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Abstract  

 

Overlapping genes are defined as a pair of protein-coding genes whose coding regions 

overlap on either the same strand or on the opposite strand. The sequence 

interdependence between two overlapping coding regions adds complexity to almost all 

molecular evolution analyses. Here, I use a comparative-genomic approach aimed at 

resolving several open questions concerning the evolution of overlapping genes. I 

demonstrate that estimates of selection intensity that ignore gene overlap are biased and 

that the magnitude and the direction of this bias is dependant on the type of overlap. I 

present a new method for the simultaneous estimation of selection intensities in 

overlapping genes. I show that overlapping genes are mostly subjected to purifying 

selection, in contradistinction to previous studies, which ignored the interdependence 

between overlapping reading frames and detected an inordinate prevalence of positive 

selection. Using simulation and two case studies, I show that this method can be used to 

distinguish between spurious and functional overlapping genes by using purifying 

selection as a tell-tale sign of functionality. In the first study, I test for the functionality 

of a hypothetical overlapping gene, which is central in the “Rosetta stone” hypothesis for 

the origin of the two aminoacyl tRNA synthetase classes from a pair of overlapping 

genes. I found no evidence of selection acting on the hypothetical gene, implying that 

the gene is non-functional, thus rejecting the “Rosetta stone” hypothesis. In the second 

study, I search for unannotated overlapping genes in viral genomes. I present evidence 

for the existence of a novel overlapping gene in the genomes of four viruses that infect 
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Hymenoptera. In another study, I present a method for the detection of selection 

signatures on hypothetical overlapping genes using population-level data. I apply the 

method to test whether the hypothetical gene in influenza A is under selection. Finally, I 

study a previously unexplained difference in the frequencies of overlapping genes of 

different types. I show that the structure of the genetic code and the abundance of 

different amino acids in proteins explain this difference between overlap types and lead 

to a correlation between overlap frequency and genomic composition.  
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Chapter One: General introduction 
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Information in protein-coding genes is contained within nucleotide triplets (codons) that 

are transcribed into RNA and eventually translated into amino acids, the building blocks 

of proteins. A DNA sequence can, therefore, be read in three reading-frames on one 

strand and three reading frames on the complementary strand potentially encoding six 

different proteins. When two or more proteins are encoded by a single DNA region, they 

are said to be encoded by overlapping genes. For example, Figure 1.1 shows a region of 

overlap between the gag and pol genes in the HIV genome.       

 

Figure 1.1: An example of gene overlap in the HIV genome, in which two proteins, 

gag (upstream) and pol (downstream), are encoded by two different reading 

frames.   

 

Genes can overlap on the same strand or on opposite strands. In addition, overlaps can 

be “internal,” in which one gene is entirely embedded within the other or “terminal,” 

where both genes extend beyond the overlap region (Figure 1.2). Terminal overlaps on 

opposite strands can either be “tail-to-tail” or “head-to-head” overlaps (Figure 1.2).  



 3

 

Figure 1.2: Overlap types. Genes are represented by arrows (5’ → 3’).  

 

If we denote the reading frame of a gene as phase 0, there are five possible overlap 

phases (Figure 1.3). Same-strand overlaps occur in frameshifts of one nucleotide (phase 

1) or two nucleotides (phase 2). Opposite-strand overlaps can be of three phases (0, 1, 

and 2). 
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Figure 1.3: Orientations and phases of gene overlap. Genes can overlap on the same 

strand or on the opposite strand. The reference gene in a pair of overlapping genes 

is called phase 0. Same-strand overlaps can be of two phases (1 and 2); opposite-

strand overlaps can be of three phases (0, 1, and 2). First and second codon 

positions, in which ~5% and 0% of the changes are synonymous, are marked in 

light and dark red, respectively. Third codon positions, in which ~70% of the 

changes are synonymous, are marked in blue. 

 

The existence of overlapping genes was considered a plausible possibility long before 

such genes were actually discovered (Vandenberg 1967; Parkinson 1968). Overlapping 

genes were first discovered in viruses (Barrell, Air, and Hutchison 1976) and later in all 

cellular domains of life (Smith and Parkinson 1980; Montoya, Gaines, and Attardi 1983; 

Jones et al. 1995). The abundance of overlapping genes in a genome varies across 

species. In eukaryotes, the percentage of genes that are involved in overlap is 5–14% 

(Table 1.1) and most of the overlaps are on opposite strands (Chen and Stein 2006; 

Makalowska, Lin, and Hernandez 2007; Nagalakshmi et al. 2008). Makalowska, Lin, 
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and Hernandez (2007) have examined the conservation of overlapping genes across 

several eukaryotic genomes and showed that overlapping genes are often species-

specific (Table 1.2).  

    

Table 1.1: Overlapping genes in eukaryotic genomes. The percentage of genes, 

which are involved in overlap and the percentage of overlaps, which are exon-exon, 

are given in parenthesis.    

Study Species 
Number 
of genes 

Number of genes in 
overlap (%) 

Number of 
overlaps 

Exon-exon 
(%) 

Human 22291 2978 (13.4) 1766 634 (35.9) 
Chimpanzee 21506 2219 (10.3) 1276 479 (37.5) 
Mouse 25383 3456 (13.6) 2053 819 (39.9) 
Rat 22159 1080 (4.9) 607 102 (16.8) 
Chicken 17709 1960 (11.1) 1135 511 (45.0) 
Fugu 20796 993 (4.8) 556 290 (52.2) 

Makalowska et 
al. 2007 

Zebrafish 23524 1625 (6.9) 1026 98 (9.6) 
Chen and Stein 
2006 C. elegans 21188 2380 (11.2) 1190 5 (0.4) 
Nagalakshmi et 
al. 2008 S. cerevisiae 4646 550 (11.8) 275 NA 

 

Table 1.2: Conservation of overlapping genes in eukaryotic genomes (adapted from 

Makalowska, Lin, and Hernandez 2007). Above diagonal shows total number of 

conserved overlaps, and below diagonal shows numbers of conserved exon/exon 

overlaps.  

  Human Mouse Rat Chicken Fugu Zebrafish 
Human - 274 98 64 23 17 
Mouse 146 - 141 76 26 16 
Rat 11 48 - 45 19 6 
Chicken 9 10 2 - 22 13 
Fugu 1 0 0 0 - 13 
Zebrafish 5 5 0 0 1 - 
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In bacteria, the number of overlaps is strongly correlated with the number of ORFs 

(Figure 1.4) (Fukuda, Nakayama, and Tomita 2003; Johnson and Chisholm 2004). 

Johnson and Chisholm (2004) showed that ~85% of the overlaps in bacteria are shorter 

than 30 bases and that ~83% of them are on the same strand. Overlaps on the same 

strand are more abundant because, on average, 70% of the genes in bacterial genomes, 

are located on one strand (Fukuda, Nakayama, and Tomita 2003).  

 

Figure 1.4: Correlation between the total number of genes and the number of 

overlapping gene pairs. Red: results using all genes; blue: results using only genes 

with high confidence in annotation (adapted from Fukuda, Nakayama, and Tomita 

2003). 
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Lillo and Krakauer (2007) examined the characteristics of gene overlap in several 

archaeal and bacterial genomes. They found that Archaea have on average a smaller 

fraction of same-strand overlapping and non-overlapping consecutive genes (Figure 1.5). 

They suggested that this difference between Archaea and Bacteria may be related to the 

reduced frequency of operons in Archaea (Lillo and Krakauer 2007). 

 

Figure 1.5: Percentage of overlapping genes in a given configuration (same-strand 

(a), opposite-strand tail-to-tail (b) and head-to-head (c)) versus the percentage of 

consecutive genes in the same configurations. The dashed lines are the y = x lines 

and serves as a guide to the eye for testing the hypothesis that the two percentages 

are equal. Red, Archaea; blue, Bacteria (Lillo and Krakauer 2007).  
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Unlike cellular organisms, in viruses the prevalence of overlapping genes is inversely 

correlated with genome size (Figure 1.6). For example the genome of Hepatitis B virus 

(Hepadnaviridae family, point 23 in Figure 1.6) contains four genes. Each of the genes 

overlaps with as least one other gene, leading to overlap proportion of ~12%.    

 

Figure 1.6: Relationship between overlap proportion and genome size, both 

presented in the scale of natural logarithms (adapted from Belshaw, Pybus, and 

Rambaut 2007). 

 

Overlapping genes were suggested to have unique roles in numerous processes such as 

gene regulation (Normark et al. 1983; Boi, Solda, and Tenchini 2004), genome 

imprinting (Cooper et al. 1998), development of human diseases (Karlin et al. 2002), and 
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the evolution of the genetic code (Kozlov 2000). In addition, overlapping genes were 

hypothesized to be a means of genome size reduction (Sakharkar et al. 2005) and 

increasing complexity (Assis et al. 2008), as well as a mechanism for creating new genes 

(Keese and Gibbs 1992). 

 

The main purpose of this study is to develop a framework for the evolutionary analysis 

of overlapping genes. I present a set of comparative-genomic methods aimed at 

resolving several open questions concerning the evolution of overlapping genes. 

 

Inferring the intensity of negative and positive selection acting on protein-coding genes 

is a fundamental task in molecular evolution, in particular, since positive Darwinian 

selection is used to shed light on the process of adaptation. The inference of selection 

intensity in overlapping genes is complicated by the sequence interdependence between 

two overlapping coding regions (Miyata and Yasunaga 1978; Smith and Waterman 

1981), which vary among overlap types (Krakauer 2000). Several attempts at estimating 

selection intensity in overlapping genes reported inordinate degrees of positive selection 

(e.g., Hughes et al. 2001; Li et al. 2004; Campitelli et al. 2006; Obenauer et al. 2006). 

For example, PB1-F2, an overlapping gene in influenza A, was reported to have a rate of 

nonsynonymous substitutions, which is nine times higher than that of synonymous 

substitutions (Obenauer et al. 2006). In Chapter Two, I present a new method for the 

simultaneous estimation of selection intensities in overlapping genes (see also, Sabath, 

Landan, and Graur 2008). By simulation, I verify the accuracy of the method, test its 

limitations, and compare the possible outcomes of estimating selection without 
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accounting for gene overlap across different overlap types. I show that the appearance of 

positive selection is caused by assuming that selection operates independently on each 

gene in an overlapping pair, thereby ignoring the unique evolutionary constraints on 

overlapping coding regions.  

 

Another problem is how to detect functional overlapping genes. I define functional 

protein-coding gene to be a region in the genome, which is transcribed into RNA and 

eventually translated into a protein. Because it is fairly common that at least one of the 

five possible overlapping reading frames of any gene (Figure 1.3) will contain an open 

reading frame (ORF) of a length that may be suitable to encode a protein, it is extremely 

difficult to decide whether an intact overlapping ORF is functional or spurious. The 

main reason for this difficulty is that the sequence of an overlapping gene is (by 

definition) constrained by the functional and structural requirements of another gene. As 

a result, numerous annotated overlapping genes were suspected to be spurious (Silke 

1997; Palleja, Harrington, and Bork 2008; Williams, Wolfe, and Fares 2009), whereas 

several unannotated overlapping genes were subsequently identified as bona fide 

protein-coding genes (Chung et al. 2008; Firth 2008; Firth and Atkins 2008b; Firth and 

Atkins 2008a; Firth and Atkins 2009). In Chapter Three, I demonstrate how my method 

for the estimation of selection intensity can be incorporated to distinguish between 

functional and spurious overlapping genes. Subsequently, I use the method to tackle the 

sense–antisense hypothesis for the origin of the two aminoacyl tRNA synthetase classes 

(Rodin and Ohno 1995; Carter and Duax 2002). 
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In Chapter Four, I use the method to scan viral genomes for overlapping genes that were 

missed in annotation (see also Sabath, Price, and Graur 2009). I present a discovery of a 

new overlapping gene in the genomes of Israeli Acute Paralysis Virus (IAPV) and three 

other viruses. IAPV infects honeybees and is associated with colony collapse disorder, a 

syndrome characterized by the mass disappearance of bees from hives. 

