of sequence alignment 

reconstruction has flourished (see Appendix - A brief history of MSA). There has been 

a proliferation of alignment algorithms, aiming at the improvement of two aspects: (a) 

the computational feasibility and performances of alignment algorithms, and (b) the 

biological relevance and quality of deduced alignments. (for reviews of alignment 

methods, see Feng et al. 1984; Chan et al. 1992; McClure et al. 1994; Hirosawa et al. 

1995; Taylor 1996, Thompson et al., 1999b, Nicholas et al., 2002, Notredame, 2002; for 

textbook treatment, see  Waterman, 1995; Gusfield, 1997).  



 8 

The most basic type of alignment is the pairwise alignment (PWA) of two sequences. 

Needleman & Wunsch (1970) first used dynamic programming for the reconstruction of 

global pairwise alignments. Global alignments were rendered more realistic biologically 

with the introduction of affine gap penalties (Altschul and Erickson, 1986), and the use 

of more accurate substitution matrices (Altschul, 1991, Gonnet et al., 1992, Henikoff 

and Henikoff, 1992).  

Global pairwise alignment is best described by a dot-matrix plot (Figure 3), where the 

two sequences are listed along the two dimensions of the matrix, and matrix entries 

gives the type of substitution (if any) for all pairs of residues, one from each sequence. 

Permissible PWAs are then all monotonically increasing paths through the matrix, with 

homolog residue pairs traced by diagonals, and gaps implied by horizontal or vertical 

segments of the path. 

 

Figure 3:  Dot-matrix representation of pairwise sequence alignment. 
Permissible Alignments are monotonically increasing paths through the 
matrix, with diagonals traversing homolog residue pairs, and vertical 
and horizontal segments spell gaps in the relevant sequence. 



 9 

The alternative alignments through the dot-matrix are scored by assigning relative 

penalties to the different types of alignment columns: identity, substitution and gaps. To 

produce a biologically adequate PWA, the objective function used to score alignments 

must have penalty values that correspond to the evolutionary parameters (substitution 

and indel rates and distributions) that govern the sequence evolution. Given the 

penalties, one of the best-scoring alignments is selected arbitrarily, and retained as the 

reconstructed PWA. In practice, a dynamic programming algorithm can find an optimal 

path efficiently, and such algorithms are common to most alignment programs (Pearson 

and Miller, 1992). An important feature of global pairwise alignment is that any sub-

alignment of an optimal alignment is optimal in itself. 

Apart from solving the two-sequence problem, pairwise alignment is also a basic 

ingredient in multiple sequence alignment reconstruction. Pairwise alignments play two 

roles in MSA reconstruction: (a) all pairwise alignments of the several sequences are 

used to estimate preliminary sequence distances, and (b) partial MSAs are aligned to 

each other using a variant of the standard pairwise alignment algorithm.  

Over the last twenty years, scores of MSA reconstruction methods have been 

developed.  The most widely used method is ClustalW (Thompson et al., 1994a.) 

ClustalW produce an MSA by progressive alignment  (Feng and Doolittle, 1987) along 

a guide-tree, and includes internal estimation of evolutionary rates, as well as various 

refinements of the reconstruction process. In this study we used ClustalW as the 

standard in MSA reconstruction.  
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Progressive alignment along a tree proceeds in the following steps: 

a. Estimation of a guide-tree: 

1. Estimation of all pairwise sequence distances based on all pairwise sequence 

alignments. 

2. Reconstruction of an approximate guide-tree, using some distance-matrix 

phylogenetic reconstruction method. 

b. A series of pairwise profile alignments: 

1. Traversing the guide tree in a nearest neighbor order, sequences are added to a 

growing set of partial alignments termed profiles. 

2. At each step, standard global pairwise alignment is used to align two profiles or 

sequences to produce a partial MSA of the combined OTU set. 

Note that when the phylogeny is known in advance, the guide tree estimation step can 

be skipped. 

Errors in reconstructed MSAs 

Many researchers routinely relay on reconstructed MSAs implicitly. This is so even 

though deduced sequence alignments are known to raise grave reliability and accuracy 

issues (Henikoff, 1991, Ellis and Morrison, 1995). Alignment reliability issues were 

first addressed from a theoretical, mainly mathematical, perspective (Gotoh, 1990, 

Goldstein and Waterman, 1992, Waterman and Vingron, 1994, Waterman, 1994, Yu 

and Smith, 1999, Frommlet et al., 2004). Lately, several alignment algorithms were 

compared in terms of alignment quality, focused on the ability to reconstruct large-scale 
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features of reference alignments (McClure et al., 1994, Thompson et al., 1999b, 

Lassmann and Sonnhammer, 2002). In contrast, little attention has yet been given to the 

fine-detail quality of multiple sequence alignment (but see Thorne and Kishino, 1992, 

Thorne et al., 1992b, Wheeler, 1995, Holmes and Durbin, 1998, Hickson et al., 2000.)   

A first example of errors in reconstructed MSA is presented in Figure 4. A simulated 

process of sequence evolution provides us with a “true” MSA (top), which is the target 

against which we compare a reconstructed MSA of the simulated sequences (bottom). 

Fully reconstructed columns are identical in both alignments (shaded). Other columns 

of the alignment are erroneously reconstructed, and span a sizable portion of the 

alignment length. 

 

Figure 4: Comparison of true (top) and reconstructed (bottom) MSAs. 
The alignments are decomposed into correctly (shaded) and erroneously 
(unshaded) reconstructed segments. 

The failure to correctly reconstruct the MSA stems from erroneous positioning of gaps 

during reconstruction. Therefore, most reconstruction errors occur near gapped columns 

of the true MSA, as is already evident in figure 4. 
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Some of the erroneously reconstructed columns in Figure 4 are in fact partially correct, 

and the column-based comparison is clearly too conservative. A more adequate 

description can be produced by comparing the two alignments at the residue and 

residue-pair level (see Chapter 2). The alignments of figure 4 are reproduced in Figure 

5, using the more complex residue based comparison: 

Figure 5: Residue based comparison of true (top) and reconstructed (bottom) 
MSAs. 
The alignments are decomposed into correctly (shaded) and erroneously 
(unshaded) reconstructed elements. 

In certain cases such a comparison may help in the interpretation of the difference 

between the alignments. For example, the first error segment of Figure 4 can be 

interpreted, in light of Figure 5, as a removal of a single gap character from all 

sequences, albeit in a staggered fashion. The second error segment of Figure 4 is 

somewhat beyond easy interpretation, yet the residue-based comparison reveals that 

even here, while whole columns are but partially reconstructed, some subsets of OTUs 

(e.g., OTUS 1 through 6) are correctly reconstructed. Figures 4 and 5 provide us with a 

first glimpse of the complexities of MSA errors. 
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Motivation and aims 

Although MSAs may be used for other purposes, in this study we focus on their use in 

the reconstruction of phylogenies. Concerned with the poor quality of many 

reconstructed phylogenies, we first posed the question: “Can reconstructed multiple 

sequence alignments be relied on implicitly when reconstructing phylogenies?” The 

answer was a clear and resounding “NO! “ 

 

Figure 6: Phylogenetic reconstruction accuracy:  
(a) BioNJ based on true alignments (blue), and (b) BioNJ based on 
reconstructed alignments (red). x-axis and panes are increasing 
sequence divergence. (See Figure 8 for details of graphs layout.) 

Figure 6 presents an example of the accuracy of phylogenetic reconstruction as a 

function of sequence divergence (for details Chapter 3.) As the sequence divergence 

increases, the reconstructed phylogenies quality is rapidly deteriorating, but only when 

using reconstructed, mostly erroneous, MSAs (red lines). Given the true evolutionary 
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alignment, phylogenetic reconstruction withstands divergence quite admirably (blue 

lines).  

It seems, than, that current phylogenetic reconstruction methods are adequate, and that 

the poor quality of reconstructed phylogenies can be traced back to the poor quality of 

the reconstructed MSAs presented to them. It may be reasonably expected that similar 

conclusions apply to other MSA-dependent analyses as well. 

In the first part of the study, we set out to obtain a better understanding of the sources 

and characteristics of MSA errors. To this end, we compare simulated true-MSAs to 

reconstructed MSAs, and provide a quantification of error levels encountered in the 

reconstructions. The characterization of MSA errors enables us to identify the major 

sources of alignment errors. In addition, we quantify the contribution of MSA errors to 

the erroneous reconstruction of phylogenetic trees. In a nutshell, MSA errors are shown 

to be very frequent, and their effects substantial. 

We first set our attention on pairwise sequence alignment. Pairwise alignment is both 

the simplest case of sequence alignment, and a building block of multiple sequence 

alignment algorithms. Three main sources of errors are already apparent at the pairwise 

alignment level: (a) inadequate estimation of evolutionary parameters, (b) over-fitting 

due to strict optimization, and (c) arbitrary choice among co-optimal alternatives. 

The major difference between pairwise comparisons and multiple sequence alignments 

is that in a MSA the several sequences are related by a phylogeny. The best MSA 

algorithms take this into account to provide better alignments. Thus, a fourth source of 

alignment errors is the uncertainty in alignment-guiding phylogenies. 
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Those sources of errors, compounded in a multiple sequence alignment, produce a 

plethora of error structures. We provide a characterization of the major types of 

alignment errors and their distribution. 

The second part of the study aims at developing methods to identify MSA 

reconstruction errors, and devise tools through which alignment errors and uncertainties 

can be accounted for and managed in the context of phylogenetic reconstruction. One 

possible strategy may be to shift our attention from a single reconstructed MSA, to a 

larger set of equally likely MSAs. The construction of the alignment set is designed to 

produce fine-detail variability, which reflects some of the major sources of MSA 

reconstruction errors.  

For error identification purposes, we shall use the variability within a set of alternative 

alignments to derive local, fine-detail, reliability measures for any candidate MSA. In 

simulation settings, we find that our quality measures are very accurate, and are superior 

to existing methods of MSA quality scoring. Although our reliability measures prove to 

be good predictors of MSA errors, their utility in boosting the performance of 

subsequent phylogenetic reconstruction is found to be marginal. We conclude that for 

phylogenetic reconstruction purposes, the identification of errors cannot enhance the 

utility of a single, poor-quality, MSA.  

Another approach to account for MSA errors in phylogenetic reconstruction is to 

conduct a simultaneous analysis of the entire alignment set. We convert the alignment 

set to a phylogeny set by the use of standard methods for phylogenetic reconstruction. 