 

The method presented in Chapters Two, Three, and Four is limited to the analysis of 

sequences from divergent species. In some cases, the question of functionality is asked 

for an overlapping gene, which is unique to a population of clinically important viruses 

and bacteria. One such interesting case is that of influenza A. An ORF in the negative 

strand of segment eight of influenza A viruses was noted when this segment was first 

sequenced (Baez et al. 1980). The ORF, which is commonly found in human influenza A 

viruses, is absent from non-human influenza A viruses (e.g., avian) as well as from 

influenza B and C viruses. Recently, it was suggested that the ORF codes a functional 

gene (Zhirnov et al. 2007; Clifford, Twigg, and Upton in press). In Chapter Five, I 

present a method for the detection of selection signatures on hypothetical overlapping 

genes using population-level data. I test the method on both known and spurious 

overlapping genes. Finally, I apply the method to test whether the hypothetical gene in 

influenza A is under selection.  

 

In Chapter Six, I deal with the factors that influence the phase-distribution of 

overlapping genes. Krakauer (2000) defined the freedom for each gene to evolve 

independently (protein evolvability) according to the probability for changes, which are 
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nonsynonymous in one gene and synonymous in the overlapping gene. He showed that 

overlapping genes in different orientations and phases differ in the freedom for each 

gene to evolve independently (Figure 1.7). Therefore, he suggested that the variation in 

protein evolvability would be reflected in the frequency of the overlap phases. For 

example, in the case of opposite-strand overlaps, phase 1 in which the second codon 

position of one gene corresponds to the third codon position of the second gene (and vice 

versa), maximizes the freedom of each gene to evolve independently (Krakauer 2000) 

(Figure 1.7). In support of this model, Rogozin et al. (2002) found that among opposite-

strand overlaps in bacteria, the most evolvable overlap phase (phase 1) was the most 

abundant. However, this model failed to explain the phase-distribution of same-strand 

overlaps in bacteria (Johnson and Chisholm 2004; Cock and Whitworth 2007). Cock and 

Whitworth (2007) attributed the unexpected phase-distribution to either gene location or 

to an unspecified selective advantage. Using a large set of bacterial genomes, I present a 

model that explains the phase-distribution of same-strand overlapping genes by 

compositional factors (i.e., amino-acid frequencies and codon usage) without invoking 

selection (see also, Sabath, Graur, and Landan 2008).  
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Figure 1.7: Overlapping genes in different orientations and phases differ in the 

freedom for each gene to evolve independently. 

 

Finally, in Chapter Seven, I discuss my work in the light of our current knowledge of 

overlapping genes. I list several future lines of research, which I believe, will advance 

our understanding of the evolution of overlapping genes and, more generally, the 

evolution of genome architecture.     
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Chapter Two: A method for the simultaneous estimation of 

selection intensities in overlapping genes 
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Abstract 

 

Inferring the intensity of positive selection in protein-coding genes is important since it 

is used to shed light on the process of adaptation. Recently, it has been reported that 

overlapping genes, which are ubiquitous in all domains of life, exhibit inordinate degrees 

of positive selection. Here, I present a new method for the simultaneous estimation of 

selection intensities in overlapping genes. I show that the appearance of positive 

selection is caused by the assumption that selection operates independently on each gene 

in an overlapping pair, thereby ignoring the unique evolutionary constraints on 

overlapping coding regions. This method uses an exact evolutionary model, thereby 

voiding the need for approximation or intensive computation. I test the method by 

simulating the evolution of overlapping genes of different types as well as under diverse 

evolutionary scenarios. The results indicate that the independent estimation approach 

leads to the false appearance of positive selection even though the gene is in reality 

subject to negative selection. Finally, I use the method to estimate selection in two 

influenza A genes for which positive selection was previously inferred. I find no 

evidence for positive selection in both cases. 
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Introduction  

 

The interdependence between two overlapping coding regions results in unique 

evolutionary constraints (Miyata and Yasunaga 1978; Smith and Waterman 1981), 

which vary among overlap types (Krakauer 2000). Several attempts at estimating 

selection intensity in overlapping genes have been made (Hughes et al. 2001; Guyader 

and Ducray 2002; Li et al. 2004; Hughes and Hughes 2005; Narechania, Terai, and Burk 

2005; Campitelli et al. 2006; Holmes et al. 2006; Obenauer et al. 2006; Pavesi 2006; 

Suzuki 2006; Pavesi 2007; Zaaijer et al. 2007). In some studies, one gene was found to 

exhibit positive selection while the overlapping gene showed signs of strong purifying 

selection (e.g., Hughes et al. 2001; Li et al. 2004; Campitelli et al. 2006; Obenauer et al. 

2006). Inferences of positive selection in overlapping genes have been questioned 

(Holmes et al. 2006; Suzuki 2006; Pavesi 2007), mostly because ignoring overlap 

constraints might bias selection estimates. Rogozin et al. (2002) tried to overcome this 

problem by focusing on sites in which all changes are synonymous in one gene and 

nonsynonymous in the overlapping gene. This method, however, is only practical when 

dealing with one type of overlap. 

 

A model for the nucleotide substitutions in overlapping genes was introduced by Hein 

and Stovlbaek (1995), who followed approximate models for non-overlapping genes that 

classify sites according to degeneracy classes (Li, Wu, and Luo 1985; Nei and Gojobori 

1986; Pamilo and Bianchi 1993). This model was later incorporated into a method for 
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annotation of viral genomes (McCauley and Hein 2006; de Groot, Mailund, and Hein 

2007; McCauley et al. 2007), and recently used for estimating selection on overlapping 

genes (de Groot et al. 2008). The main weakness of approximate methods is that it 

assumes a constant degeneracy class for each site, whereas degeneracy changes over 

time as substitutions occur. Pedersen and Jensen (2001) suggested a non-stationary 

substitution model for overlapping reading frames that extended the codon-based model 

of Goldman and Yang (1994). This model encompasses the evolutionary process more 

accurately than the approximate model (Hein and Stovlbaek 1995) by accounting for 

position dependency of each site in an overlap region (Pedersen and Jensen 2001). 

However, this improvement disallowed the straightforward estimation of parameters and 

forced the authors to apply a computationally-expensive simulation procedure (Pedersen 

and Jensen 2001). Surprisingly, these models for nucleotide substitutions in overlapping 

genes were rarely cited, not to mention used, by the majority of studies estimating 

selection in overlapping genes. One reason that these methods were seldom used might 

be the lack of an accessible implementation.  

 

Here, I describe a non-stationary method, similar to that of Pedersen and Jensen (2001). 

The method simplifies selection estimation and avoids the need for costly simulation 

procedure. I test the method by simulating the evolution of overlapping genes of 

different types and under various selective regimes. Further, I describe the nature and 

magnitude of the error when selection is estimated as if the genes evolve independently. 

Finally, I use the method to estimate selection in two cases for which independent 

estimation has previously yielded indications of positive selection.   
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Methods 

 

A gene can overlap another on the same strand or on the opposite strand. Each overlap 

orientation has 2 or 3 possible overlap phases (Figure 1.3). To understand the 

consequences of estimating selection pressures on overlapping genes as if they are 

independent genes, let us consider a simplified view of the genetic code, in which all 

changes in first and second codon positions are nonsynonymous and all changes in third 

codon position are synonymous. In reality, the proportions of changes that are 

synonymous are ~5%, 0%, and ~70% for the first, second, and third codon positions, 

respectively. From Figure 1.3 we see that in all overlap types, but one (opposite-strand 

phase 2), all synonymous changes in one gene are nonsynonymous in the overlapping 

gene, while half of the nonsynonymous changes are synonymous in the overlapping 

gene. Since the rate of synonymous substitutions is usually higher than that of 

nonsynonymous substitutions, ignoring overlap constraints would result in the 

underestimation of the rate of synonymous substitutions. In the case of opposite-strand 

phase-2 overlaps, ignoring the overlap would result in the underestimation of 

nonsynonymous substitutions rate. The bias in the estimation would be correlated with 

the strength of purifying selection on the overlapping gene. Thus, a false inference of 

positive selection is likely for genes under relaxed purifying selection when the 

overlapping gene is under strong purifying selection. 
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Goldman and Yang’s (1994; 2006) method for the estimation of selection intensity in 

non-overlapping coding sequences  

 

The most commonly used method for estimating selection intensity on protein coding 

genes fits a Markov model of codon substitution to data of two homologous sequences 

(Goldman and Yang 1994; Yang 2006). The codon-based model of nucleotide 

substitution is specified by the substitution-rate matrix, Qcodon = {qij}, where qij is the 

instantaneous rate of change from codon i to codon j.  

(1) 
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Here, k is the transition/transversion rate, ω  is the nonsynonymous/synonymous rate 

ratio (dN/dS), and πj is the equilibrium frequency of codon j, which can be estimated 

from the sequence data by several models (Fequal, F1x4, F3x4, and F61, reviewed in 

Yang 2006). Parameters πj and k characterize the pattern of mutations, whereas ω  

characterizes selection on nonsynonymous mutations. Qcodon is used to calculate the 

transition-probability matrix 

(2)    P(t) = {pij(t)}= tQcodone , 

where pij(t) is a probability that a given codon i will become j after time t. Parameters k, 

t, and ω  are estimated by maximization of the log-likelihood function 

if i and j differ at two or three codon positions, 

if i and j differ by a synonymous transversion, 

if i and j differ by a synonymous transition, 

if i and j differ by a nonsynonymous transversion, 

if i and j differ by a nonsynonymous transition.
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(3)          ( ) ( ){ }∑∑=
i j

ijiij tpnt πlogl , 

where nij is the number of sites in the alignment consisting of codons i and j. The 

estimated parameters are then used to calculate dN and dS (Yang 2006).  

 

A new method for the simultaneous estimation of selection intensities in overlapping 

genes  

 

I follow the maximum likelihood approach of Goldman and Yang (1994; 2006) to 

construct a model that accounts for different selection pressures on the genes in the 

overlap. I start with the simplest case, that of opposite-strand phase-0 overlaps. The 

reason this is the simplest case is that each codon overlaps only one codon in the 

overlapping gene. The substitution of nucleotides in opposite-strand phase-0 overlaps is 

specified by the substitution-rate matrix, Qcodon = {qij}, where qij is the instantaneous rate 

of change from codon i to codon j. 
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The main difference between this model and the single-gene model is that here I 

distinguish between two dN/dS ratios ( 1ω  and 2ω  for gene 1 and gene 2, respectively). 

Another difference is the estimation of codon-equilibrium frequencies. Since the 

parameters of codon frequencies characterize processes that are independent of the 

selection on overlapping regions, I estimate these frequencies using the non-overlapping 

regions of each gene. The calculation of the transition-probability matrix and the log-

likelihood function is done in the same way as in the single-gene model (equations 2 and 

3).  

   

The above model is a simple expansion of the single-gene model to account for 

opposite-strand overlaps in phase 0. However, this model cannot be used in the other 

four overlap cases, same-strand phase-1 and phase-2 overlaps and opposite-strand phase-

if i and j differ at two or three codon positions, 

if i and j differ by a synonymous transversion in both genes, 

if i and j differ by a synonymous transition in both genes, 

if i and j differ by a nonsynonymous transversion in gene A and synonymous in gene B, 

if i and j differ by a nonsynonymous transversion in gene B and synonymous in gene A, 

if i and j differ by a nonsynonymous transition in gene A and synonymous in gene B, 

if i and j differ by a nonsynonymous transition in gene B and synonymous in gene A, 

if i and j differ by a nonsynonymous transversion in both genes, 

if i and j differ by a nonsynonymous transition in both genes. 
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1 and phase-2 overlaps, because in all these cases a codon overlaps two codons of the 

second gene. Therefore, I set the unit of evolution to be a codon (the reference codon) 

and its two overlapping codons, which together constitute a sextet (Figure 2.1). The 

sextet is, therefore, the smallest unit of evolution in overlapping genes. In this model, 

each gene constitutes a set of sextets and within each sextet, only the reference codon is 

allowed to evolve. Changes in this codon affect the two overlapping codons. For 

example, consider the red and blue overlapping genes in Figure 2.1a. A change from G 

to A in position five (Figure 2.1a, bold) is illustrated in Figure 2.1b for the red gene as a 

reference and in Figure 2.1c for the blue gene as a reference. Restricting changes to the 

reference codon only is essential for the model, since changes outside the reference 

codon will require the consideration of other overlapping codons outside of the sextet, 

and so ad infinitum. In addition, this restriction allows the model to maintain the 

assumption that each reference codon evolves independently.  
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Figure 2.1: a. An overlapping gene pair (red and blue). b. The codon that is allowed 

to evolve is marked in red. The substitution in the second-codon position affects the 

overlapping codon in blue. c. The opposite situation in which only the codon 

marked in blue is allowed to change.    

 

For gene A as the reference gene, I specify the substitution-rate matrix, QA
sextet = {qA

uv} 

where qA
uv is the instantaneous rate from sextet u to sextet v with the codons of gene A 

as the reference codons:  
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Similarly, I specify the substitution-rate matrix, QB
sextet = {qB

uv} for gene B as the 

reference gene, where qB
uv is the instantaneous rate from sextet u to sextet v with gene B 

codons as the reference codons. These substitution-rate matrixes, QA
sextet and QB

sextet, can 

be used to calculate transition-probability matrixes (equation 2). However, these 

transition-probability matrixes cannot be used directly in the maximization of a log-

likelihood function (equation 3) because they do not allow changes between any two 

sextets (as required in a Markov process). For example, the transition probability 

between sextets AAAAAA and CAAAAA (where the reference codons at positions 3-5 

are underlined) would be zero for any given time t, because changes at a position outside 

of the reference codon are not allowed. A similar difficulty led Pedersen and Jensen 

(2001) to use a complicated, computationally-expensive, simulation procedure to 

estimate model parameters. Hence, I use QA
sextet and QB

sextet to construct codon-based 

substitution-rate matrixes QA
codon = { ij

Aq } and QB
codon = { ij

Bq } by summing the rates  

 

if u and v differ at two or three codon positions or at a position outside the reference codon, 

if u and v differ by a synonymous transversion in both genes, 

if u and v differ by a synonymous transition in both genes, 

if u and v differ by a nonsynonymous transversion in gene A and synonymous in gene B, 

if u and v differ by a nonsynonymous transversion in gene B and synonymous in gene A, 

if u and v differ by a nonsynonymous transition in gene A and synonymous in gene B, 

if u and v differ by a nonsynonymous transition in gene B and synonymous in gene A, 

if u and v differ by a nonsynonymous transversion in both genes, 

if u and v differ by a nonsynonymous transition in both genes. 
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over all sextets that share the same reference codon. A similar approach was used by 

Yang et al. (1998) to construct an amino acid substitution-rate matrix from a codon 

substitution-rate matrix. Let I and J represent the sets of sextets whose reference codons 

are i and j, respectively, than, the substitution rate from codon i to codon j is 

(7)    ∑
∈∈

=
JvIu

uvij qq
,

. 

QA
codon and QB

codon are used to calculate a transition-probability matrix for each of the 

genes as in equation 2.  

(8)     PA(t) = {pA
ij(t)}= 

tA
codonQe and PB(t) = {pB

ij(t)}= 
tB

codonQe . 

The new transition-probability matrixes are suitable for a maximization of a log-

likelihood function since they allow transition between each two codons. PA(t) and PB(t) 

can be used separately to estimate model parameters in a log-likelihood function for each 

gene (equation 3). However, in order to use all the information in the data, I combine the 

two transition-probability matrixes to create the following log-likelihood function: 

(9)  ( ) ( ){ } ( ){ }∑∑∑∑ +=
i j

ij
B

i
B

ij
B

i j
ij

A
i

A
ij

A tpntpnt ππ loglogl  

Here, πA
i and πB

i are the equilibrium frequencies of codons in gene A and gene B 

respectively, estimated from the non-overlapping regions of the genes. nA
ij and nB

ij are 

the number of sites in the alignment consist of codons i and j for gene A and gene B, 

respectively.  

 

The method was implemented in Matlab and is available at 

http://nsmn1.uh.edu/~dgraur/Software.html. Running time is ~7 seconds for a pair of 

http://nsmn1.uh.edu/~dgraur/Software.html�
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aligned sequences of length 1000 codons. Similar to the single-gene model, this method 

can be extended to deal with multiple sequences in a phylogenetic context and to test 

hypotheses concerning variable selection pressures among lineages and sites (Nielsen 

and Yang 1998; Yang and Nielsen 1998; Zhang, Nielsen, and Yang 2005).  

 

Results  

 

Simulation studies  

 

I tested the performance of the new method for simultaneous estimation of selection 

intensities in comparison to the independent estimation that does not account for gene 

overlap (as described in equation 1). I examined the effects of the 

nonsynonymous/synonymous rate ratio in each gene ( 1ω  and 2ω ), the 

transition/transversion rate ratio (k), and the degree of sequence divergence (t). In all of 

the methods, I used the F3x4 model (Yang 2006) to estimate codon equilibrium 

frequencies. For each set of parameters, I generated 100 replications of random 

overlapping gene pairs (each gene was 2000 codons in length with 1000 codons in the 

overlap) by sampling codons from a uniform distribution of sense codons. To simulate 

the evolution along a branch of length t, I divided the sequence of the overlapping gene 

pair into three regions: non-overlapping region of gene one, non-overlapping region of 

gene two, and overlapping region. For the non-overlapping regions, I calculated the 

transition-probability matrixes based on the non-overlapping model in equation 1. For 
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the overlapping region, I calculated the transition-probability matrixes (based on the 

overlapping models in equations 5 and 6). Using the three probability matrixes, I 

simulated nucleotide substitutions at each codon independently (Yang 2006).  

 

Different selection pressures  

 

To examine the effect of different selection pressures, I initially set k = 1 and t = 0.35, 

which resulted in a sequence divergence of ~10%. I set 1ω  = 0.2 and varied 2ω  between 

0.2 and 2. In Figure 2.2, I compare the simultaneous estimation of 1ω  and 2ω  (blue line) 

and the independent estimation (red line) to the true simulated value (X axis, dashed 

green line) in the five types of overlaps. Each data point is the median of 100 

replications. I use the median rather than mean since ratios are not normally distributed. 

In all overlap types, the estimation of the new method is in near-perfect match to the 

simulated value (blue and green lines, Figure 2.2) and the bias in the independent 

estimation of 2ω  is greater than that of 1ω . 
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Figure 2.2: Simulation results in same-strand (SS) and opposite-strand (OS) 

overlaps. Estimations of the ratios of nonsynonymous to synonymous rates in the 

two genes ( 1ω  and 2ω ) by simultaneous estimation (blue line) and by independent 

estimation (red line) are plotted against the true value (X axis, dashed green line) 

for five types of overlap. The simulated value of 1ω  was set to 0.2 and 2ω  was 

varied between 0.2 and 2. k was set to 1 and t was set to 0.35. Each data point is the 

median of 100 replications. Vertical lines mark the lower and upper quartiles. Top: 

estimation of 1ω . Bottom: estimation of 2ω . Dotted black lines (X = 1 and Y = 1) 

illustrate the range of parameters that result in false inference of positive selection 

by independent estimation, i.e., when simulated 2ω  < 1 and estimated 2ω  > 1.  

  

As expected, I found a similar pattern of bias in all overlap types except opposite-strand 

phase 2. In all of these overlap types (same-strand phase 1, same-strand phase 2, 

opposite-strand phase 0, and opposite-strand phase 1), the independent estimation of 1ω  
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is overestimated for 2ω  < 1 and underestimated for 2ω  > 1. The independent estimation 

of 2ω  is overestimated throughout the range of the simulation resulting in the false 

inference of positive selection in gene 2, while in reality this gene is under weak 

purifying selection. For example, the independent estimation of 2ω  in same-strand phase 

1 is greater than one (apparent positive selection) for simulated values of 2ω  between 

0.5 and 1.  

 

The bias in opposite-strand phase 2 differs from the other overlap types because this 

overlap contains positions that are synonymous in both genes (Figure 1.3). Because of 

this factor, the independent estimation of 1ω  is underestimated for 2ω  < 1 and 

overestimated for 2ω  > 1. The independent estimation of 2ω  is underestimated 

throughout the range of the simulation, resulting in inability to detect positive selection 

in gene 2 for simulated values of 2ω  < 2.  

 

To compare the magnitude of error in the independent estimation of each overlap type, I 

set k = 1, t = 0.35, 1ω  = 0.2, and 2ω  = 1. I calculated the mean square error (MSE) for 

the independent estimation of 2ω  (the parameter whose estimation is most biased) in 

each overlap type. I use MSE because it measures both the bias and the variance. The 

most biased type is opposite-strand phase 1 followed by both same-strand phase 1 and 

phase 2, opposite-strand phase 0, and opposite-strand phase 2 (Table 2.1). As expected, 

the magnitude of error among overlap types is correlated with the proportion of sites in 
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each overlap type that are synonymous in one gene and nonsynonymous in the 

overlapping genes (Table 2.1). 

 

Table 2.1: The mean square error (MSE) of the independent estimation of selection 

intensity is correlated with the proportion of changes that are synonymous in one 

gene and nonsynonymous in the overlapping gene (SN changes).   

Orientation Phase Proportion of SN 
changes 

MSE 
Independent 

MSE 
Simultaneous 

Same-Strand 1 47% 1.83 0.04 

  2 47% 1.94 0.05 

Opposite-Strand 0 43% 0.64 0.03 

 1 63% 3.23 0.06 

  2 39% 0.40 0.04 
     

Transition/transversion rate ratio and sequence divergence  

 

I tested the influence of transition/transversion rate ratio (k), and sequence divergence (t) 

on the performance of the new method for simultaneous estimation. Focusing on same-

strand phase 1, I set 1ω  = 0.2, 2ω  = 1 and vary k between 1 and 20, and t between 0.1 

and 1.1. I calculated the MSE for the estimation of 2ω . The results of 100 replications 

suggest that transition/transversion rate ratio does not affect the accuracy of the method, 

whereas the accuracy of the method is reduced for t ≤ 0.3 (sequence divergence of ~8% 

or less, Figure 2.3). I note that although the new method performs well at high degrees of 
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sequence divergence, the inference of selection can be biased by the reduced quality in 

alignment of distant sequences.  

 

 

Figure 2.3: The influence of transition/transversion rate ratio (k), and sequence 

divergence (t) on the performance of the new method. The mean square error 

(MSE) is plotted against t for k = 1, 10, and 20 (blue, red, and green, respectively). 

 



 32

Testing the new estimation method on genes from influenza H5N1 and H9N2 strains  

 

I used the new method to estimate selection pressures in two cases of overlapping genes 

in avian influenza A. I chose PB1-F2 and NS1 genes (which overlap with PB1 and NS2, 

respectively), because they were previously reported to exhibit values of dN/dS 

indicative of positive selection (Li et al. 2004; Campitelli et al. 2006; Obenauer et al. 