The consensus phylogeny derived from this phylogeny set is shown to be significantly 

more accurate than an analysis based on a single reconstructed MSA. 
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In the third and last part of the study we apply our methods to a database of real-life test 

cases, the BaliBase database (Bahr et al., 2001). We find that our methods significantly 

enhance the accuracy of phylogenetic analysis. We conclude that the strategy of 

abandoning the single-MSA approach and replacing it by a variable MSA set is of great 

utility in realistic biological settings. 
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Chapter 2: Methods 

Symbols and Acronyms 

A Alignment trueA, assistedA , cwA  

AS Alignment Set pwAS , gtAS 

E Error rate pairsE,  resE,  colE 

LRM Local Reliability Measure 

MSA Multiple Sequence Alignment 

M Reliability measure pairsM, resM, colM 

Notu Number of OTUs Notu 

OTU Operative Taxonomic Unit 

PWA Pairwise Alignment  

Q Enropy based Quality 
measure 

colQ 

R Reconstruction rate pairsR, resR, colR,  phyR 

S, s Sequence set and sequences  S = { si }  

T Tree (phylogeny) trueT, guideT, true-AT, assisted-AT, cwT, 

 asT, itr-asT,  refT 

TS Tree (phylogeny) Set  gtTS 

Statistical methods 

We have employed standard statistical methods, as can be found in Sokal and Rohlf 

(1995) and Zar (1999). Receiver-operating characteristic (ROC) analysis is described in 

Zweig and Campbell (1993). 
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Standard analysis software 

Throughout this study we used ClustalW (Thompson et al., 1994a) as the MSA 

reconstruction tool. Pairwise alignments studied in Chapter 3 were reconstructed using 

the ALIGN program (Pearson and Lipman, 1988). Phylogenies were reconstructed 

using the BioNJ program (Saitou and Nei, 1987, Gascuel, 1997), operating on pairwise 

distances corrected for multiple substitutions (Jukes and Cantor, 1969, Felsenstein, 

1993.) Apart from these methods, I have implemented all other algorithms and analyses 

in the Matlab® environment. 

Alignment databases 

Three multiple sequence alignment databases were used in this study: EMBL-Align 

(Lombard et al., 2002), PIR-Align (Srinivasarao et al., 1999) and BaliBase version 2 

(Bahr et al., 2001). EMBL-Align and PIR-Align were analyzed to define the range of 

MSA problems that are of biological relevance. Simulation studies were limited to 

problems that span 80% of the empirical alignments deposited in those databases.  

The test cases of Chapter 5 were derived from the BaliBase database. We used only 

Datasets 1-5 of BaliBase, since the other datasets focus on sequence rearrangements 

phenomena that are outside the scope of this study. We limited the number of OTUs 

analyzed to 25, by randomly drawing OTUs from BaliBase alignments with more 

OTUs. In addition, we have not used sequences shorter than 25 residues. 
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Evolutionary simulations 

In a manner similar to that of the ROSE program (Stoye et al., 1998), we simulated  

sequences, phylogenies and native alignments with the following simulation process:  

An ancestral nucleic acid or protein sequence of length ℓ0 was randomly generated. The 

ancestral sequence was evolved along a binary tree by duplication at tree nodes and 

accumulation of changes along branches. The process was repeated iteratively, 

producing Notu extant sequences.  

Changes to the sequences along branches consisted of substitutions, insertions and 

deletions. The simulation parameters were chosen so as to produce alignments that are 

comparable to real alignments by drawing them from an empirical distribution derived 

from real world alignments, where each database alignment provided estimates of 

substitution and indel probabilities, as well as indel length distribution, number of 

OTUs and alignment lengths. The descriptive statistics of simulated alignments 

correspond to 80% of the alignments in the databases, thus ensuring that the simulated 

alignments are of biological and practical interest. 

Each simulation record provides the full evolution history, including the ancestral 

sequence and the ordered series of changes. For the purposes of the current study, only 

part of this information was used: the extant (or OTU) sequences along with the 

phylogeny and the native alignment, where all residues in a given column are true 

homologs. 



 20 

We conducted a number of simulation runs exploring different aspect of the alignment 

problem. A typical simulation run consisted of about 100 replications for 8 levels of 

substitution rates and 8 levels of indel rates, for a total of 6400 cases per run. In chapter 

3 and 4 we used the value of Notu=16. 

Comparison of MSAs 

Throughout this study we relay heavily on the comparison of alternative MSAs of the 

same sequence set. Our measures are based on the comparison of residue-pairs, as in 

Thompson et al. (1999).  

Given a set of Notu extant sequences { }1 otu..N
S s= , and an MSA A of length ℓa, we 

recode A by the sequence position of the residues: 

 { } index of residue in 
              

0 for gaps               
ik k

i i

s
A a , a

⎧
= = ⎨

⎩
 

Where 1 otui ..N⎡ ⎤∈ ⎣ ⎦  is the OTU index, and 1 ak ..⎡ ⎤∈ ⎣ ⎦A  is the MSA column index. 

Next, we construct the set of residue-pairs indices: for each MSA column k and OTU 

pair {i,j} the index pair is: 

 { }k k k
i , j i jp a ,a=  

and the set of all index pairs is: 

 { }k
i , j A

P( A ) p=  
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Given two MSAs, a reconstructed MSA A, and a reference MSA refA, we score each 

index pair of A by its occurrence in refA. We define the residue-pair reconstruction score 

as: 

 
0     

1     

k ref
i , jpairs k k

i , j i , j k ref
i , j

: p P( A )
R R( p )

: p P( A )

⎧ ∉⎪= = ⎨
∈⎪⎩

 

The binary residue-pair score can be averaged to yield the residue reconstruction rate: 

 
1

pairs k
i , j

j ires k
i otu

R
R

N
≠=

−

∑
 

The most useful score is the column reconstruction rate, which is obtained by averaging 

the residue score: 

 col k res k
iR R=  

Note that for the case of pairwise alignment (PWA), the three levels of comparison are 

identical. 

Finally, the overall alignment score, relative to the reference refA, is: 

 ali col kR R=  

All the above scores take values on the interval [0..1], with 1 for full agreement between 

the two MSAs. 
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When the reference MSA is the true alignment from simulations, we interpret the above 

series of scores as reconstruction rates. We also define a series of error rates, which 

records the presence of any error in specific alignment elements: 

 { }0      1
      for * pairs, res, col

1      1
=⎧

= ∈⎨ <⎩

: *R
*E ,

: *R
 

For the residue-pairs level the error rate is simply the complement of the reconstruction 

rate, and both are analogs of Thompson et al. (1999) measure SPS. For the residue and 

column resolutions, the error rates are more strict measures of accuracy than the 

reconstruction rates. The column error rate, colE, is the analog of Thompson et al. 

(1999) measure CS. 

Another use of the comparison scores is when a reconstructed MSA A is compared to a 

set of alternative alignments: 

 { }alt
iAS A= . 

In this context we average the MSA-pair scores over the set alignments, to produce our 

series of local reliability measures: 

 { }      for * pairs, res, col= ∈ ∈ref* M( A | AS ) * R( A | A AS ),  

The local reliability measures, *M, take values on the interval [0..1], with 1 for full 

support. 
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Comparison of phylogenies 

An Notu fully resolved unrooted phylogeny is composed of (2·Notu-3) branches. For our 

purposes we focus on the tree topology, and ignore the branch lengths. In such settings, 

the Notu terminal branches are trivial and non-informative, since they appear in any 

phylogeny of the OTUs. Thus, the remaining (Notu-3) internal branches uniquely define 

the tree topology.  

Each internal branch divides the set of OTUs into two complementing subsets: 

 { } { }( )i i i
b o , o= , 

where 31 otui ..N −⎡ ⎤∈ ⎣ ⎦  is the branch index, and o are the OTU indices. The phylogenetic 

tree topology is than defined by: 

 { }iT b=  

Given two phylogenies, the symmetric tree distance is defined as the number of 

partitions that differ between the two trees (Felsenstein, 2004): 

 1 2 1 2 1 23otuD(T ,T ) T \T N T T= = − − ∩  

When one of the trees is a reference against which we compare a reconstructed 

phylogeny, we define the phylogenetic reconstruction rate as the normalized symmetric 

similarity: 



 24 

 
3

ref
phy ref

otu

T T
R(T | T )

N
=

−

∩
. 

The phylogenetic reconstruction rate, phyR, take values on the interval [0..1], with 1 for 

full reconstruction. 

Consensus phylogeny 

To derive a consensus phylogeny from a set of alternative trees, we used a variant of the 

majority-rule consensus method (e.g. Felsenstein, 2004), which we term the “member 

consensus phylogeny”. Given a set of alternative trees over the same OTUs, 

 { }alt
iTS T= , 

we score each tree by its mean support in reference to all the other trees in the set: 

 alt phy alt ref
i iS( T | TS ) R( T | T TS )= ∈  

Our member consensus phylogeny, asT, is than randomly chosen from among the TS 

trees with maximal support. Note that our method differs from standard majority-rule 

consensus in that the consensus must be a member of the set. This enable us to by-pass 

the issue of partially resolved consensus trees (Felsenstein, 2004).  
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Chapter 3: Alignment errors and their effects 

In this part of the study we use simulations to provide us with true phylogenies and true 

MSAs that serve as a reference against which to compare reconstructed MSAs and 

phylogenies. The simulations are generated in a fashion similar to that of the ROSE 

program (Stoye et al., 1998,  and see Chapter 2) Each simulation replicate produces 

three datasets. For Notu OTUs:  

a. The extant OTU sequences, without gaps, { }1 otu..N
S s= . 

b. The true MSA of the OTU sequences, trueA. 

c. The true phylogeny of the OTUs, trueT. 

In the second step, the extant OTU sequences are used as input to the ClustalW 

program, to produce reconstructed MSAs. We reconstruct two MSAs from each 

sequence set, once using the true phylogeny as a guide tree, and a second time using the 

ClustalW internal estimation of a guide tree. Thus, at this stage of the analysis we have 

an additional phylogenetic tree, the ClustalW guide tree, guideT, and three MSAs: 

a. The true MSA from the simulation step, trueA. 

b. A reconstructed MSA based on the true phylogeny,  

assistedA = ClustalW ( S | trueT ). 

c. A reconstructed MSA based on the ClustalW guide tree,  

cwA = ClustalW ( S | guideT  ). 
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In the third step, we use the three MSAs to derive distance matrices that are then 

analyzed by the BioNJ method to produce three reconstructed phylogenies. We end 

with five phylogenies: 

a. The true phylogeny from the simulation, trueT. 

b. The guide-tree estimated by ClustalW, guideT. 

c. The BioNJ phylogeny based on the true MSA,  true-AT = BioNJ ( trueA ). 

d. The BioNJ phylogeny based on the assisted ClustalW MSA, with the true 

phylogeny as guide tree, assisted-AT = BioNJ ( assistedA ). 

e. The BioNJ phylogeny based on the standard ClustalW MSA, with the guide tree 

derived from all pairwise alignments, cwT = BioNJ ( cwA ). 

 Sequences MSAs Trees 

Simulation S = { si } 
Extant OTUs 

1. trueA 1. trueT 

ClustalW - 2. assistedA 

   = ClustalW ( S | trueT ). 

3. cwA 

   = ClustalW ( S | guideT  ), 
       standard ClustalW. 

 
 

2. guideT 

BioNJ - - 

 

 

3. true-AT       = BioNJ ( trueA  ) 

4. assisted-AT   = BioNJ ( assistedA  ) 

5. cwT           = BioNJ ( cwA  ), 
                     standard BioNJ.  

Table 1:  The data structures used in this chapter and their dependencies. 
Rows are analyses types and columns are output data types. 

Table 1 summarizes the relationships among the models used in this chapter. Note that 

in real world sequence analysis problems the true phylogeny and MSA are not 

available. 
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Overall error levels in reconstructed MSAs and phylogenies 

First we present the overall reconstruction rates encountered in MSA reconstruction. 

The reconstruction rate we use take values in the range [0..1], with 1 for full success 

(see Chapter 2). Figure 7 summarizes the mean reconstruction rates for ClustalW 

MSAs, cwA, as a function of the sequence divergence. The residue-pairs reconstruction 

rate, pairsR, range from ~95±2% for very closely related sequences to 10±7% for very 

distantly related sequences, with a monotonic dependency on the evolutionary rates.  

 

Figure 7: Mean ClustalW reconstruction rate as a function of sequence 
divergence. 

Graphs layout: 
We report various metrics as a function of two sequence divergence 
parameters, substitution rate and indel rate. To visualize the surface 
traced by the response metrics, we provide two orthogonal projections of 
the surface. The left pane presents the metric as a function of the 
substitution rate (abscissa) for several values of the gaps parameter 
(lines). In the right pane the roles of the two parameters as abscissa and 
lines are switched, while the ordinate retains its role as the metric value. 
Each dot is an average over 100 simulation replications at one 
combination of 8 substitution levels and 8 indel levels, for 16 OTUs. 
Standard errors are reported in the text where appropriate. 
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I have opted not to include standard errors in the graphs, since this would clutter them 

beyond comprehension. I have conducted only those tests that I deemed interesting and 

important. For example, there is no point in providing tests for all scores of the 8x8=64 

combinations of the simulation parameters, since what is of interest here is only the 

overall trend of dependence and the extreme values attained. 

In terms of error rates (Figure 8), the residue-pair error rate, pairsE (blue), is simply the 

complement of the reconstruction rate, and both are analogs of Thompson et al. (1999) 

measure SPS. Requiring that all pairs for a specific residue be correctly reconstructed 

yields the residue error rate, resE (red), while requiring that the entire column will be 

correctly reconstructed yields the column error rate, colE (green).  

The residue and column error rates, resE and colE, are almost identical, and colE is the 

analog of Thompson et al. (1999) measure CS. Apart from very closely related 

sequences, The column error rate is higher than 50%, and rapidly reaches 100%, that is, 

mis-reconstruction of all MSA columns. Since this measure may be too harsh, in what 

follows we will mainly refer to the residue-pair reconstruction rate. 

 

 



 29 

 a. Abscissa: substitution rate; panes: indel rate.  

 

 b. Abscissa: indel rate; panes: substitution rate.  

 

Figure 8: Mean ClustalW error rates as a function of sequence divergence. 
Three errors rates are reported: residue-pairs error rate (blue), residue 
error rate (red), and column error rate (green). 

Graphs layout:  
When comparing several metrics as a function of the two sequence 
divergence parameters, we report either of two projections: (a, top) the 
several responses (lines) as a function of substitution rate (abscissa), in 
a series of panes for constant values of indel rate (value indicated above 
panes), and (b, bottom) the roles of the two parameters as abscissa and 
panes are switched, while the ordinate retains its role as the metrics 
value (lines).  
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When using reconstructed MSAs to estimate phylogenies, MSA errors may cause errors 

in the reconstructed phylogenies (Figure 9). As sequence divergence increases, the 

phylogenetic reconstruction rate,  phyR(cwT), drops dramatically (Figure 9, red lines). In 

contrast, phylogenies reconstructed from true alignments retain high reconstruction 

rates, phyR(true-AT), even with very high sequences divergence (green lines). There is a 

high correlation (r=0.56, p-value<10-12) between MSA reconstruction rates and 

phylogenetic reconstruction rates, but the deterioration in phylogenetic reconstruction 

rates is less sharp than the deterioration in MSA reconstruction rates pairsR(cwA) (blue 

lines). 

 

 

Figure 9: Phylogenetic reconstruction rates based on true and reconstructed 
MSAs. 
(a) Phylogenies derived from trueMSAs (green), (b) phylogenies derived 
from reconstructed MSAs (red), and (c) comparison to MSA 
reconstruction rate (blue). (See Figure 8 for details of graphs layout.) 
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Pairwise alignment errors 

We start our characterization of alignment errors by considering the simplest case of 

sequence alignment – pairwise alignment (PWA) of two sequences. In addition to being 

a special case of MSA, pairwise alignments are also used as building blocks in MSA 

reconstruction algorithms. In this part, pairwise alignments were reconstructed using the 

“ALIGN” program  (Pearson and Lipman, 1988), which is the standard implementation 

of the affine gap cost algorithm. 

The most common use of alignment algorithms is that which employs the program’s 

default penalty scores (ALIGN’s DNA defaults are: match=5; mismatch=-4;  

gap-open=-16; gap-extent=-4). The default parameters are thought to be adequate for a 

wide range of practical problems, and are indeed a reasonable choice when no prior 

knowledge of evolutionary parameters is available. It is expected, however, that using 

penalty scores that corresponds to the true evolutionary parameters, will produce better 

quality alignments.  

In the pairwise context, the phylogeny is reduced to a single branch, whose length is the 

divergence between the two sequences. The topology of this phylogeny is unique, and 

therefore trivial. For pairwise alignment, than, the entities we compare reduce to those 

in Table 2. 
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 Sequences PWAs Divergence 

Simulation S = { s1 , s2 } 
Two extant OTUs 

1. trueA 1. trueD1,2 and 
2. trueP =  {native penalties} 

ALIGN - 2. assistedA  
   = ALIGN ( S | trueP ). 

3. defA  
   = ALIGN ( S | defaultP ), 
       standard ALIGN. 

 
 

 

Table 2:  The PWA data structures used in this chapter and their dependencies. 
Rows are analyses types and columns are output data types. 

Distribution of pairwise alignment errors 

The overall reconstruction rate R(defA), is dependent on the actual divergence of the 

sequences, with reconstruction rates that rapidly deteriorate with increasing sequence 

divergence (Figure 10, red lines). Using the default penalty values, although a 

widespread practice, may introduce a bias that will result in reconstruction errors. To 

quantify the level of errors resulting from inadequate penalties, we repeat the analysis 

using the exact penalty scores corresponding to the true alignment (green lines).  

The PWA reconstruction rates achieved when the true evolutionary parameters are 

known in advance, R(assistedA), are only marginally higher than reconstruction rates 

achieved when utilizing default values, with average improvement of ~3% and peaking 

at ~10%. It follows that although appropriate penalties are desirable, using the default 

values is by no means the foremost source of errors. 
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Figure 10: PWA reconstruction rates when using default (red) or true (green) 
penalties. (See Figure 8 for details of graphs layout.)  

Since in providing the true parameters we utilized all the available prior knowledge, the 

resulting reconstruction rates represent the maximum reconstruction level that can be 

attained by PWA programs such as ALIGN. We must emphasize that the practice of 

providing true parameters is not applicable to real world problems, where the true 

alignment in not known in advance. Even under such favorable conditions, PWA 

programs are far from foolproof, and the level of errors can be quite high. We proceed 

to further characterize these unavoidable errors. 

Given a reconstructed PWA and the corresponding true alignment, both alignments can 

be decomposed into alternating alignment segments where erroneously aligned 

subsequences are flanked by correctly aligned segments, and vice versa. Correctly 

reconstructed segments are identical in both alignments, while erroneous segments in 

the reconstructed PWA correspond to mis-reconstructed segments of the true alignment.  
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a. Mean number of residues in correctly and erroneously reconstructed segments 

 

b. Mean number of indels and gap characters per error segment 

 

Figure 11: Comparison of reconstructed and true PWAs by segmentation into 
correctly and erroneously reconstructed segments  
(a) Error (red) and correct (blue) segment lengths as a function of 
sequence divergence. (b) Mean number of indels (red) and gap 
characters (blue) per error segment. (See Figure 8 for details of graphs 
layout.) 

First we note that the mean length of error segments (Figure 11.a, red lines) increases 

dramatically with increasing substitution rate, while the mean length of correctly 
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reconstructed segments remains fairly stable (Figure 11.a, blue lines). We also note that 

the mean numbers of indel events and gap characters (Figure 11.b) increases with 

increasing substitution rate as well. 

For the easy cases of closely related sequences, the error segments are short and are 

frequently the result of a single indel event erroneously positioned. As the two 

sequences are farther diverged errors multiply. At the same time, near-by indel events in 

the true alignment are interfering with one another to produce error segments where 

multiple indels are simultaneously misplaced. At yet higher divergence rates, the error 

segments get longer and longer, with relatively short intervening correct segments, until 

almost the whole reconstructed alignment consists of error segments.  

 

Figure 12: Difference of the number of indels between error segments and the 
corresponding true alignment segments. (See Figure 7 for details of 
graphs layout.) 

Examining error segments, we note that the reconstruction algorithm introduce a 

systematic bias towards shortening the alignment and reconstructing fewer indel events 

than are present in the true alignments (Figure 12). 
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Apart from cases with very few gaps, reconstructed error segments contain fewer indel 

events, and are shorter, then the corresponding true segments. This is a bias resulting 

from the strict optimization of the objective function, coupled with the fact that for the 

same number of matches, shorter alignments usually score better than longer ones. 

Characterization of PWA errors 

Considering the objective function scores, reconstruction errors can be classified into 

two types: 

1. Co-optimal alignment segments. Under any scoring function, many different 

alignments may attain the maximal score. All these alignments are equivalent, 

and without outside knowledge there is no way to select one of them as the 

“best” alignment. The alignment produced by PWA programs is an arbitrary one 

from the set of co-optimal alignments.  

2. Sub-optimal true alignment segments. The true alignment, being some concrete 

realization of a stochastic process, rarely reproduces the expected frequencies of 

column types. This leads to the situation where an erroneous alignment 

segments can be assigned a higher score then the true alignment segment even 

by an exact scoring function. In other words, true alignments are a-priory 

expected to be sub-optimal in many of their elements. In contrast, the 

reconstructed PWA is always, by definition, optimal by the current objective 

function, as is any segment of the reconstructed alignment. 
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To enumerate the effects of co- and sub-optimality, we compare the objective function 

scores of error segments in the reconstructed PWA to those of the corresponding mis-

reconstructed true segments. Where the scores are the same, the error can be attributed 

to co-optimality. Otherwise, the score of the true segment is always lower, and the error 

is the result of sub-optimality (Figure 13).  

 

Figure 13: Relative frequency of error segments where the corresponding true 
segment is co-optimal (green) or sub-optimal (red). (See Figure 8 for 
details of graphs layout.) 

We note that even under the most favorable conditions of close sequence relatedness, 

sub-optimality accounts for at least 50% of all errors. That is, the alignment is over-

fitted spuriously to maximize the objective function score. 