2006; Pavesi 2007). For each gene, I collected all the annotated gene sequences from the 

two most sequenced subtypes, H5N1 and H9N2 from the NCBI Influenza Virus 

Resource (Bao et al. 2008). Within each subtype set, I aligned the overlapping regions of 

all gene pairs at the amino acid level using the Needleman and Wunsch  (1970) 

algorithm. I used all pairwise alignments with sequence divergence greater than 5% 

(since estimation is less accurate at low divergence rates) to estimate selection intensities 

either simultaneously or independently (Table 2.2). Using higher cutoffs for sequence 

divergence did not affect the results (data not shown). Pairs in which the independent 

estimation of dS was zero (leading to infinity value for dN/dS) were excluded. In 

agreement with previous studies, PB1-F2 and NS1 genes appear to be under positive 

selection when gene overlap is not accounted for. However, by using the new method for 

simultaneous estimation, these genes seem to be under weak purifying selection. As 

predicted by the simulation, the bias in the independent estimation is dependent on the 

degree of purifying selection acting on the overlapping gene, leading to higher bias in 

PB1-F2 compared to NS1.         
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Table 2.2: Estimation of selection intensity (ω̂ ) by independent and simultaneous 

estimation.  

Gene Subtypea Independent ω̂ b, c Simultaneous ω̂ b 

NS1 H5N1  1.25 (0.75 1.93)  0.81 (0.41 1.52) 

 H9N2  1.46 (1.07 2.24)  0.58 (0.38 0.86) 

NS2 H5N1  0.34 (0.24 0.52)  0.32 (0.22 0.50) 

  H9N2  0.24 (0.15 0.35)  0.23 (0.13 0.36) 

PB1-F2 H5N1  6.75 (5.74 9.88)  0.52 (0.40 0.76) 

 H9N2  6.41 (5.52 7.92)  0.46 (0.34 0.75) 

PB1 H5N1  0.03 (0.02 0.05)  0.02 (0.02 0.04) 

  H9N2  0.03 (0.02 0.05)  0.02 (0.01 0.04) 
 

aNumber of pairwise alignments of NS1 – NS2 overlaps is 10,569 and 8,745 for 

H5N1 and H9N2 subtypes, respectively; Number of pairwise alignments of PB1-F2 

and PB1 overlaps is 16,112 and 33,720 for H5N1 and H9N2 subtypes, respectively. 

bMedian of ω̂  over all pairwise comparisons. Lower and upper quartiles are noted 

in parentheses.  

cValues of selection intensity in PB1-F2 and NS1 genes that appear as positive 

selection by independent estimation are bolded. 

 

Discussion 

 

Overlapping genes are widespread in all taxa, but are particularly common in viruses 

(Belshaw, Pybus, and Rambaut 2007). The sequence interdependence imposed by gene 
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overlap adds complexity to almost all molecular evolutionary analyses. Here, I presented 

a new method for the estimation of selection intensities in overlapping genes. By 

simulation, I verified the accuracy of the method, tested its limitations, and compared the 

possible outcomes of estimating selection without accounting for gene overlap across 

different overlap types. I find that estimating selection as if the genes are independent of 

one another results in the false appearance of positive selection. The new model can be 

used to identify true functional genes, which are usually under negative or positive 

selection, from among hypothetical overlapping ORFs, which are mainly spurious.  
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Chapter Three: Using signature of selection to detect 

functional overlapping genes 
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Abstract 

 

As far as protein-coding genes are concerned, there is a non-zero probability that at least 

one of the five possible overlapping sequences of any gene will contain an open-reading 

frame (ORF) of a length that may be suitable for coding a functional protein. It is, 

however, very difficult to determine whether or not such an ORF is functional. In non-

overlapping genes, the signature of purifying selection is used as a telltale sign of 

functionality. Here, I propose an analogous method that predicts functionality of an 

overlapping ORF if it can be shown that the sequence is subject to selection. Through 

simulation, I tested the method under several conditions and compared it with an 

existing method. I applied the method to test the hypothesis that the two aminoacyl 

tRNA synthetase classes have originated from a pair of opposite-strand overlapping 

genes. An overlapping ORF on the opposite strand of a heat shock protein 70 coding 

gene was claimed to be a central component of this hypothesis. I show that there is no 

signature of purifying selection acting on the overlapping ORF, suggesting that it is not a 

functional gene. Finally, I discuss the limits of applicability of the method. I conclude 

that the upper limits of applicability are reached at divergence rates above ~30%. 
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Introduction 

 

Methods for the detection of protein-coding genes make use of three main properties: (1) 

the presence of an ORF; (2) expression of mRNA; and (3) conservation of ORFs 

between species. However, these properties are often uninformative in the case of 

overlapping genes, because: (1) non-functional ORFs that overlap functional genes are 

common; (2) non-functional overlapping ORFs are expressed when the overlap is on the 

same strand and, often, when the overlap is on opposite strands (Lavorgna et al. 2004); 

and (3) non-functional overlapping ORFs are conserved between species because of their 

functional overlapping genes.  

 

As a result, annotation programs often fail to correctly predict functional overlapping 

genes (Delcher et al. 1999), and distinguishing between spurious and functional 

overlapping genes is of great interest. Silke (1997) showed that the frequency of 

opposite-strand overlapping genes in vertebrate genomes is highly influenced by 

genomic GC content and codon usage, suggesting that a large part of these genes may be 

spurious. Palleja, Harrington, and Bork (2008) examined the conservation of length 

between overlapping genes in different bacterial species and concluded that many of the 

long overlapping genes have been misannotated.  

 

An interesting case of overlap is the one between heat shock protein 70 (HSP70) and its 

opposite-strand ORF (OS-ORF), which was reported in several species 
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(Konstantopoulou et al. 1995; Rother et al. 1997; Silke 1997; Monnerjahn et al. 2000; 

Carter and Duax 2002). This overlap was described as the “Rosetta stone” for the origin 

of the aminoacyl tRNA synthetase (aaRS) classes from opposite-strand overlapping 

genes. This hypothesis is based on proposed similarity between HSP-70 and OS-ORF to 

the two aaRS classes (Carter and Duax 2002) (Figure 3.1). Recently, the functionality of 

OS-ORF was questioned by Williams, Wolfe, and Fares (2009), which presented several 

lines of evidence, most notably the discontinuous phylogenetic distribution of the gene, 

suggesting that OS-ORF is spurious.    

 

Figure 3.1: The “Rosetta stone” hypothesis. The two aminoacyl tRNA synthetase 

(aaRS) classes were proposed to originate from opposite-strand overlapping genes, 

based on a perceived similarity between OS-ORF and class 1 aaRS, on the one 

hand, and between HSP70 and class 2 aaRS, on the other hand (Rodin and Ohno 

1995; Carter and Duax 2002, images from Carter and Duax 2002) 
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Firth and Brown (2005) were the first to use selection to detect functional overlapping 

genes. Their method (FB), which is suitable for sequence pairs, calculates several 

statistics for each particular pairwise sequence alignment and uses a Monte Carlo 

simulation to determine whether the sequence is single-coding or double-coding. This 

method was later applied to multiple sequences by choosing only neighboring terminal 

taxa in the phylogenetic tree (Firth and Brown 2006). With the FB method, possible 

novel overlapping genes were discovered in Potyviridae (Chung et al. 2008) and other 

viral clades (Firth 2008; Firth and Atkins 2008b; Firth and Atkins 2008a; Firth and 

Atkins 2009). Other methods that make use of selection signatures to detect functional 

overlapping genes were proposed (de Groot, Mailund, and Hein 2007; McCauley et al. 

2007; de Groot et al. 2008), but these methods have seldom been used, probably due to 

the lack of accessible implementation.  

 

Here, I present a new method for the detection of functional overlapping genes. Through 

simulation, I tested the method under several conditions and compared it with the FB 

method. Finally, I examine the “Rosetta stone” and use the method to test whether or not 

the OS-ORF is functional.  

 

Methods  

 

I utilize the method for the estimation of selection intensities in overlapping genes, 

which I presented in Chapter Two (see also, Sabath, Landan, and Graur 2008). This 
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method uses a maximum-likelihood framework to fit a Markov model of codon 

substitution to data from two aligned homologous overlapping sequences. To predict 

functionality of an ORF that overlaps a known gene, I modified an existing approach for 

predicting functionality in non-overlapping genes (Nekrutenko, Makova, and Li 2002). 

Given two aligned orthologous overlapping sequences, I estimate the likelihood of two 

hierarchical models. In model 1, there is no selection on the ORF. In model 2, the ORF 

is assumed to be under selection. The likelihood-ratio test is used to test whether model 

2 fits the data significantly better than model 1, in which case, the ORF is predicted to be 

under selection and most probably functional. 

 

Results and Discussion  

 

Simulation 

 

To test the performance of the new method (SG) and compare it to FB (Firth and Brown 

2006). I simulated the evolution of overlapping genes (as described in Chapter Two). In 

each run of the simulation, one gene was designated as known and the second as 

hypothetical. I examined the effects of the following factors on the ability of the two 

methods to detect selection in the hypothetical gene: (1) nonsynonymous/synonymous 

rate ratios in the hypothetical gene and the known gene (ωh and ωk, respectively), (2) 

overlap types (same-strand (SS) phase 1 and 2 and opposite-strand (OS) phase 0, 1, and 

2), (3) sequence divergence (t), and (4) sequence length.  



 41

 

I initially set the sequence length to 300 codons and t = 0.4, which corresponds to a 

sequence divergence of ~12%. I set ωk to 0.2 and varied ωh between 0.2 (strong 

purifying selection) and 1 (no selection). For each set of parameters, I generated 100 

random pairs of overlapping genes. Sensitivity is defined as the percent of hypothetical 

genes under selection that were identified correctly by the method. Specificity is defined 

as the fraction of hypothetical genes that were incorrectly identified to be under selection 

when ωh was set to 1 (i.e., no selection). The results are shown in Figure 3.2a. Each 

square presents the results for SB (solid blue: p < 0.01; dashed blue: p < 0.05) and FB 

(red) methods against ωh (X axis). An ideal detector is exemplified by a dashed green 

line. Each data point is the percentage of runs in which the methods detected selection. 

The five overlap types are shown in each column. As expected, the sensitivity of both 

methods decreased with increase in ωh. In all overlap types, SG exhibits a higher 

sensitivity than FB, up to ~80% in same-strand for ωh = 0.4. As expected, using SG with 

p-value of 0.05 (rather than 0.01), increase the method’s sensitivity at the cost of lower 

specificity. For opposite-strand phase 2, both methods perform similarly. This phase is 

unique in that the third codon position of both genes corresponds and, thus, most 

changes are either nonsynonymous in both genes, or synonymous in both (Figure 1.3). 

This overlap phase was also reported to generate high rate of false-positive results (Firth 

and Brown 2006).   

 

In the next three sets, I tested different values of t, ωk, and sequence length, one 

parameter at a time. In Figure 3.2b, I present the performance of the methods at high 
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sequence divergence levels (t = 1, corresponding to a sequence divergence of ~24%). 

For both methods, the results are similar to those at low sequence divergence. In Figure 

3.2c, I present the results for stronger selection level on the known gene (ωk = 0.1). The 

performance of SG is similar to that in (a) and (b), whereas the sensitivity of FB is 

reduced in same-strand phase 1 and 2 and opposite-strand phase 0 and 1. In Figure 3.2d, 

I present the results for short sequence length (60 codons). Under these conditions, SG 

and FB perform similarly, with SG showing reduced sensitivity compared to (a), (b), and 

(c).   

 

Figure 3.2: Detection of selection by SB (solid blue: p < 0.01; dashed blue: p < 0.05) 

and FB (red) methods on simulated genes. An ideal detector is illustrated by a 

dashed green line. Each data point is the percentage of runs for which the methods 

detected selection. The five overlap types are shown in each column. Four sets of 
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values for sequence divergence (t), ωk, and sequence length are shown in each row 

(see text).  