Among the simple, isolated, error segments, several types of frequent errors can be 

discerned (figure 14): 

1. Shift error: a single indel event is erroneously positioned while its length is 

preserved. This is the simplest of all reconstruction errors, and the most frequent 
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in cases of closely related sequences. The length of the error segment is not 

determined by the length of the misplaced gap, but rather by the difference of 

the true and erroneous positions. The range of the error segment resulting from a 

single position error is increasing with higher substitution rates. 

2. Split error: a single indel event is reconstructed as two indel events, either on the 

same sequence or one event on each sequence. The true indel length may not be 

preserved in any of the two erroneous indels, but the difference of gap content 

between the two sequences is the same. The true indel position is not necessarily 

preserved, but can be reproduced in one of the two erroneous indels. 

3. Merge error: two indel event, wither on the same sequence or one on each 

sequence, are reconstructed as a single indel event. Again, the difference of gap 

content between the two sequences is preserved.  

4. De-novo error: two indels of the same length are introduced, one into each of the 

sequences, where no indel was present in the true alignment. This type of error 

can be regarded as the extreme case of a split error. 

5. Purge error: two equal length true indels, one on each of the sequences, are not 

reconstructed at all, and the resulting error segment is devoid of gaps. It as the 

extreme form of the merge error. 

6. All other errors are designated “Complex errors” 
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Figure 14: Examples of the five simple error types and a complex error. 
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Figure 15: Relative frequencies of the six error types. (See Figure 8 for details of 
graphs layout.)  

As sequence divergence increases, the simple errors types 1-5 account for fewer cases 

of the overall errors (Figure 15). Among the errors affecting two indel events, the errors 

that result in fewer indels, merge and purge (blues), are much more frequent than the 

errors resulting in more indel events, split and de-novo (oranges). This is another 

demonstration of the bias towards the minimization of inferred indel events. Note that 

the shift error (green), the simplest of all, is also the commonest among the simple error 

types, and may therefore deserve special attention. 
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Multiple sequence alignment errors 

To study the errors in MSA reconstruction, we compared true MSAs from simulations 

to reconstructed MSAs produced by the ClustalW program (Thompson et al. 1994), at 

its default values. Note that ClustalW employs internal estimation of evolutionary 

parameters to derive penalty values, so the default values are even less critical than the 

PWA defaults used by ALIGN. On the other hand, progressive alignments use 

approximate phylogenies as guide trees, which may be critical to their performances 

(Lake, 1991). 

Comparing the reconstructed alignments, cwA, to the true alignments from simulation, 

trueA, we first note that reconstruction errors occur much more frequently in columns 

with gaps than in “anchor” columns (i.e., columns with no gaps).  

            Anchor             Gapped              Total   

Correct    419703 (0.319)    112621 (0.086)     532324 (0.405) 

Error    369167 (0.281)    413944 (0.315)     783111 (0.595) 

Total    788870 (0.600)    526565 (0.400)    1315435 (1.000) 

Table 3: Number (and frequency) of columns in error and correct segments, 
classified as anchor vs. gapped columns.  
Substitution rate=0.1; Indel rate 0.007;

Table 3 presents the frequencies of errors for anchor and gapped columns, for one 

combination of simulation parameters (Substitution rate=0.1; Indel rate 0.007;). Only 

40% of the columns are correctly reconstructed, and the vast majority of those are 

anchor columns. The error rate in anchor columns is 47%, whereas in gapped columns 

the error rate reaches 79%. 
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The difference of error rates between anchor and gapped columns reflects the nature of 

the problem: after all, alignment reconstruction proceeds through the positioning of 

gaps, and where there are few gaps to misplace, there are few errors. Yet, this does not 

mean that anchor columns are immune to error. In fact, misplaced gaps can have quite a 

long range, affecting anchor as well as gapped columns. 

In order to classify reconstruction errors, we divide the length of the alignment into 

segments of consecutive columns, where correctly aligned segments delimit error 

segments. For each error segment we can then compare the true indel structure to the 

erroneously deduced one.  

 

Figure 16: Error segments sizes as a function of sequence divergence. 
(a) Mean length of error segments (red), and (b) Mean length of the 
corresponding true segments (blue). (See Figure 8 for details of graphs 
layout.) 

In high quality reconstructions, error segments are short and wide apart, and encompass 

few indels. As the overall error rate increases, so does the length of error segments 

(Figure 16). An erroneously reconstructed segment of an MSA can contain any number 
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of anchor and gapped columns that are different in the native and reconstructed 

alignment. Note that the true MSA segments that were erroneously reconstructed (blue), 

are longer than the reconstructed segments (red), and that the discrepancy increases 

with sequence divergence. Since the number of residues in both segments is identical, 

the shortening of reconstructed segments is wholly due to a lower gap character content 

in those segments. 

 

Figure 17: Mean number of indel events per error segment. 
(a) Indel content in the reconstructed error segments (red), and (b) in the 
corresponding true segments (blue). (See Figure 8 for details of graphs 
layout.) 

This bias is even more pronounced when comparing the number of indel events in error 

segments (figure 17, red) to the true number of indel events that should have been 

reconstructed (blue). Errors consisting of misconstruction of very few indel events are 

prevalent when the number of substitutions is small and where indel events are rare, 

coupled with long intervening anchor stretches. The presence of conserved anchor 

stretches isolates and limits the range of the erroneous segment. As evolutionary rates 
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increase, the density of gapped columns rises, and errors at near positions are merged to 

produce longer error segments, comprising many simultaneously misplaced indel 

events. In such cases, the overall result is of a combinatorial nature, and is very hard to 

interpret.  

To probe the fine details of this phenomenon, we categorized errors by the number of 

indel events involved in the true and erroneous segments. Table 4 presents the relative 

frequency of error structures for two divergence levels. 

 a. Closely related sequences, overall error rate 10% 
 cwA 

trueA 0 1 2 3  >3 
0 - - 0.000 - - 
1 - 0.679 0.004 0.054 0.000 
2 0.007 0.051 0.103 0.041 0.030 
3 0.000 0.006 0.004 0.011 0.000 

>3 - 0.000 0.000 0.000 0.008 

 b. Intermediate sequence divergence, overall error rate 40% 
 cwA 

trueA 0 1 2 3  >3 
0 - - 0.000 0.000 - 
1 - 0.024 0.001 0.003 0 
2 0.001 0.008 0.019 0.006 0.005 
3 0.000 0.001 0.008 0.015 0.015 

>3 - 0.002 0.006 0.018 0.865 

Table 4: Frequency of error segments categorized by the number of indel events 
in the true (rows) and reconstructed (columns) alignments. 
(a) Closely related sequences; (b) Intermediate sequence divergence  

For closely related sequences (table 4.a), the most frequent type of error is the simplest 

of all: one indel event is erroneously reconstructed, as a single indel event of the same 

extent but at a different position. We termed such an error a “Shift” error. For the 
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example of closely related sequences, shift errors account for ⅔ of all reconstruction 

errors.  For comparison, in more distantly related sequences (table 4.b) the vast majority 

(87%) of errors result from the simultaneous mis-reconstruction of more than 3 indel 

events, while simple shift errors account for only 2.4% of all errors.  

Figure 18 presents the relative abundance of shift errors (green), error involving only 

pairs of indels (blue), and complex indel misalignment errors involving three or more 

indels (red).  

 

Figure 18: Relative frequencies of error types. 
(a) Shift errors (green), (b) indel pairs errors (blue), and (c) complex 
errors with more than three indel events (red). (See Figure8 for details of 
graphs layout.) 

We note that as sequences diverge, the transition from simple errors to complex ones is 

much sharper than that we observed earlier for PWA errors (Figure 15). This can be 

understood by noting that MSA are reconstructed by a series of pairwise profile 

alignments, so that even if at each PWA step the errors are strictly shift errors, 

compounding them will produce complex errors in the MSA. 
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MSA errors and the guide tree 

Progressive MSA reconstruction methods proceed by first estimating a phylogeny from 

all pairwise distances. This phylogeny is then used as a “guide-tree”, which determines 

the sequential addition order of sequences to the growing reconstructed alignment, and 

the penalties for the profile pairwise alignment steps. The guide-tree, however, may be 

erroneous.  

 

Figure 19: MSA reconstruction rates. 
(a) Assisted MSAs (green) utilizing the true phylogeny as the guide-tree, 
and (b) Standard ClustalW MSAs (red) with guide-tree derived from all 
pairwise alignments. (See Figure 8 for details of graphs layout.)  

To assess the contribution of guide-tree inaccuracies to the MSA error rates, we 

consider MSAs that are guided by the true underlying phylogeny, assistedA (Figure 19, 

green). We find that the assisted MSAs are only marginally better than the ClustalW 

MSAs, cwA, which employ approximate guide-tree. The relative contribution of guide-

tree errors to the overall MSA reconstruction error rate peaks at about 10%. Thus, 

inaccuracies in the reconstruction of guide-trees cannot be deemed the major source of 

errors in MSA reconstruction. Nevertheless, better guide-trees are always desirable. 
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Although the additional errors introduced by approximate guide-trees are relatively few, 

the effects of guide-tree errors on subsequent phylogenetic reconstruction are quite 

substantial. The phylogenies derived from assisted MSAs, assisted-AT, display success 

rates that are relatively stable even as sequence divergence increase (Figure 20, green 

lines). 

 

Figure 20: Phylogenetic reconstruction rates. 
(a) BioNJ based on true MSAs (blue), (b) BioNJ based on Assisted MSAs 
(green) utilizing the true phylogeny as the guide-tree, and (c) BioNJ 
based on standard ClustalW MSA (red) with guide-tree derived from all 
pairwise alignments. (See Figure 8 for details of graphs layout.) 

It seems, than, that most of the increase in phylogenetic error rate which characterize 

phylogenies based on ClustalW MSAs, cwT (red lines), is attributable to inaccuracies in 

the guide tree.    

In previous sections we analyzed MSA errors mainly in the spatial dimension, that is, 

along the length of the alignment. We now turn to the characterization of errors in 

relation to the phylogenetic, or temporal dimension of MSAs. Sequence positions that 

have undergone changes, substitutions or indels, along an internal branch of their 
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phylogeny, result in informative MSA columns that reflect the partition defined by that 

internal branch (see Figure 2, red and blue). This phylogenetic signature will reflect the 

true phylogeny when changes occurred only on a single branch of the phylogeny. When 

multiple changes occur on different branches of the phylogeny, the partitioning apparent 

in a column may be misleading. In addition, several partitioning may be deduced from a 

single column. 

We compare the phylogenetic signal of correct and error segments of reconstructed 

MSAs by enumerating all implied phylogenetic partitioning, and use each partition 

frequency over all informative columns as a support score for that particular branch. We 

further classify each branch as true or false in reference to both the true phylogeny and 

the guide tree (Table 5).  

 Error segments 

 

Correct  

segments trueA cwA 

True guide tree branches 0.0165 0.0443 0.0464 

True branches not in guide tree 0.0015 0.0160 0.0094 

False guide tree branches  0.0001 0.0032 0.0127 

Table 5:  Mean branch support per column in error and correct segments.  
Correct segments are identical in the true and reconstructed MSAs. 