 

Overall, the simulation demonstrates that, under most conditions, SG performance is as 

good as FB or higher. The advantage of using SG over FB increases when the known 

gene is under strong purifying selection, whereas both methods perform alike on short 

sequences. In addition, SG was found to be more robust among overlap types in 

comparison to FB, whose performance is more variable, especially in the case of 

opposite-strand phase-2 overlaps. Similarly to FB, SG can be applied to multiple 

sequences by choosing only neighboring terminal taxa in the phylogenetic tree (Firth and 

Brown 2006). This approach, while ingenious, only indirectly addresses the phylogenetic 

framework and may be biased for trees with non-uniform branch-length distribution. In 

future studies, it would be beneficial to take full advantage of the maximum-likelihood 

framework that allows testing hypotheses concerning variable selection pressures among 

lineages and sites (Nielsen and Yang 1998; Zhang, Nielsen, and Yang 2005). This might 

be of special significance for overlapping genes because they may exist as a non-

functional ORF before they become functional (Keese and Gibbs 1992).  

 

Testing the functionality of functionality of the OS-ORF   

 

The functionality of HSP70 and its overlapping OS-ORF constitute a central tenet of the 

hypothesis concerning the origin of the two aaRS classes. A recent study by Williams, 

Wolfe, and Fares (2009) cast doubt on the functionality of the OS-ORF. I used SG, 
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which is a method that is different than the approach used by Williams, Wolfe, and Fares 

(2009), to ascertain whether selection operates on the OS-ORF. I identified 38 bacterial 

HSP-70 genes with an intact OS-ORF and tested for selection on the OS-ORFs in all 

homologous pairs. The results are shown in Figure 3.3. For each pair, the amino-acid 

sequence divergence of the OS-ORFs was plotted against that of HSP-70. Pairs, for 

which the method did not detect selection, are marked in blue, and pairs, for which a 

signature of selection was found, are marked in red. The detection of selection signatures 

only in highly diverged pairs suggests that these are false positive results and that OS-

ORF is not a functional gene.  

The most likely reason for inaccuracy in high sequence divergence is that the method 

estimates the probability of one codon to change to another by summing over all 

possible paths. With the increase in divergence, the number of possible paths rises and, 

consequently, the power of the method to recover to true path decreases. These results 

imply that ~30% divergence between sequences should be the upper boundary for using 

the SG method. This boundary is comparable to the one suggested for exon detection 

using a single-coding genes analogous method (Nekrutenko, Makova, and Li 2002).  
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Figure 3.3: Testing for selection on OS-ORF. The amino-acid sequence divergence 

of the OS-ORF is plotted against that of HSP-70 for all pairs of homologous 

sequences. Red: sequence pairs, for which the method detected selection. Blue: 

sequence pairs, for which the method did not detect selection.  

 

In this chapter, I presented a new method for the detection of functional overlapping 

genes. By simulation, I compared the method to the FB method, and tested both methods 

across different overlap types. I found that under most conditions, my method predicts 

functionality with higher sensitivity while maintaining high specificity. Finally, I 
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conclude that OS-ORF is most likely not a functional gene and therefore cannot be 

regarded as the “Rosetta stone” for the overlap origin of the aaRS classes. 
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Chapter Four: A potentially novel overlapping gene in the 

genomes of Israeli acute paralysis virus and its relatives 
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Abstract 

  

The Israeli acute paralysis virus (IAPV) is a bee-infecting virus that was found to be 

associated with colony collapse disorder. The IAPV genome was previously described to 

contain only two long open-reading frames encoding a structural and a nonstructural 

polyprotein. By using the method for the detection of functional overlapping genes, I 

provide evolutionary evidence for the existence of a third, overlapping gene. The new 

gene, which I provisionally call pog (predicted overlapping gene), is translated in the +1 

reading frame of the structural polyprotein gene. Conserved orthologs of this gene were 

also found in the genomes of a monophyletic clade that includes IAPV, acute bee 

paralysis virus, Kashmir bee virus, and Solenopsis invicta (red imported fire ant) virus 1. 

The discovery of a new gene may improve our understanding of this virus and its 

interaction with its host. 
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Introduction 

 

Colony collapse disorder (CCD) is a syndrome characterized by the mass disappearance 

of honeybees from hives (Oldroyd 2007). CCD imperils a global resource valued at 

approximately $200 billion (Gallai et al. 2009). It has been estimated that up to 35% of 

hives in the US may have been affected (van Engelsdorp et al. 2008). Many culprits have 

been suggested as causal factors of CCD, among them fungal, bacterial, and protozoan 

diseases, external and internal parasites, in-hive chemicals, agricultural insecticides, 

genetically modified crops, climatic factors, changed cultural practices, and the spread of 

cellular phones (Oldroyd 2007).  

 

The Israeli acute paralysis virus (IAPV), a positive-strand RNA virus belonging to the 

family Dicistroviridae, was found to be strongly correlated with CCD (Cox-Foster et al. 

2007). It was first isolated in Israel (Maori et al. 2007)—hence the name—but was later 

found to have a worldwide distribution (Cox-Foster et al. 2007; Blanchard et al. 2008; 

Palacios et al. 2008).  

 

The genome of IAPV contains two ORFs separated by an intergenic region. The 5’ ORF 

encodes a structural polyprotein; the 3’ ORF encodes a non-structural polyprotein 

(Maori et al. 2007). The non-structural polyprotein contains several signature sequences 

for helicase, protease, and RNA-dependent RNA polymerase. The structural polyprotein, 
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which is located downstream of the non-structural polyprotein, encodes two (and 

possibly more) capsid proteins.  

 

Overlapping genes may be missed by annotation, even in genomes of highly studied 

viruses (Chen et al. 2001). Recently, several overlapping genes were detected using the 

signature of purifying selection (Chung et al. 2008; Firth 2008; Firth and Atkins 2008b; 

Firth and Atkins 2008a; Firth and Atkins 2009). Here, I apply the method for the 

detection of functional overlapping genes, which I described in Chapter Three, to the 

genome of IAPV and its relatives.  

 

Methods 

 

Sequence Data, Processing, and Analysis 

 

Fourteen completely sequenced dicistrovirid genomes were obtained from NCBI (Table 

4.1). Each genome was scanned for the presence of overlapping ORFs. I used BLASTP 

(Altschul et al. 1990) with the protein sequences of the known genes to identify matches 

of orthologous overlapping ORFs (E value < 10-6). Matching overlapping ORFs were 

assigned into clusters. Within each cluster, I aligned the amino-acid orthologs by using 

the sequences of the known genes as references. If alignment length of the overlapping 

sequence exceeded 60 amino acids, and if the amino-acid sequence identity among the 
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hypothetical genes within a cluster was higher than 65%, I tested for signature of 

purifying selection on the hypothetical gene (as described in Chapter Three).  

 

Table 4.1: A list of completely sequenced dicistroviruses used in this study  

Name Accession number 

Israel acute paralysis virus (IAPV) NC_009025 

Acute bee paralysis virus (ABPV) NC_002548 

Kashmir bee virus (KBV) NC_004807 

Solenopsis invicta virus (SINV-1) NC_006559 

Black queen cell virus (BQCV) NC_003784 

Cricket paralysis virus (CrPV) NC_003924 

Homalodisca coagulata virus-1 (HoCV-1) NC_008029 

Drosophila C virus (DCV) NC_001834 

Aphid lethal paralysis virus (ALPV) NC_004365 

Himetobi P virus (HiPV) NC_003782 

Taura syndrome virus (TSV) NC_003005 

Plautia stali intestine virus (PSIV) NC_003779 

Triatoma virus (TrV) NC_003783 

Rhopalosiphum padi virus (RhPV) NC_001874 

 

I aligned the protein sequences of the two polyproteins with CLUSTAW (Thompson, 

Gibson, and Higgins 2002) as implemented in the MEGA package (Kumar et al. 2008). 

Alignment quality was confirmed using HoT (Landan and Graur 2007). I reconstructed 
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two phylogenetic trees (one for each polyprotein) by applying the neighbor joining 

method (Saitou and Nei 1987), as implemented in the MEGA package (Kumar et al. 

2008). Trees were rooted by the mid-point rooting method (Farris 1972) and confidence 

of each branch was estimated by bootstrap with 1000 replications.  

 

Motifs 

 

I searched for motifs within the inferred protein sequences encoded by the overlapping 

ORF by using the motif search server ( 3Uhttp://motif.genome.jp/) and the My-Hits server 

(http://hits.isb-sib.ch/cgi-bin/PFSCAN) with the following motif databases: PRINTS 

(Attwood et al. 2002), PROSITE (Hulo et al. 2006), and Pfam (Finn et al. 2008). I used 

PSIPRED (McGuffin, Bryson, and Jones 2000) to predict secondary structure, and 

MEMSAT (Jones 2007) to predict transmembrane protein topology. 

 

Results and Discussion  

 

In the fourteen completely sequenced dicistrovirus genomes (Table 4.1), I identified 43 

overlapping ORFs of lengths equal or greater than 60 codons on the positive strand. Ten 

overlapping ORFs were found in concordant genomic locations in two or more genomes. 

The concordant overlapping ORFs were assigned into three orthologous clusters (Table 

4.2). The overlapping ORFs in all three clusters are phase-1 overlaps, i.e., shifted by one 

nucleotide relative to the reading-frames of the known polyprotein genes. Two of the 
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orthologous clusters (B and C) overlap the gene encoding the nonstructural protein, and 

one cluster (A) overlaps the reading frame of the structural protein.  

 

Table 4.2: Clusters of orthologous overlapping ORFs on the positive strand  

Cluster Virus  Start of ORF End of ORF 
Length 

(nucleotides) 

A IAPV 6589 6900 312 

 ABPV 6513 6815 303 

 KBV 6601 6909 309 

  SINV-1 4382 4798 417 

B ABPV 5958 6227 270 

  KBV 5974 6243 270 

C CrPV 2396 2614 219 

 DCV 2216 2602 387 

 HoCV-1 2377 2574 198 

  PSIV 2333 2527 195 

 
 

I identified a strong signature of purifying selection in cluster A that contains 

overlapping ORFs from four genomes: IAPV, Acute bee paralysis virus (ABPV), 

Kashmir bee virus (KBV), and Solenopsis invicta virus 1 (SINV-1) (Govan et al. 2000; 

de Miranda et al. 2004; Valles et al. 2004). This ORF overlaps the 5’ end of the 

structural polyprotein gene (Figure 4.1a). The signature of selection was identified in the 
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three bee viruses (IAPV, ABPV, and KBV). The protein product of the orthologous ORF 

in SINV-1 could not be tested for selection because the amino acid sequence identity 

between the ORF from SINV-1 and the ORFs from the three bee viruses (Table 4.3) is 

lower than the range of sequence identities for which the method can be applied (65-

95%).  
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Figure 4.1: (see previous page) Phylogenetic trees and schematic representation of 

the dicistrovirid genomes (a. structural polyprotein; b. non-structural polyprotein). 

Trees were inferred using the neighbor joining method (Saitou and Nei 1987) and 

rooted by the mid-point rooting method (Farris 1972). Numbers above and below 

the branches are bootstrap values (1000 replications) and branch lengths (amino-

acid substitutions per site), respectively. Phylogenetic analyses were conducted with 

MEGA (Kumar et al. 2008). The approximate locations and sizes of the known 

genes (blue), overlapping hypothetical genes (red, green, and orange), and singlet 

ORFs (gray) are noted in the three reading frames. 

 

An additional indication for selection on these ORFs was obtained by comparing the 

degrees of conservation of the hypothetical protein sequences of the overlapping ORFs 

against the protein sequences of the known genes (Table 4.3). The degree of amino-acid 

conservation and, hence, sequence identity between orthologous protein-coding genes is 

influenced ceteris paribus by the intensity of purifying selection. If both overlapping 

genes are under similar strengths of selection, the amino-acid sequence identity of one 

pair of homologous genes would be similar to that of the overlapping pair. On the other 

hand, if a functional gene overlaps a non-functional ORF, the amino-acid identity 

between the hypothetical protein sequences of the non-functional ORFs would be much 

lower than that between the two homologous overlapping functional genes. I found that 

the degree of amino-acid conservation of the overlapping sequence identity between 

pairs of overlapping ORFs in cluster A is only slightly lower than that of the known gene 



 57

(Table 4.3). In contrast, the amino-acid sequence identity between ORF pairs in clusters 

B and C is much lower than that between the pairs of known genes (Table 4.3).  

 

Table 4.3: Sequence conservation in comparisons of known orthologous proteins 

and orthologous products of overlapping ORFs. 

Cluster  Genome pair 
Identity of known 

proteins (%) 

Identity of 

hypothetical product 

of overlapping ORFs 

(%) 

A IAPV ABPV 80.2 74.8 

 ABPV KBV 79.3 75.6 

 IAPV KBV 77.4 72.5 

 IAPV SINV-1 42.7 30.3 

 ABPV SINV-1 41.6 32.6 

  KBV SINV-1 36.3 29.4 

B KBV ABPV 87.7 52.3 

C CrPV DCV 80.3 36.1 

 HoCV-1 PSIV 64.3 40.0 

 DCV HoCV-1 56.4 28.8 

 CrPV HoCV-1 48.0 31.7 

 DCV PSIV 44.2 36.4 

 CrPV PSIV 35.7 25.0 

 



 58

The strong signature of purifying selection on the ORFs in cluster A suggests that they 

may encode functional proteins. I provisionally term this gene pog (predicted 

overlapping gene). In Figure 4.1, I show that pog is found in the genomes of four viruses 

that constitute a monophyletic clade, but not in any other dicistrovirid genome (Figure 

4.1a). Its phylogenetic distribution suggests that pog originated before the divergence of 

SINV-1 from the three bee viruses. The phylogenetic distributions of the ORFs in 

clusters B and C (Figure 4.1b) are patchy. I interpret this patchiness to indicate that the 

overlapping ORFs in clusters B and C are spurious, i.e., non-functional.  

 

Figure 4.2: Codon alignment of the 5’ overlap region between the structural 

polyprotein and the hypothetical gene. The alignment is shown in the reading frame 

of the hypothetical gene. The annotated initiation site of the polyproteins is 

underlined. The first potential initiation site (AUG or CUG) of the hypothetical 

genes is marked in red. The last stop codon at the +1 reading frames is marked in 

green.  

 

 

1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20   
IAPV  gaa cag ctg tac tgg gca gtt aca gca gtc gta tgg taa cac atg cgg cgt tcc gaa ata 
ABPV  gaa cag cta tat tgg gta gtt gta gca gtt gta ttc aaa tga atg cag cgt tcc gaa ata 
KBV  aaa ccg cta tat cgg gta gct ata gca gtc gga tag taa tat atc cgg cgt ttc gaa ata 
SINV-1 tag cag tca gga tgt cat tct ggc gtt ccg aaa tac cca aac ctg ctc aat caa aca atg 
 

21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40 
IAPV  cca tgc ctg gcg att cac aac aag aaa gca ata ctc cca acg tac aca ata cgg aac tcg 
ABPV  tca tac ctg ccg atc --- --- aag aaa caa ata ctt cca acg tac ata ata cgc aac tcg 
KBV  cca tac ctg ctg ata --- acc aag aaa acg att cta cca atg tac ata aca cga aac tcg 
SINV-1  cga ata ctt ttg aga cga aaa cgg caa caa cct ctg ctt ccc acg cac aat cgg aac tta 
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An examination of the DNA alignment of pog (Figure 4.2) reveals a conservation of the 

first potential start codon (AUG or CUG) in the +1 reading frame in three out of the four 

viral genomes (IAPV, ABPV, and SINV-1). As seen in Figure 4.3, this conservation 

cannot be explained by constraints on the overlapping polyprotein, in which the 

corresponding site is variable and encodes different amino acids (His, Asn, and Pro, in 

IAPV, ABPV, and SINV-1, respectively). I note, however, that I did not find a 

conserved Kozak consensus sequence, which are often involved in the initiation of 

translation (Kozak 1983), upstream of the potential initiation site.  

 

To predict the function of the new gene, I conducted a motif search, which resulted in 

several matches, all with a weak score. Two patterns were found in all four proteins: (1) 

a signature of rhodopsin-like GPCRs (G protein-coupled receptors), and (2) a protein 

kinase C phosphorylation site (Figure 4.3). Prediction of the secondary structures 

(McGuffin, Bryson, and Jones 2000) suggests that the proteins contain two conserved 

helix domains, separated by 3–5 residues (except for SINV-1, in which one long domain 

is predicted), at the C-terminus (Figure 4.3). A search for transmembrane topology 

(Jones 2007) indicates that the longer helix may be a transmembranal segment (Figure 

4.3). Although viruses often use GPCRs to exploit the host immune system through 

molecular mimicry (Lalani and McFadden 1999; Murphy 2001; Hughes and Friedman 

2003; McLysaght, Baldi, and Gaut 2003), the lengths of the proteins encoded by pog are 

shorter than the average virus-encoded GPCR. Therefore, these proteins may have a 

different function. 
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Figure 4.3: The amino-acid alignment of the overlap region between the structural 

polyprotein and the hypothetical gene (+1 reading frame). The annotated initiation 

site of the polyproteins is marked in blue. The first potential initiation site (AUG or 

CUG) of the hypothetical genes is marked in red. The last stop codon at the +1 

reading frames is marked in green. Transmembranal helixes predicted by 

MEMSAT (Jones 2007) are marked in magenta. Conserved protein kinase C 

phosphorylation sites predicted through My-Hits server (http://hits.isb-sib.ch/cgi-

bin/PFSCAN) are marked in yellow. 

 

 

Overlapping ORFs on the negative strand 

 

I also examined the overlapping ORFs on the negative strand, despite the fact that 

dicistroviruses are not known to be ambisense, i.e., RNA viruses that encode genes on 

IAPV  GTAVLGSYSSRMVTHAAFRNTMPGDSQQESNTPNVHNTELASSTSENSVETQEITTFHDV  60 
ABPV  GTAILGSCSSCIQMNAAFRNIIPADQ--ETNTSNVHNTQLASTSEENSVETEQITTFHDV  58 
KBV  ETAISGSYSSRIVIYPAFRNTIPADN-QENDSTNVHNTKLASTSAENAIEKEQITTFHDV  59 
SINV-1  IAVRMSFWRSEIPKPAQSNNANTFETKTATTSASHAQSELSETTPENSLTRQELTVFHDV  60 
 
IAPV   +1  EQLYWAVTAVVW*HMRRSEIPCLAIHNKKAILPTYTIRNSLRPLVKTRLRPKKSQPFMMW 
ABPV   +1    EQLYWVVVAVVFK*MQRSEISYLPI--KKQILPTYIIRNSRRPLKKTQLKRNKSPPFMMW 
KBV    +1     KPLYRVAIAVG**YIRRFEIPYLLI-TKKTILPMYITRNSRRPQRRMPLRRNKSPPFMMW 
SINV-1 +1  *QSGCHSGVPKYPNLLNQTMRILLRRKRQQPLLPTHNRNLARRPQKIPLPDKNSQFSMML 
 
 
IAPV   ETPNRIDTPMAQDTSSARNMDDTHSIIQFLQRPVLIDNIEIIAGTTADANKPLSRYV--- 117 
ABPV   ETPNRINTPMAQDTSSARSMDDTHSIIQFLQRPVLIDHIEVIAGSTADDNKPLNRYV--- 115 
KBV   ETPNRIDTPMAQDTSSARSMDDTHSIIQFLQRPVLIDNIEIVAGTTADNNTALSRYV--- 116 
SINV-1   EQPRVALPIAPQTTSSLAKLDSTATIVDFLSRTVVLDQFELVQGESNDNHKPLNAATFKD 120 
                 
IAPV   +1    KLQIGSIPPWLRILHRLGTWMIRTVLFSFYSAPFSLTTLRSLLEQRPMQTNPLADM*--- 
ABPV   +1    KLQIGSIPPWLKTLHRLGAWMIRTVLFSFYNAPYSLTTLRSLLDQQQMITNPSIDM*--- 
KBV    +1     KLQIGSIPPWLRILHRLGAWMIRTVLFSFYNAPFSLTTLRLLQEQLPITTQHSVDM*--- 
SINV-1 +1  NNLASLFQLLRKRLALLLSLILQRQLWIFFLELLSSINSSLFKVNQTITTNPLTQQLLKT           
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both strands (Nguyen and Haenni 2003). In the fourteen completely sequenced 

dicistroviruse genomes (Table 4.1), I identified 240 overlapping ORFs of length equal or 

greater than 60 codons on the negative strand. Of the 240 ORFs, 113 were found in 

concordant genomic locations in two or more genomes. The concordant overlapping 

ORFs were assigned into 29 clusters (Table 4.4). There are 9, 1, and 19 clusters in phase 

0, 1, and 2, respectively. The cluster size ranges from 2 to 9. In only two clusters, 5 and 

10, both in phase 2, I detected a weak signature of selection. However, this signature 

seems to be a false positive, which was driven by the unique structure of opposite-strand 

phase-2 overlap (as described in Chapter Three). In this structure, codon positions one 

and two of one gene match codon positions two and one of the overlapping gene. This 

structure leads to a situation where most changes are either synonymous or 

nonsynonymous in both overlapping genes and occasionally, to false signal of purifying 

selection on the overlapping ORF. I therefore conclude that dicistroviruses most 

probably do not encode proteins on the negative strand. 
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Table 4.4: Clusters of orthologous overlapping ORFs on the negative strands of 

dicistrovirid genomes.  