We find that error segments have higher proportions of implied partitions supporting 

erroneous guide tree internal branches, in expense of support of poorly supported true 

branches (yellow). Clearly, this bias is the result of overfitting the reconstructed MSA 

columns to conform to the guide tree. Also note that correct segments have lower 

phylogenetic signal than error segments of both the true and reconstructed MSAs 

(green). In other words, less variable elements of the true MSA are more easily 

reconstructed, but are also less informative from the phylogenetic perspective. 
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Sources of multiple sequence alignment errors 

We summarize our understanding of the sources of errors from two perspectives, the 

theoretical and the specific. 

From the fine details perspective, we can ascribe specific errors to several sources: 

a. Positioning errors 

b. Simultaneous errors 

c. Biased underestimation of gaps 

Positioning, or “shift”, errors are the major class of errors for closely related sequences, 

and are in some cases the result of an arbitrary choice between co-optimal alternatives. 

Another common source of errors is the splitting or union of indel pairs, where the 

resulting gain or loss of local sequence similarity offsets, or compensate, the added or 

saved gap costs. For more distantly related sequences, where the anchor segments that 

intervene between gapped columns are less preserved, the majority of errors are the 

results of the simultaneous misplacement of many indel events. In most cases such 

errors can be classified as sub-optimal errors. 

Moreover, although the objective function is assumed to balance between substitutions 

and indel events, there is a marked bias towards the overall minimization of gaps and a 

corresponding shortening of the whole alignment, thereby producing higher score 

alignments. A related bias results from the fact that the number of gap characters in an 

alignment segment depends not only on the indel length, but also on the number of 
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sequences sharing these gap characters. Thus, an insertion and a deletion of the same 

length, occurring on the same phylogeny branch, may produce very different gap 

content in the alignment columns. The overall bias for fewer gaps is thus translated into 

a bias in the reconstruction rates for insertions versus deletions. 

From the underling logic of reconstruction algorithms, three aspects can be viewed as 

sources of reconstruction errors: 

a. The guide-tree 

b. Co-optimality 

c. Sub-optimality 

Providing the best starting point to the reconstruction algorithms, that is, the true 

phylogeny and the true substitution and indel rates, improves the resulting MSAs on the 

order of 10%. Although such improvement is desired, it does not turn poor quality 

alignments into good ones. On the other hand, “easy” sections of MSAs are correctly 

reconstructed even when using very rough approximations of the evolutionary 

parameters, while the “hard” parts of alignments are erroneously reconstructed even 

under the best external information. 

Categorizing the error segments into those that are co-optimal to the true alignment and 

those where the corresponding true segment is sub-optimal under the optimized 

objective function, we find that the vast majority of MSA errors are sub-optimal ones. 

Only for very closely related sequences, that is, easy problems, errors are the result of 

the arbitrary choice among co-optimal alignments.  
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We conclude, therefore, that the primary culprit for the low reconstruction rates resides 

in the stochastic nature of the problem. Faced with situations where the realized events 

form a set of far from maximal likelihood, the strict optimization of an objective 

function leads to over-fitting. Even when the realized events approximate the expected 

distribution, multiple maxima of the objective function, producing co-optimal 

alternatives, translate into a substantial level of mis-reconstruction. Put another way, 

correct reconstruction can be guaranteed only when the true MSA segment is uniquely 

optimal, which is a relatively rare occurrence as sequences diverge. 
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Chapter 4:  Identification and management of MSA errors 

In this chapter our goal was to develop methods to deal with MSA errors. First, we 

present a family of local reliability measures that efficiently identify alignment errors. 

Next we present phylogenetic reconstruction methods that take into account MSA 

errors. We evaluate our methods by analysis of simulated sequences, as in the previous 

chapter. Application of these methods to empirical data is presented in the next chapter. 

The methods we develop operate on extant OTU sequences and assume no prior 

knowledge of either OTU phylogeny or residue homology. Moreover, we make use of 

standard methods for MSA and phylogenetic-tree reconstruction.  

Alternative Alignments 

Our approach rests on two observations regarding reconstructed MSAs:  

a. For any set of sequences there are very many biologically similar MSAs, and 

any single reconstructed MSA can be viewed as an arbitrary choice from among 

those alternatives.  

b. Good quality portions of the alignments are similar among the alternative 

MSAs, whereas every poor quality portion is biased in its own particular way. 

Thus, we shift our attention from a single reconstructed MSA to a set of alternative 

alignments. The simultaneous analysis of several equally likely MSAs allows us to 

identify the high-quality parts of MSAs, and to average out the effects of non-

systematic biases in the reconstructed MSAs. 
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Our goal, then, is to produce a set of alternative, equally likely alignments. The set 

should be moderately large so as to allow for meaningful statistics, while not too large 

to render the analysis impractical.  

Pairwise alignment – the co-optimal envelope 

For the simple case of pairwise sequence alignment, we note that any reconstructed 

PWA, although strictly optimal, may be an arbitrary choice from among numerous co-

optimal alignments (see, for example, Waterman, 1995; Gusfield, 1997). Therefore, a 

natural PWA set to consider is the set of all co-optimal PWAs.  

 

Figure 21:  Co-Optimal PWAs as paths through a dot-matrix of the two sequences. 
Green segments are uniquely optimal and are common to all co-
optimal alignments. Other segments are co-optimal alternatives. The 
co-optimality envelope is defined by the high-road (red), and low-road 
(blue) segments. 

For practical purposes, the full co-optimal set is far too large to enumerate explicitly 

(Naor and Brutlag, 1994). Yet, its main features can be summarized by considering its 

“envelope.” Figure 21 presents an example of a co-optimal PWA set as paths through a 
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dot matrix view of the two sequences. Note that all co-optimal alignments share a 

unique path in some segments of the sequences (green), while in other regions they 

trace different paths (black, blue and red). 

We can capture this information by considering the two extreme paths, the “high-road” 

alignment (red) and the “low-road” one (blue). From the consideration of figure 21, it is 

clear that the reliability of segments that differ between the high- and low-road 

alignments is at most half that of the identical segments. Some alignment programs, 

such as PileUp (Dolz, 1994, Womble, 2000), lets the user determine which road he likes 

to travel, while ALIGN  and ClustalW arbitrarily chose to report the low-road 

alternative  (Pearson and Lipman, 1988, Thompson et al. 1994). In such cases the other 

extreme alignment can be obtained easily by presenting the methods with the sequences 

in reversed residue order. Inversing the sequences amounts to reversing the direction of 

both axes of the dot matrix, thereby converting the high-road to low-road and vice versa 

(see, for example, the blue arrows in Figure 22). We term this pair of co-optimal PWAs 

the “Head-Tail” pair, and define it to be our basic alignment set for pairwise alignment, 

pwAS. 
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Multiple alignment – sequence addition order 

Here our goal is to produce a set of MSAs instead of the single ClustalW alignment 

(cwA) of the sequences. The alignment set should contain alignments of the sequences 

that are similar to cwA. The variation among alignments in the set should represent 

alternatives that are related to common sources of MSA errors. 

Given an approximate Notu guide-tree, we define the guide-tree alignment set, gtAS, as 

follows: 

For each of the (Notu-3) internal branches of the guide tree, partition the sequences into 

two groups. Construct two sub-alignments for sequence group:  

a. sub head
i , jA , Which is the ClustalW alignment of the sequence group 

b. sub tail
i , jA , Which is the ClustalW alignment of the reversed sequences. 

Where 1 3otui ..N⎡ ⎤∈ −⎣ ⎦  is the branch index, and [ ]1 2j ,∈  is the group index (figure 22, 

middle). 

For each internal branch use ClustalW profile alignment to align the four combinations 

of the sub-alignments, aligning each combination in both the head and tail directions, to 

yield a total of 8 full MSAs (Figure 22): 

 { } { }1 1 2 2
sub head sub tail sub head sub tail

i , i , i , i ,
head tail

A , A A , A
−
Χ  
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Figure 22:  Construction of an MSA set for one internal branch of the guide-tree. 
An internal branch of a 7-OTU phylogeny partitions the sequences into 
two subsets (top). Each subset is aligned in both head and tail orientations 
(middle). All combinations of sub-alignments are aligned in both head and 
tail orientation, to yield 8 equally likely alignments (bottom).  

The process is repeated for each internal branch of the guide-tree. All in all, than, gtAS 

contains 8·(Notu-3) alignments. These alignments differ from each other in two respects: 

(a) the addition order of sequences and profiles to create the final MSA, and (b) the 

high- or low-road selection of co-optimal sub-alignments. Any alignment in gtAS could 

be qualified as a bona-fide progressive alignment. Thus, the alignments in gtAS can be 

considered as equally likely alternatives. 

Guide-tree alignment sets can be constructed for different choices of approximate guide 

trees, and combined to produce even larger sets of alternative alignments.  
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Local reliability measures for MSA 

The local reliability of reconstructed MSAs is usually viewed as related to the local 

divergence of the sequences. Thus, current local reliability measures (LRMs) are based 

on the column entropy or variation (e.g., Thompson et al., 1997). While it is true that 

low entropy, that is highly preserved, segments of an MSA are more easily 

reconstructed by MSA algorithms, column entropies are poor in identifying errors in an 

MSA. In this part of the study, we develop a class of LRMs that better identifies MSA 

errors. 

Given a candidate reconstructed MSA A, we construct the corresponding alignment set, 

gtAS, and score the elements of A by their reproduction in gtAS (Figure 23). For each 

MSA column k and OTU pair {i,j}, we define our basic local measure, the residue-pair 

reliability measure, pairs k
i , jM , as the proportion of alignments in gtAS that replicate this 

residue pair (see Chapter 2). The measure takes values on the interval [0..1], with 1 for 

total support.  

Averaging of the residue pair support gives rise to a series of reliability measures: 

a. The mean residue reliability:  res k pairs k
i i ,*M M=  

b. The mean column reliability (Figure 23): col k res k
*M M=  

c. The overall mean alignment reliability:  ali col *M M=  
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Figure 23: Column reliability measure (red line) for a candidate MSA. 
Columns of a candidate MSA (bottom) are scored by their reproduction in 
the MSA set (top) 

The LRMs are intended to identify errors in reconstructed MSAs. We therefore test 

their performances by comparing them to the known error structure of reconstructed 

MSAs, in simulation settings as in chapter 3.  

One use of our reliability measures is as binary classifiers of local MSA features as 

correct or erroneous. Figure 24 presents a receiver-operating characteristic (ROC) 

analysis (Zweig and Campbell, 1993) of  pairsM as a classifier of residue-pairs errors. 

Since the residue-pairs reconstruction, pairsR, is binary, the two populations – error (H0, 

red) or correct (H1, green) reconstructions - are strictly defined. Our measure pairsM is 

seen admiringly to separate the two populations, with very high power (area under 

curve, AUC=0.95).  
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Figure 24:  The residue-pairs reliability measure as a classifier of reconstructed 
MSA errors/correct features. 
Histograms (left) presents the different distributions of the two 
populations: H0:error(red) vs. H1:correct(green). ROC curves (right) 
report the level of classification errors and the power of the classifier.  

 

The most useful level of MSA scoring is the column level. Current methods employ 

Shannon's entropy as a measure of MSA quality, that is, column quality is judged by its 

residue variability. The entropy-based column quality measure reported by ClustalX, 

colQ (Thompson et al., 1997), is inferior to our  colM local reliability measure. A ROC 

analysis (Figure 25.a), reveals that colM separates the two populations better than colQ, 

with AUCs of ~0.94 and ~0.87, respectively. 
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 a. ROC analysis of the two measures 

 

 b. Correlation of the two measures to the true error rate 

 

Figure 25:  Comparison of two column quality measures, colM and colQ. 
(a) as classifiers of MSA reconstruction errors, and (b) as estimates of 
error rates. 

When interpreting the LRMs *M as estimates of the reconstruction rates *R, we find 

extremely high correlations between the two types of measures, one derived from the 

comparison to the true MSA, *R, and the other from the MSA set, *M. The correlation 

coefficients are r  =  0.94 for the residue-base measure and r  =  0.87 for the column 

measure. Once again, the entropy-based column quality measure is inferior to our  colM, 

the correlation between colQ and colR, though significant, being only r  =  0.66 (Figure 

25.b). 
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Application of LRMs in phylogenetic reconstruction 

One use of LRMs is to account for MSA errors while reconstructing a phylogeny based 

on an MSA. This can be achieved by weighting or filtering MSA columns and residues 

by their LRM when estimating pairwise distances. Hopefully, distance matrices that are 

less affected by erroneous segments of the MSA will be more accurate, and will 

therefore produce better phylogenies. This hope is largely groundless. 

We find that filtering of MSAs by the removal of errors results in a deterioration of 

reconstruction rates (data not shown), which may be explained by the reduction of the 

sample size for distance estimation.  

When weighting, rather than filtering, MSA columns or residue-pairs by their LRMs, 

we find (Figure 26) that although the resulting phylogenies may differ from the 

unweighted ones, there is no significant improvement in phylogenetic reconstruction 

rates, although the mean values are marginally better when weighting (red lines).  

This result may be traced back to the observation that MSA errors tend to reduce the 

support for poorly resolved internal branches. Thus, poorly supported internal branches 

are not sufficiently represented in the MSA to begin with, and weighting down of 

erroneous internal branches cannot sufficiently enhance their signal. 
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Figure 26:  Phylogenetic reconstruction rates for LRM weighting. 
(a) Distances derived from true MSAs (blue), (b) distances derived from 
reconstructed MSAs (green), and (c) distances derived from 
reconstructed MSAs weighted by our residue-pair reliability measure 
(red). 

We reach the unfortunate conclusion that while LRMs can detect errors in a 

reconstructed MSA, their utility in improving phylogenetic reconstruction is small. 

Phylogenetic analysis of alignment sets 

The alignment set gtAS, contains much more information than is captured by our LRMs. 

Another approach to utilize this information is to infer phylogenies directly from gtAS as 

a whole.  

For each alignment in an alignment set, we reconstruct a phylogeny using some 

standard phylogenetic reconstruction method. In this study we used BioNJ (Gascuel, 

1997) as the tree reconstruction method. The resulting phylogeny set, gtTS, is than used 

to infer a consensus phylogeny for the alignment set, asT (figure 27).  
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Figure 27: Simultaneous phylogenetic reconstruction from a MSA set. 

 

To avoid situations where the standard majority-rule consensus method (e.g., 

Felsenstein, 2004) yields partially resolved trees, we adopted a variant consensus 

method where the inferred phylogeny is the best supported tree from among the sets 

trees. 

The phylogenetic reconstruction rate of the alignment-set consensus tree asT (Figure 28, 

green) is significantly higher than that of phylogenies derived from a single ClustalW 

MSAs, cwT (red). The overall mean improvement is ~6% (Wilcoxson signed-rank test p-

value < 10-16). Interestingly, for closely related sequences, the asT phylogenies may be 

more accurate than phylogenies derived from the true MSA (blue). 
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Figure 28:  Phylogenetic reconstruction rates. 
(a) BioNJ based on true MSAs (blue), (b) BioNJ based on standard 
ClustalW MSA (red), (c) Consensus phylogeny based on MSA set 
(green), and (d) Consensus phylogeny from iterative construction of 
MSA sets (cyan.) 

We note that the construction of an alignment set, a phylogeny set, and the resulting 

consensus tree asT, is dependent upon the initial choice of guide-tree. We therefore 

repeat the process, using as a guide-tree the asT of the previous iteration, which is our 

best estimate of the phylogeny so far. The analysis is iterated until the guide-tree and 

the inferred phylogeny converge, or until a pre-specified number of iterations is 

reached. We term the final tree the “iterative alignment set phylogeny”, itr-asT (cyan). In 

practice, nearly all cases converge within 6 iterations of the alignment set analysis. For 

closely related sequences, iteration does not improve upon the basic asT. For more 

distantly related sequences, the improvement of  itr-asT over asT, is yet again as large as 

the improvement of asT over cwT. 
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Chapter 5: Application of methods to case studies 

In this part of the study we apply the methods of the previous chapter to the analysis of 

alignment and phylogenetic reconstruction problems of real biological sequences.  

Data 

The case studies we analyze are taken from the BaliBase database (Bahr et al., 2001). 

BaliBase is a database for benchmarking MSA programs, which have been developed 

by the authors of the ClustalW algorithm, and is widely used for the comparison of 

MSA algorithms (e.g., Karplus and Hu, 2001, Lassmann and Sonnhammer, 2002, 

Wallace et al., 2005). The MSAs in BaliBase are curated, and for each there is a 

definition of core segments within the alignment which should/must be reconstructed by 

programs. These are basically the highly conserved domains of the proteins, while the 

non-core segments are the more variable, especially in gaps, and are considered as so 

ambiguous that any alignment over those segments is admissible.  BaliBase contains 

several datasets, each presenting the MSA programs with different sorts of 

reconstruction difficulties.(see  

http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE2/) 

We use the core segments of BaliBase MSAs to reconstruct reference phylogenies. 

These phylogenies are based on high quality alignments, and we regarded them as the 

best reference phylogenies for the sequences. The variable segments of BaliBase MSAs, 

on the other hand, represent cases where the sequence alignment is highly ambiguous, 

and therefore amenable to MSA error management methods.  

http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE2/
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The case study consists of 320 MSAs derived from BaliBase (see Chapter 2). Figure 29 

presents the distribution of the MSAs sizes and sequence divergence. 

Figure 29:  Distributions of the 320 BaliBase test cases. 
(a) Number of OTUs; (b) Sequence divergence; (c) Core segments 
length; (d) Variable Segments length; 

The variable regions of BaliBase MSAs were first analyzed using standard ClustalW 

alignment, followed by a BioNJ phylogenetic reconstruction. Comparing those 

ClustalW-BioNJ phylogenies, cwT, to the reference phylogenies derived from the core 

segments, refT, we find that the mean phylogenetic reconstruction rate is 38% (Figure 

30). 
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Figure 30:  Phylogenetic reconstruction rate of BaliBase test cases. 
Phylogenies reconstructed by BioNJ from ClustalW MSAs. 

The ClustalW MSAs of the variable segments were further scored with our proposed 

reliability measures. Weighting of pairwise sequence distances by the reliability 

measures pairsM and colM did not produce significant improvement of the phylogenetic 

reconstruction rates (data not shown).  

Phylogenetic reconstruction using alignment sets 

For each BaliBase MSA, we reconstruct three phylogenies: 

a. refT: Reference tree, is a BioNJ based on the core blocks of the BaliBase 

alignments. Parts of refT may be poorly resolved, and these are identified by a 

bootstrap analysis (Felsenstein, 1985). 

b.  cwT: ClustalW tree, BioNJ tree based on a standard ClustalW alignments of the 

variable regions.           

c. itr-asT: Iterative alignment-set tree, our proposed method, derived from the 

variable regions alone.  
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The ClustalW and alignment-set trees are than compared to the reference tree. We used 

the symmetric tree distance (e.g., Felsenstein, 2004), normalized by the number of 

branches, to produce the reconstruction rate phyR (see chapter 2).  

We find that the mean improvement of itr-asR = phyR( itr-asT ) over  cwR = phyR( cwT ) is 

4.4%, which is significant at the 10-11 level (Figure 31). Relative to cwR, the 

improvement is about 12%. 

.  

Figure 31: Improvement in phylogenetic reconstruction rate.  

We take this opportunity to provide a brief comparison of ClustalW to two other MSA 

reconstruction methods: PileUp (Dolz, 1994, Womble, 2000) and MUSCLE (Edgar, 

2004). For BioNJ phylogenies based on MUSCLE MSAs of the test cases, the mean 

reconstruction rate is 38%, which is comparable to the phylogenetic reconstruction rate 

of cwT. Phylogenies derived from PileUp MSAs are less accurate, with mean 

phylogenetic reconstruction rate of 32%. 
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In the above, we take refT, which is based on the core segments, to be the best estimate 

we can have for the underlying phylogeny. However, refT may contain errors, which 

may lead to a lowering of itr-asT and cwT scores. We therefore repeated the analysis using 

only the highly supported internal branches of refT, that is, branches with bootstrap score 

of more than 50%. We find that the improvement gained by our iterative alignment set 

method is indeed larger, with average over the cases of 6.2% (Figure 32). 

 

Figure 32: Improvement in phylogenetic reconstruction rate for branches of the 
reference phylogeny supported by bootstrap proportion > 50%. 

 

Our proposed method uses the consensus tree of the iterative phylogeny set gtTS as the 

final reconstructed phylogeny, itr-asT. More elaborate methods for choosing the best tree 

from gtTS will certainly improve the performance of our method. The tree choice 

problem is deferred to another study, but its probable performances can be assessed by 
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assuming we know which is the best phylogeny in gtTS (Figure 33). In this case, the 

mean improvement is 16.3%, which is 43% relative to cwT, with improvement in 90% of 

the cases. 

 

Figure 33:  Phylogenetic reconstruction improvement for the best tree in the 
phylogeny set. 
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Chapter 6: DISCUSSION  

Although there are very many MSA reconstruction programs available, we have opted 

to characterize the errors of only one such method, ClustalW (Thompson et al., 1994a.) 

ClustalW is by far the most widely used MSA reconstruction program. Studies 

comparing the performances of competing MSA reconstruction methods always take 

ClustalW as their “gold standard,” and usually report only marginal differences between 

the methods compared. This lack of difference is expected since most methods 

incorporate two common ingredients: progressive alignment along a guide-tree and an 

affine gap-cost objective function. In our case studies (Chapter 5), we have included a 

comparison to two other MSA reconstruction programs, PileUp (Dolz, 1994, Womble, 

2000) and MUSCLE (Edgar, 2004), and found that the accuracy of phylogenetic 

reconstruction based on MUSCLE-MSAs is comparable to that of ClustalW, and that 

PileUp-MSAs produces less accurate phylogenies. 