Cluster Virus Phase Start End Length 

1 IAPV 1 913 1131 219 

1 ABPV 1 975 1175 201 

1 KBV 1 1006 1191 186 

2 IAPV 2 902 1087 186 

2 ABPV 2 1042 1593 552 

2 IAPV 2 1334 1630 297 

2 KBV 2 1454 1690 237 

3 IAPV 2 1634 1906 273 

3 KBV 2 1724 1927 204 

3 ABPV 2 1747 2031 285 

4 IAPV 2 2507 2755 249 

4 ABPV 2 2509 2697 189 

4 SINV-1 2 276 581 306 

4 HiPV 2 2940 3125 186 

4 RhPV 2 2445 2795 351 

4 TrV 2 2723 2962 240 

5 IAPV 2 4070 4510 441 

5 KBV 2 4082 4375 294 

5 ABPV 2 3982 4275 294 

5 SINV-1 2 1902 2186 285 

6 IAPV 2 4694 4948 255 

6 KBV 2 4706 4990 285 

7 IAPV 2 5696 5941 246 
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7 SINV-1 2 3570 3761 192 

7 CrPV 2 5376 5558 183 

8 IAPV 0 1224 1421 198 

8 ABPV 0 1127 1318 192 

8 KBV 0 1107 1349 243 

9 IAPV 0 5859 6086 228 

9 RhPV 0 5983 6228 246 

9 ALPV 0 6030 6305 276 

9 ABPV 0 5957 6307 351 

9 IAPV 0 6111 6395 285 

9 KBV 0 6102 6305 204 

9 SINV-1 0 3811 3996 186 

9 HoCV-1 0 5325 5537 213 

10 IAPV 2 7601 7792 192 

10 KBV 2 7436 7783 348 

10 ABPV 2 7426 7761 336 

10 SINV-1 2 5805 6104 300 

10 TSV 2 7729 7998 270 

11 IAPV 2 8471 8677 207 

11 ABPV 2 8383 8571 189 

12 IAPV 0 7614 8099 486 

12 KBV 0 7890 8102 213 

12 SINV-1 0 5776 6141 366 

13 IAPV 0 8103 8402 300 

13 BQCV 0 7094 7405 312 

13 TrV 0 7366 7575 210 

14 IAPV 0 8406 8600 195 
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14 KBV 0 8352 8594 243 

15 KBV 2 3239 3571 333 

15 ABPV 2 3289 3477 189 

16 KBV 2 5168 5434 267 

16 ABPV 2 5068 5250 183 

16 SINV-1 2 3090 3485 396 

16 PSIV 2 4716 5006 291 

16 TSV 2 5537 5764 228 

16 TrV 2 4646 4864 219 

16 HiPV 2 5130 5327 198 

17 KBV 2 6821 7090 270 

17 ABPV 2 6727 6996 270 

18 KBV 2 8609 8896 288 

18 ABPV 2 8575 8853 279 

18 SINV-1 2 6897 7376 480 

19 ABPV 2 2035 2340 306 

19 SINV-1 2 28 269 242 

19 DCV 2 2043 2231 189 

19 RhPV 2 2073 2441 369 

19 CrPV 2 2004 2258 255 

19 ALPV 2 1571 2278 708 

19 BQCV 2 1926 2123 198 

19 RhPV 2 1617 2051 435 

20 ABPV 2 5872 6141 270 

20 ALPV 2 6218 6424 207 

20 CrPV 2 5562 5786 225 

20 TSV 2 6254 6436 183 
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20 PSIV 2 5643 5825 183 

21 ABPV 0 5303 5539 237 

21 BQCV 0 4609 4923 315 

21 SINV-1 0 3034 3282 249 

21 TrV 0 4938 5150 213 

21 HoCV-1 0 4596 4877 282 

21 ALPV 0 5286 5582 297 

21 RhPV 0 5392 5583 192 

21 TrV 0 4575 4781 207 

21 PSIV 0 5086 5280 195 

22 SINV-1 0 169 387 219 

22 DCV 0 2152 2397 246 

22 CrPV 0 2293 2505 213 

22 RhPV 0 2332 2586 255 

22 KBV 0 2550 2756 207 

22 HiPV 0 2806 3057 252 

22 ALPV 0 2142 2456 315 

23 CrPV 0 4063 4293 231 

23 RhPV 0 4612 4836 225 

23 ALPV 0 4692 4877 186 

24 CrPV 2 6402 6641 240 

24 BQCV 2 5995 6186 192 

24 PSIV 2 6291 6578 288 

25 DCV 2 7331 7531 201 

25 ALPV 2 7806 8033 228 

26 DCV 2 7718 7957 240 

26 RhPV 2 8456 8752 297 



 66

27 DCV 0 6405 6611 207 

27 BQCV 0 5834 6226 393 

27 HoCV-1 0 6176 6388 213 

28 PSIV 2 7674 7910 237 

28 BQCV 2 7366 7548 183 

28 TrV 2 7701 7940 240 

28 HiPV 2 8179 8364 186 

29 BQCV 2 4107 4376 270 

29 HiPV 2 4746 4988 243 

 

 
In this chapter, I provided evolutionary evidence (purifying selection) for the existence 

of a functional overlapping gene, pog, in the genomes of IAPV, ABPV, KBV, and 

SINV-1. To my knowledge, this hypothetical gene, whose coding region overlaps the 

structural polyprotein, has not been described in the literature before. 
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Chapter Five: Detection of functional overlapping genes using 

population-level data  
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Abstract  

 

Current methods that utilize the signature of purifying selection to detect functional 

overlapping genes are limited to the analysis of sequences from divergent taxa. Here, I 

present a method for the detection of selection signatures on overlapping reading frames 

by using population-level data. I tested the method on both functional and spurious 

overlapping genes. Finally, I used the method to test whether an overlapping reading 

frame on the negative strand of segment 8 in influenza A is under selection.   

 

Introduction 

 

It is fairly common for at least one of the five possible overlapping reading frames of 

any gene to contain an open reading frame (ORF) of a length that may be suitable to 

encode a protein. Unfortunately, it is extremely difficult to ascertain whether an intact 

overlapping ORF is functional or spurious. The main reason for this difficulty is that the 

sequence of an overlapping gene is, by definition, constrained by the functional and 

structural requirements of another gene. As a result, many putative overlapping genes 

have been identified as functional (Chung et al. 2008; Firth 2008; Firth and Atkins 

2008b; Firth and Atkins 2008a; Firth and Atkins 2009), while at the same time numerous 

annotated overlapping genes have been deemed upon reexamination to be spurious 

(Silke 1997; Palleja, Harrington, and Bork 2008; Williams, Wolfe, and Fares 2009). The 
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common way to detect functional overlapping genes is to identify a signature of 

purifying selection, which is interpreted as a sign of functionality (Firth and Brown 

2005; Firth and Brown 2006; Sabath, Landan, and Graur 2008). In Chapters Three and 

Four, I showed how my method for the estimation of selection intensity (Chapter Two; 

Sabath, Landan, and Graur 2008) can be utilized to distinguish between spurious and 

functional overlapping genes. However, this method, as well as other methods in the 

literature, are inaccurate when the compared sequences show high sequence similarity 

(Firth and Brown 2006; Sabath, Landan, and Graur 2008, Chapter Two). In addition, 

although pairwise methods can be applied to multiple sequences in a phylogenetic tree 

(Firth and Brown 2006), the estimation is computationally impractical if hundreds of 

sequences, such as populations of clinically important viruses and bacteria, need to be 

considered. 

 

One interesting case is that of influenza A, where viral sequences belonging to the same 

subtype are highly similar to one another. An overlapping ORF in the negative strand of 

segment 8 of influenza A viruses (Figure 5.1) was noted when this segment was first 

sequenced (Baez et al. 1980). The ORF is found intact in several human influenza A 

viruses, but is absent from non-human influenza A viruses, such as avian viruses, and is 

also absent from influenza B and C viruses. Recently, it was suggested that this 

overlapping ORF codes for a functional gene (Zhirnov et al. 2007; Clifford, Twigg, and 

Upton in press). Two main indications that this hypothetical gene, called NEG8, may be 

functional were given: (1) The ORF has been conserved in human influenza A viruses 

for almost a century (Zhirnov et al. 2007; Clifford, Twigg, and Upton in press); and (2) 
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An epitope (a short peptide) encoded by this ORF was reported to induce an immune 

system response through cytotoxic T cells isolated from mice infected with this virus 

(Zhong et al. 2003; Clifford, Twigg, and Upton in press) 

 

Figure 5.1: Schematic representation of segment 8 in human influenza A viruses. 

The NS1-NEG8 overlap is marked in yellow. The NS1-NEG8-NEP triple overlap is 

marked in green. The short NEG8-NEP overlap is marked in blue. 

 

Functional gene identification is the sine qua non of functional genetics. In viruses, the 

impact of identifying a bona fide novel gene is even greater because their gene number is 

usually very small. In fact, the eleventh gene in the influenza A genome, PB1-F2 (which 

overlaps PB1), was discovered 20 years after the annotation of its genome (Chen et al. 

2001), thereby increasing the proteome by 10%. Here, I present a method for the 

detection of purifying selection on hypothetical overlapping reading frames using 

population-level data. I test the method on both known and spurious overlapping genes. 
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Finally, I used the method to test whether an overlapping reading frame on the negative 

strand of segment 8 in influenza A is under selection.   

 

Methods 

 

To detect the signature of purifying selection acting on a hypothetical gene, I employed 

the principle that nonsynonymous mutations are generally more deleterious than 

synonymous mutations. If a hypothetical gene is under selection, a mutation, which is 

nonsynonymous in both genes, is expected to be more deleterious than one that is 

nonsynonymous in one gene and synonymous in the other. 

 

Mutations are classified into transitions and transversions, which usually occur at 

different rates. Mutations that become fixed in the population are called substitutions. 

Substitutions in a known gene (k) that overlaps a hypothetical gene (h) can be classified 

into four categories: nonsynonymous in both genes (NkNh), nonsynonymous in the 

known gene and synonymous in the hypothetical gene (NkSh), synonymous in the known 

gene and nonsynonymous in the hypothetical gene (SkNh), and synonymous in both 

genes (SkSh). Taken together, I was able to define eight categories of substitutions for 

each pair of overlapping sequences (Table 5.1).  
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Table 5.1: Notation of the test variables  

 Transitions Transversions 

Categories NkNh NkSh SkNh SkSh NkNh NkSh SkNh SkSh 

Possible Substitutions P1 P2 P3 P4 P5 P6 P7 P8 

Observed Substitutions O1 O2 O3 O4 O5 O6 O7 O8 

Expected E1 E2 E3 E4 E5 E6 E7 E8 

 

Throughout this chapter, I will use the term “category pair” to denote a pair of 

substitutional categories that differ only in the hypothetical gene (i.e., NkNh versus NkSh, 

and SkNh versus SkSh). The four category pairs are set apart in shaded cells in Table 5.1. 

For example, being nonsynonymous vs. synonymous in the hypothetical gene is the only 

difference between a transitional mutation in the NkNh category vs. a transitional 

mutation in the NkSh category. In the absence of selection on the hypothetical gene, the 

rates of the two substitutional categories in a pair should be equal to each other. If, on 

the other hand, the hypothetical gene is functional and under purifying selection, the rate 

of substitution in the NkNh category should be lower than that in NkSh, because a 

nonsynonymous change in both the known and the hypothetical genes will affect two 

gene products rather than one. Similarly, the rate of change in the SkNh category should 

be lower than that in SkSh.  
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For example, Figure 5.2 illustrates three possible substitutions at site 4 in the phase-2 

opposite-strand overlapping sequence. If the hypothetical gene is under selection, the 

change A/T→C/G (SkNh category) is expected to be more deleterious than A/T→T/A 

(SkSh category), which does not change the amino acid of the hypothetical gene. I note 

that there is no assumption about the intensity of selection on the known gene and, 

hence, the method can be used even when the known gene is in fact under no selection 

(evolving neutrally).   

 

Figure 5.2: Three possible substitutions of site 4 (marked in bold) in the phase-2 

opposite-strand overlapping sequence between a known gene and a hypothetical 

gene. The transition is marked in red and the transversions are marked in blue. 

The substitutional category of each change is noted.   

 

Given a multiple alignment of closely related DNA sequences, the method includes four 

steps: 

(1) Construction of an unrooted phylogenetic tree. 
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(2) Reconstruction of ancestral sequences. 

(3) Classification of the changes along the tree into the eight substitutional categories. 

(4) Testing for signature of purifying selection through comparisons between category 

pairs that differ at the hypothetical gene only. 

 

I used PAUP (Swofford 2003) to construct a neighbor-joining tree (Saitou and Nei 1987) 

of each data set and assigned the ancestral character states of the internal nodes using the 

parsimony criteria (Fitch 1971). Using the reconstructed sequences, I counted the 

number of unique observed substitutions (O) in each category along all the branches. I 

used the unique number of substitutions rather than the total number of substitutions to 

minimize the possible biases from non-uniform sampling (e.g., in industrial countries 

where more isolates are collected) and from highly constrained variable sites, in which 

only a few character states are permissible (Delport, Scheffler, and Seoighe 2008). For 

any given sequence of length n, there are 3n possible substitutions that can be classified 

into these eight categories (Figure 5.2). For any given set, I calculated the number of 

possible substitutions (P) in each category as the average across the sequences in all 

nodes of the tree. 

 

I use the ratio 
i

i

P
O

 as a measure of the rate of substitutions in category i. If the 

hypothetical gene is not under selection, I expect no difference between 
i

i
P
O

 and 
j

j

P
O

, 
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where i and j are two categories that differ only at the hypothetical gene: 

{ }><><><><>∈< 8,7,6,5,4,3,2,1, ji .  