In the earlier parts of this study we have used simulations of sequence evolution to 

provide us with true MSAs and true phylogenies against which to compare 

reconstructed MSAs and phylogenies. A standard criticism of simulation studies is that 

they may not be relevant to real-life circumstances. We have taken great care to render 

our simulations as biologically realistic as possible, by restricting their range so that 

descriptive statistics of the simulated MSAs match the descriptive statistics of 

biological MSAs that have been deposited in alignment databases. 

Our simulation process was kept simple, with substitutions and indels as the only types 

of sequence change, and with equal rates along independent sequence residues. These 
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settings replicate the assumptions inherent in MSA reconstruction methods. In this 

sense, the MSA reconstruction process was tested in a best-case evolutionary scenario. 

This allows us to focus on the most basic errors that are characteristic of the 

reconstruction process, without obfuscating the analysis with errors resulting from more 

complex sequence evolution phenomena. It is, therefore, expected that the 

reconstruction rates we have reported represent an upper limit of the performance of 

MSA reconstruction, and that MSAs of real biological sequences will typically have 

even higher error rates. 

MSA reconstruction errors and their effects 

The primary conclusion from the comparison of reconstructed alignments to native 

alignments from simulations is that reconstructed alignments are highly uncertain in 

their details. Only very closely related sequences can produce accurate alignments, 

while many sequence sets of biological interest are expected to produce reconstructed 

alignments with error in more than half of their columns. 

Errors in reconstructed MSAs are expected to affect adversely subsequent analyses that 

use MSAs as their input. For the case of phylogenetic reconstruction in our simulation 

setting, we showed that phylogenies derived from reconstructed MSAs are much less 

accurate than those derived from true MSAs (Figure 6). In fact, even a relatively simple 

phylogenetic reconstruction method such as BioNJ (Gascuel, 1997) is robust when 

based on the true MSA. Thus, the low phylogenetic accuracy in real-life settings can be 

almost wholly attributed to the poor quality of reconstructed MSAs. In actual sequence 
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analysis problems, the true MSA is never known, and we may only hope to be able to 

identify and correct the errors. 

The immediate source of MSA reconstruction errors is in the erroneous deduction and 

positioning of gaps. In other words, more errors occur in gapped columns than in anchor 

columns. For closely related sequences, in which the error rate is low, most 

reconstruction errors can be classified as simple shift errors. These errors preserve the 

alignment length, and their effect is usually local. As sequences diverge and indels 

accumulate, errors resulting from the simultaneous rearrangement of many indel events 

become more and more prominent. Such complex errors affect larger and larger 

portions of the reconstructed MSA, so that even for intermediate levels of sequence 

divergence, most of the length of the MSA may be erroneously reconstructed. 

In such cases, it is generally the rule that the erroneous MSA is shorter in length and 

contains fewer gaps than the true MSA. In addition, there is a bias in the ability to 

correctly reconstruct insertions and deletions. Deletions in a few OTUs or insertions in 

many OTUs are better dealt with by the MSA reconstruction program than insertions in 

a few OTUs and deletions in many OTUs. In both cases, this reflects an algorithmic bias 

towards the minimization of the number and size of gaps.  

These biases are the result of applying optimization techniques to highly variable 

stochastic processes. In sequence evolution, the likelihood of actually realized random 

events is often far below the maximum likelihood of the true stochastic parameters, 

leading to over-fitting of the MSA structure to the evolutionary parameters. This is 

demonstrated by the observation that in most cases where the reconstructed alignment 

differs from the true one, the objective function score of the true historical alignment is 
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lower than the optimum, that is, the true MSA is sub-optimal. Moreover, even when the 

true alignment attains the optimum score, correct reconstruction is not guaranteed. 

Alternative co-optimal alignments are very frequent, and the choice among them is 

arbitrary.  

Progressive MSA reconstruction utilizes an approximate phylogeny, or guide-tree, to 

determine the addition order of sequences to the partially reconstructed MSA, and to 

provide the objective functions for the scoring of the successive pairwise alignment 

steps. It is natural to expect that the quality of the guide-tree will critically affect the 

quality of the resulting MSA. Contrary to this expectation, we find that providing the 

true phylogeny as the guide-tree improves the resulting MSA only marginally (Figure 

19). A possible explanation of this finding is that the expectation is valid only for those 

segments of an MSA where the true MSA is uniquely optimal under the correct 

evolutionary parameters. In cases in which there are other co-optimal possible MSAs in 

addition to the true MSA, or when the true MSA is sub-optimal, reconstructions errors 

are bound to occur even under perfect knowledge of the phylogeny and the evolutionary 

rates. 

Phylogenies and MSAs 

Sequence phylogenies and multiple sequence alignments are two descriptions of a 

single underlying evolutionary history, and should always be treated as dual aspects of 

the same phenomenon. As such, they also present a typical case of circular reasoning: 

approximate phylogenies govern the progressive reconstruction of MSAs, while the 

resulting MSAs are used to reconstruct phylogenies. It is not surprising, then, that 
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phylogenetic reconstruction rates are affected more by the quality of the initial guide 

tree than by actual quality of the MSAs (Figures 19 and 20). This is due to the fact that 

although the approximate nature of the guide-tree does not drastically affect the 

frequency of errors in reconstructed MSAs, it does introduce a substantial bias in the 

phylogenetic signal that becomes apparent in the erroneous columns of the 

reconstructed MSA.  

The phylogenetic signal of reconstructed MSA columns was found to be biased in 

towards the topology of the guide tree. This frequently tends to lend spurious support to 

erroneous inner branches of the guide tree, while disrupting phylogenetic signal in 

support of poorly resolved true inner branches. Of course, such spurious heightening of 

the phylogenetic signal is benign only when the guide tree is actually the true 

phylogeny. When the guide tree is only approximate, i.e., some true internal branches 

are missing from it and are replaced by erroneous internal branches, overfitting to the 

erroneous internal branches is accompanied by a reduction in the strength of the 

phylogenetic signal supporting the absent true internal branches. The overall result, 

therefore, is an MSA with spuriously heightened support of both true and erroneous 

internal branches of the guide-tree. Clearly, this is a case of circular reasoning, where 

the quality of our prior expectation determines the accuracy of our final conclusions. In 

this respect, phylogenetic reconstruction is extreme among MSA-dependent analyses, 

since the information provided to the reconstruction process is of the same class  as the 

information deduced from the reconstructed MSA, thus, creating a vicious cycle.  

Such considerations led some authors (e.g., Thorne and Kishino, 1992, Vinga and 

Almeida, 2003) to abandon altogether the use of MSAs in phylogenetic reconstruction. 
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(We note that although such an approach may be acceptable in phylogenetic 

reconstruction, it may not be applicable for other types MSA-dependent analyses.) An 

alternative approach to circular reasoning is to use it in a Bayesian fashion, with 

posterior refinement of approximate priors. In our proposed method for phylogenetic 

reconstruction based on MSA sets, such an iterative approach proved to be of practical 

value in improving the accuracy of reconstructed phylogenies. Needless to say, better 

guide-trees are always welcome. 

The quality of the guide-tree is mainly determined by the accuracy of the pairwise 

distance-matrix derived from pairwise alignments. The estimated distances, in turn, gain 

accuracy with increasing sample size (i.e., sequence lengths). Thus, MSAs of long 

sequences start off with better guide trees and their error rate is lower than MSAs of 

short sequences. This is in contrast to the situation in pairwise alignment, where error 

levels are almost unaffected by sequence lengths. 

Our overall conclusion is that only very closely related, long sequences, with few indels 

to be reconstructed, and long between-gap anchors, are amenable to meaningful 

alignment reconstruction. However, in the real world, homologous sequences are 

frequently short and characterized by a high gap content. The result is that even for 

moderate distances, reconstructed alignments are expected to be correct for only about 

half of their total length. This situation clearly requires methods for the identification 

and management of MSA errors. 
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The proposed methodology 

Dealing with alignment errors is predicated upon our ability to identify them and reduce 

their effects in subsequent analyses. To these ends, it is profitable to examine sets of 

alternative, equally likely, alignments. The alignment set should be sufficiently variable 

to support robust statistics, while at the same time small enough so as to keep the 

amount of processing needed to a practical level. Clearly, not any arbitrary choice of 

alignments will qualify as equally likely biologically. 

We presented one such alignment set, the guide-tree alignment set (gtAS), which 

contains 8·(Notu-3) MSAs. The alignments in gtAS share the same guide tree, but differ 

in the addition order in which the progressive process proceeds, and the arbitrary choice 

from among co-optimal alternatives. Since even the construction of the guide tree 

requires O(Notu
2 ) alignment steps, the additional O(Notu ) steps of our method are 

negligible in terms of processing time, with at most a doubling of CPU time for the 

worst case of 4 OTUs. Although the utility of this alignment set is demonstrable, we 

find it to be very conservative. It may be worthwhile, than, to develop equally likely 

alignment sets that span larger portions of the MSA space. 

One use of alignment sets is to score some specific candidate MSA. We presented a 

series of local reliability measures that score elements of a candidate MSA by the 

frequency in which they are reproduces in the set’s alignments. The local reliability 

measures we developed proved to be very good predictors of MSA errors. 

Unfortunately, we found that identification of MSA errors is not sufficient to improve 

phylogenetic accuracy when analyzing a single MSA. Yet, our family of quality 

measures may be of use in other types of alignment-dependent analyses.  
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Filtering of MSA errors by local reliability measures is similar to the current practice of 

ignoring gapped columns of the MSA when reconstructing phylogenies. This practice 

seems to be justified by the fact that errors occurs more frequently in gapped MSA 

columns. However, the errors also disrupt the local structure of neighboring anchor 

columns, resulting in erroneously reconstructed anchor columns.  

Both types of filtering, either by gapped columns or by our local reliability measures, 

suffer from two drawbacks. First, filtering reduces the sample size, in many cases 

drastically, thus increasing the variance of estimated distances. In addition, indels occur 

more frequently in more variable domains of the sequences. Usually these are also the 

most informative domains from a phylogenetic standpoint, and contribute the most to 

the divergence signal when estimating mean sequence distances. Thus, removal of those 

regions results in underestimation of pairwise distances, and a systematic bias in the 

resulting distance matrix and the phylogeny derived from it. 

Even without filtering of variable columns, distance matrices derived from 

reconstructed alignments are systematically biased towards underestimation of 

divergence rates. This results from the overfitting of the reconstructed MSA to 

maximize the objective function. An issue for further study is whether distances can be 

corrected for this systematic bias. Such a correction should transform observed 

differences to distance estimates, taking into account not only the phenomenon of 

multiple substitutions, but also the local statistics of MSA biases of specific 

reconstruction methods. 

Local reliability measures average out, and extremely reduce, the amount of information 

available in the full alignment set. Moreover, their context is still a single reconstructed 
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MSA. Unfortunately, even with perfect knowledge of the location of the errors, it is not 

possible to transform a poor quality MSA into high quality one.  

We propose, than, that the prudent approach is never to use a single reconstructed MSA 

as the basis for further analyses. Rather, MSA-dependent methods should be enhanced 

and adapted to accommodate the simultaneous analysis of MSA sets.  

In the context of phylogenetic reconstruction, we applied a simple consensus method to 

derive phylogenies from alignment sets, and found that the resulting phylogenies are 

significantly more accurate than those based on a single MSA. We note that our 

proposed MSA set, gtAS, is dependent upon an approximate guide-tree. Application of 

our method in an iterative fashion, using the deduced phylogeny as a guide-tree for the 

next iteration, enhances the phylogenetic reconstruction rate even further. Interestingly, 

when the sequences are relatively closely related, the phylogenetic reconstruction rate 

may be even higher than that attained when using the true error-free MSA (Figure 28). 

We demonstrated the utility of the proposed phylogenetic reconstruction method in the 

analysis of real biological sequences from the BaliBase database (Bahr et al., 2001). We 

found that our method is significantly more accurate then the standard single-MSA 

analysis, with a mean improvement of about 5% in phylogenetic reconstruction rates. 

Our consensus method is very simple and does not always retrieve the best phylogeny 

from the alignment set. Therefore, we find it probable that refinement of the selection 

method from among the phylogenies in the phylogeny set may further enhance the 

phylogenetic accuracy. Such refinement may draw on the phylogenetic signal of MSA 

columns on the one hand and on Bayesian analysis on the other. 
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MSAs are ubiquitous tools in molecular biology, and in a manner similar to buffers, 

they are taken for granted. Moreover, most MSAs in actual use are produced and 

discarded automatically on the road to some other goal. I conjecture that more than 99% 

of MSAs that are used to produce publishable results, are never even seen by a human 

being. (This is certainly the case for this study.) Yet, when a rare MSA is actually 

inspected by a researcher, it is usually found wanting. MSAs are so notoriously 

inadequate, that the literature is littered with phrases such as “The MSA was 

subsequently corrected by visual inspection.” In fact, Thompson et al. (1994a) in their 

seminal paper clearly state: “CLUSTAL W is… a very useful starting point for manual 

refinement…” 

I would like to augment my conclusions with the following advice (with apologies to 

Antoine Saint Exupéry): 

The danger of the MSA is so little understood, and such 

considerable risks would be run by anyone who might get lost in 

a phylogeny, that for once I am breaking through my reserve. 

"Children," I say plainly, "watch out for the MSAs!" 
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Appendix - A Brief History of MSA 

I do not pretend to provide an exhaustive, all-encompassing, definitive, textbook-like 

review of the whole literature pertaining to sequence alignment. Such a compilation 

would exceed the space limit for a Ph.D. thesis by several hundred percents. I believe 

that my treatment of the literature covers all the basic works pertaining to my thesis, and 

is a sufficient starting point for any potential student of the field. 

The early years: 1970-1988  

In the early days of sequencing, published sequences were few, and they were 

predominantly amino-acids sequences. In 1970, Needleman and Wunsch first described 

a method for the pairwise alignment of two protein sequences (Table A.1). With the 

accumulation of sequences, the need arose for the identification of possible homologous 

sequences, and for the simultaneous alignment of more than two sequences.  

Table A.1:  Timeline of major developments in sequence alignment: the early years 

Year Authors Title 

1970  Needleman and Wunsch A general method applicable to the search for 
similarities in the amino acid sequence of two proteins 

1981 Smith and Waterman Identification of common molecular subsequences  

1986 Waterman Multiple sequence alignment by consensus  

1986 Altschul and Erickson Optimal sequence alignment using affine gap costs  

1986 Gotoh Alignment of three biological sequences with an 
efficient traceback procedure  

1986 Bishop and Thompson Maximum likelihood alignment of DNA sequences  

1987 Taylor Multiple sequence alignment by a pairwise algorithm  

1987 Feng and Doolittle Progressive sequence alignment as a prerequisite to 
correct phylogenetic trees  

1988 Higgins and Sharp CLUSTAL: a package for performing multiple 
sequence alignment on a microcomputer  
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Searching sequence databases was first addressed in 1981 by Smith and Waterman, with 

the development of local pairwise alignment. Local alignment, which facilitates 

sequence searches, had to be distinguished from the alignment of sequences in their 

entirety for detailed comparative purposes, a task that was  rechristened as “global” 

alignment. In this study I have addressed only global alignment issues.  

Global alignments were next improved by Altschul and Erickson in 1986, who 

introduced affine gap costs which greatly enhanced their biological relevance.  The 

simultaneous alignment of more than two sequences followed shortly after with the 

work of Gotoh (1986) and Taylor (1987), and was culminated by the introduction of 

progressive multiple sequence alignment by Feng and Doolittle (1987), and by the first 

version of standard MSA reconstruction software, CLUSTAL (Higgins and Sharp, 

1988). 

 

Consolidation: 1988-1994 

The following years (Table A.2) were dominated by improvements in the performances 

of MSA alignment methods.  First, purely algorithmic aspects were improved: run-times 

and space requirements were reduced, resulting in the ability to analyze larger data sets. 

Scoring systems were also improved to provide MSAs that were more realistic 

biologically.  
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Table A.2:  Timeline of major developments in sequence alignment: consolidation 

Year Authors Title 

1988 Carrilo and Lipman The multiple sequence alignment problem in biology  

1988 Myers and Miller Optimal alignments in linear space  

1991 Thorne et al. An evolutionary model for maximum likelihood 
alignment of DNA sequences  

1992 Allison et al. Finite-state models in the alignment of macromolecules  

1992 Depiereux and Feytmans MATCH-BOX: a fundamentally new algorithm for the 
simultaneous alignment of several protein sequences  

1992 Higgins et al. CLUSTAL V: improved software for multiple sequence 
alignment  

1992 Lukashin et al. Multiple alignment using simulated annealing: branch 
point definition in human mRNA splicing  

1992 Thorne et al. Inching toward reality: an improved likelihood model of 
sequence evolution  

1993 Altschul A protein alignment scoring system sensitive at all 
evolutionary distances  

1993 Gotoh Optimal alignment between groups of sequences and its 
application to multiple sequence alignment  

1993 Hirosawa et al. MASCOT: multiple alignment system for protein 
sequences based on three-way dynamic programming  

1993 Miller Building multiple alignments from pairwise alignments  

1993 Lawrence et al. Detecting subtle sequence signals: a Gibbs sampling 
strategy for multiple alignment 

1994 Dolz GCG: production of multiple sequence alignment  

1994 Thompson et al. CLUSTAL W: improving the sensitivity of progressive 
multiple sequence alignment through sequence 
weighting, position-specific gap penalties and weight 
matrix choice  

 

At the same time, the view was extended towards alternative evolutionary models and 

algorithmic approaches. Most of the biologically relevant improvements were 

implemented in the ClustalW program (Thompson et al., 1994a), which became the 

standard tool for MSA reconstruction.  
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The proliferation era: 1994-present 

Since the publication of ClustalW in 1994, four major trends can be discerned (Table 

A.3): 

a. New MSA reconstruction methods are constantly being developed. Some are 

motivated by algorithmic and statistical considerations, others introduce new 

evolutionary models, and yet others address specific biological problems. Yet, 

ClustalW is still considered the standard and most reliable method. Only 

recently were possible heirs to ClustalW developed: the MUSCLE program 

(Edgar, 2004), and the ProbCons program (Do et al., 2005). 

b. MSAs became essential in structural analysis, and methods that reconstruct 

MSAs from the structural non-historical viewpoint were developed. 

c. MSA reconstruction became a standard ingredient of high-throughput analysis 

systems, addressing various biological problems, and resulting in numerous 

biological databases. Once again, in most cases MSAs are produced by 

ClustalW. 

d. MSA quality issues were started to be studied from various perspectives. 
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Table A.3:  Timeline of major developments in sequence alignment: proliferation 

Year Authors Title 

1995 Dress et al. A divide and conquer approach to multiple alignment  

1995 Gupta et al. Improving the practical space and time efficiency of the 
shortest-paths approach to sum-of-pairs multiple 
sequence alignment  

1995 Eddy Multiple alignment using hidden Markov models  

1995 Hirosawa et al. Comprehensive study on iterative algorithms of 
multiple sequence alignment 

1995 Thompson Introducing variable gap penalties to sequence 
alignment in linear space  

1995 Zhang and Marr Alignment of molecular sequences seen as random path 
analysis  

1996 Morgenstern et al. Multiple DNA and protein sequence alignment based on 
segment-to-segment comparison  

1996 Notredame and Higgins SAGA: sequence alignment by genetic algorithm  

1997 Altschul et al. Gapped BLAST and PSI-BLAST: a new generation of 
protein database search programs 

1997 Schwikowski and 
Vingron 

The deferred path heuristic for the generalized tree 
alignment problem  

1997 Zhu et al. Bayesian adaptive alignment and inference  

1998 Kobayashi and Imai Improvement of the A(*) Algorithm for Multiple 
Sequence Alignment  

1998 Morgenstern et al. DIALIGN: finding local similarities by multiple 
sequence alignment  

1998 Notredame et al. COFFEE: an objective function for multiple sequence 
alignments  

1999 Bucka-Lassen et al. Combining many multiple alignments in one improved 
alignment 

1999 Morgenstern DIALIGN 2: improvement of the segment-to-segment 
approach to multiple sequence alignment  

1999 Thompson et al. A comprehensive comparison of multiple sequence 
alignment programs 

2000 Notredame et al. T-Coffee: A novel method for fast and accurate multiple 
sequence alignment  

2001 Arslan et al. A new approach to sequence comparison: normalized 
sequence alignment  
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Year Authors Title 

2001 Holmes and Bruno Evolutionary HMMs: a Bayesian approach to multiple 
alignment  
 

2001 Thompson et al. Towards a reliable objective function for multiple 
sequence alignments  

2002 Althaus et al. Multiple sequence alignment with arbitrary gap costs: 
Computing an optimal solution using polyhedral 
combinatorics  

2002 Katoh et al. MAFFT: a novel method for rapid multiple sequence 
alignment based on fast Fourier transform  

2002 Kent BLAT - The BLAST-like alignment tool  

2002 Lee et al. Multiple sequence alignment using partial order graphs  

2002 Miklos An improved algorithm for statistical alignment of 
sequences related by a star tree  

2002 Webb et al. BALSA: Bayesian algorithm for local sequence 
alignment  

2003 Sadreyev and Grishin COMPASS: a tool for comparison of multiple protein 
alignments with assessment of statistical significance 

2003 Sammeth et al. QAlign: quality-based multiple alignments with 
dynamic phylogenetic analysis 

2004 Edgar MUSCLE: multiple sequence alignment with high 
accuracy and high throughput 

2004 Wang and Li An adaptive and iterative algorithm for refining 
multiple sequence alignment 

2005 Do et al. ProbCons: Probabilistic consistency-based multiple 
sequence alignment 

2005 Wallace et al. Evaluation of iterative alignment algorithms for 
multiple alignment 

 