The null hypothesis of no selection on the hypothetical gene is defined as: 

(1) 
)(
)(

ji

ji

j

j

i

i
PP
OO

P
O

P
O

+

+
== . 

Under this null hypothesis, I estimated the expected values of Oi and Oj to be 

(2) 
)(
)(

ji

ji
ii PP

OO
PE

+

+
=  and 
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ji
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OO
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+

+
= . 

I, then, constructed a contingency table for each category pair  

(3) { }><><><><>∈<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
8,7,6,5,4,3,2,1,, ji

EE

OO

ji

ji
. 

This contingency table is used to test the null hypothesis. For example, O1 and O2, which 

are the observed number of substitutions in the transitional NkNh and NkSh categories 

(Table 5.1), differ only by being nonsynonymous or synonymous in the hypothetical 

gene. E1 and E2, which are the expected values of O1 and O2, are estimated based on the 

null hypothesis in which the rate of substitutions in the two categories is equal. If the 

hypothetical gene is subjected to selection, any change in the NkNh category would affect 

both genes and O1 is expected to be lower than E1, whereas O2 is expected to be higher 

than E2. 

 

I used a one-tailed Fisher's exact test (Fisher 1925) to determine significance of the 

negative association, in which the observations tend to lie in the lower left and upper 
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right of the table. For example, in the contingency table ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

21

21

EE
OO

, the alternative, in 

which category 1 is under stronger purifying selection, requires that O1 is lower than E1, 

and that O2 is higher than E2. 

 

Because the test requires exact numbers, the expected values were rounded. Finally, I 

combined the four p-values into a single test statistic using Fisher’s method (Fisher 

1925).  

  

In the case of overlap types other than phase-2 opposite-strand overlap (the overlap type 

of NEG8), the number of possible SkSh substitutions is very small (0 – 3, Table 5.2). This 

makes the SkSh categories, and consequently the NkSh – SkSh pair, uninformative. 

Therefore, I focused on the two category pairs of NkNh and NkSh (shaded in Table 5.1) in 

the test. 

 

Sequence data 

 

The data were taken from the NCBI Influenza Virus Resource (Bao et al. 2008). The 

data consists of (1) influenza A, H3N2 and H1N1 subtypes, in which the NEG8 ORF is 

intact, (2) influenza A, H5N1 subtype and influenza B, in which the NEG8 ORF is 

disrupted, and (3) four other known overlapping genes (PB1 – PB1-F2 from influenza A, 

H3N2 subtype; PB1 – PB1-F2 and NS1 – NEP from influenza A, H5N1 subtype; and NA 

- NB from influenza B). For each set, I obtained the multiple alignments of all full-length 



 77

sequences excluding sequences with insertions and/or deletions. Because ancestral 

sequence reconstruction in inaccurate for diverged sequences (Zhang and Nei 1997), I 

also excluded sequences from early isolates (before 1990) that form a distant clade (e.g., 

the H1N1 subtype contains 17 sequences from 1918–1945 and only two sequences 

between 1950 and 1990). For the sets of NEG8, I analyzed the region of NEG8 that 

overlaps with NS1 solely (382 bases) and excluded the regions of triple overlap and the 

short region of NEP-NEG8 overlap. For all data sets, the frequencies of the possible and 

the observed number of substitutions in each category are listed in Table 5.2.   

 

Finally, I used the complete genomes of 768 RNA non-ambisense (viruses that utilize 

only one strand to code for proteins) viruses to evaluate the influence of genome 

composition on the probability of having an overlapping ORF. Genomes were obtained 

from NCBI. Stop codon frequencies in the five possible reading frames (on the same 

strand in phase 1 and 2, and on the opposite strand in phase 0, 1, and 2) were calculated 

from the coding sequences of each genome.  

 



 78

Table 5.2: Possible and observed number of substitutions in each category 

          

Nonsynonymous 

substitutions in 

gene 2 

Synonymous 

substitutions in 

gene 2 

  Gene 1 Gene 2     NN NS SN SS 

Influenza A: H3N2 NEG8  NS1 Ts P 237.8 16.9 22.9 104.4 

     O 73 10 16 68 

   Tv P 554.9 78.6 65.8 64.8 

        O 30 10 16 7 

Influenza A: H1N1 NEG8  NS1 Ts P 237.8 18.0 18.4 107.8 

     O 53 4 12 61 

   Tv P 547.1 81.9 70.3 64.7 

        O 25 4 13 7 

Influenza A: H5N1 NEG8  NS1 Ts P 237.2 19.8 17.0 108.1 

     O 111 12 14 93 

   Tv P 539.7 84.4 71.0 69.0 

        O 61 13 13 21 

Influenza B NEG8  NS1 Ts P 346.5 32.3 21.3 167.8 

     O 104 11 12 114 

   Tv P 829.9 141.1 92.4 72.7 

        O 66 12 18 10 

Influenza A: H3N2 PB1-F2 PB1 Ts P 97.9 83.1 86.0 3.0 

     O 21 13 76 3 

   Tv P 377.0 73.0 89.0 1.0 

        O 16 4 19 1 

Influenza A: H5N1 PB1-F2 PB1 Ts P 97.9 83.1 86.0 3.0 
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     O 15 15 81 4 

   Tv P 382.4 70.5 86.0 1.0 

        O 20 4 23 1 

Influenza A: H5N1 NS1 NEP Ts P 62.6 53.1 55.2 0.1 

     O 29 25 36 0 

   Tv P 236.8 57.9 44.2 3.0 

        O 22 7 9 0 

Influenza B NB NA Ts P 92.6 93.3 103.2 2.0 

     O 29 33 62 1 

   Tv P 358.0 99.8 121.4 2.9 

        O 25 7 13 0 

 

Results  

 

As a control, I applied the method on all sets twice (reciprocally), to test for selection on 

each gene while using its overlapping open reading frame as the known gene (Table 

5.3). Using a spurious gene as the known gene in the test (see Methods) allows the 

evaluation of the method in more cases.  

 

NEG8 – NS1 sets 

 

I found significant signatures of selection in three out of the four known NS1 genes (the 

p-value of the fourth one is relatively low, 0.086), demonstrating the ability of the 

method to detect selection in known functional genes. I used the two sets in which no 



 80

NEG8 ORF exists (H5N1 and influenza B), to verify that the method does not yield false 

positive inferences. In both cases, no signature of selection was identified on the NEG8 

ORF as expected. Finally, I applied the method to test for selection on the hypothetical 

NEG8 ORF in the H1N1 and H3N2 sets. I did not find a significant signature of 

selection on the NEG8 ORF in either case.  

 

Known same-strand overlapping genes 

 

I used four sets of known overlapping genes in influenza to test the performance of the 

method in same-strand overlapping genes (Table 5.3). The overlaps of these genes result 

in very small number of possible substitutions, which are synonymous in both genes 

(Table 5.2). Therefore, the test is applied only to two category pairs rather than four (see 

Methods section). In three sets, I identified significant signatures of selection on one 

gene while no selection was identified on the other. For the forth set, there were no 

significant signatures detected on any of the two genes. 
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Table 5.3: sets of sequences in the study 

  Virus 

Number of 

sequences Gene 1 p Gene 2 p 

Influenza A: H3N2 410 NEG8  0.151 NS1 * Hypothetical NEG8 

gene  Influenza A: H1N1 217 NEG8  0.667 NS1 ** 

Influenza A: H5N1 581 NEG8  0.359 NS1 0.086 No NEG8 gene 

  Influenza B 229 NEG8  0.604 NS1 * 

Influenza A: H3N2 999 PB1-F2 0.446 PB1 *** 

Influenza A: H5N1 522 PB1-F2 0.690 PB1 *** 

Influenza A: H5N1 581 NS1 0.647 NEP 0.151 

Known same-

strand overlapping 

genes 

  Influenza B 165 NB 0.617 NA * 

* p < 0.05 

** p < 0.01 

*** p < 0.001 
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Discussion 

 

I presented a new method for the detection of functional overlapping genes utilizing the 

signature of selection for population-level data. The method detects selection-signature 

based on the principle that nonsynonymous mutations are generally more deleterious 

than synonymous mutations. As far as overlapping genes are concerned, this principle 

translated into the following expectation: a mutation that is nonsynonymous in both 

genes is expected to be more deleterious than a mutation that is nonsynonymous in one 

gene and synonymous in the other.  

 

Variation in selection pressures among sites may affect this method’s performance. For 

example, a mutation of the NkSh category at a constrained site of the known protein may 

be more deleterious than a mutation of the NkNh category at less constrained sites of both 

genes. As a control for site variation, I used data sets of orthologous sequences that share 

constrained sites and in which the hypothetical NEG8 ORF is disrupted. In future 

studies, it may be beneficial to incorporate information of the known protein’s 

constrained sites into the model. 

 

Difference in the intensities of selection acting on the two overlapping genes may also 

affect the performance of the method, especially when the hypothetical gene is under 

weaker purifying selection than the known overlapping gene. In an overlapping gene 

pair, the newer gene is expected to be under weaker purifying selection (Liang and 
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Landweber 2006), because it has evolved for less time than its overlapping genes as well 

as under the constraints of its overlapping gene. The hypothetical overlapping gene 

would usually be the newer gene. Therefore, detection of new overlapping genes by 

signature of purifying selection is difficult. Indeed, PB1-F2, the novel human influenza 

A gene (Chen et al. 2001) was not detected by the method (Table 5.3). This gene was 

shown to be under selective pressure that is weaker by an order of magnitude than that 

on the older overlapping gene, PB1 (Sabath, Landan, and Graur 2008).  

 

Given these considerations, it is difficult to determine if the lack of selection signature in 

the NEG8 ORF is due to the intact reading frame being spurious, or the inability of the 

method to detect the signal because the gene is too new. There are two additional factors 

that may have contributed to the conservation of the NEG8 ORF even in the absence of 

selection. First, low frequency of stop codons in that reading frame, which result from 

the codon usage and amino-acid composition of the genome, can lead to spurious 

overlapping ORFs (Silke 1997; Sabath, Graur, and Landan 2008). Indeed, the specific 

overlap type between NEG8 and NS1 (opposite strand phase 2), which encompasses 

~90% of the NEG8 ORF was found to have the lowest frequency of stop codons (Figure 

5.3). Moreover, influenza genomes have a below-average frequency of stop codons in 

this phase (Figure 5.3b, black dots) increasing the probability of spurious ORFs. Second, 

the triple overlap between NEG8 and both NS1 and NEP may also increase the 

conservation of NEG8 because any change in this region is likely to be nonsynonymous 

in either NS1 or NEP or both.    
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Figure 5.3: Frequencies of stop codon of 768 RNA viruses in the five possible 

reading frames plotted against genomic GC content. (a) Stop codon frequencies on 

the same strand (SS) in phase 1 (blue) and phase 2 (red). (b) Stop codon frequencies 

on the opposite strand (OS) in phase 0 (green), phase 1 (cyan), and phase 2 

(magenta). Stop codons frequencies on the opposite strand in phase 2 (NEG8 phase) 

of influenza genomes are marked in black.   

 

The method presented in this chapter belongs to a group of approximate methods, in 

which sites are classified by degeneracy classes. Approximate methods are useful for 

analyses of large data sets, but are less accurate than maximum-likelihood methods 
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(Yang and Nielsen 2000). Hence, more powerful methods may be developed within the 

maximum-likelihood framework. An additional parameter that could be incorporated in 

future methods is the time of origin of each substitution, which could be estimated by 

using the sampling dates as calibration (Drummond and Rambaut 2007). Deleterious 

substitutions are expected to be more prevalent among new substitutions (Pybus et al. 

2007) because they had lower chance to be eliminated from the population by selection. 

Therefore, it would be beneficial to account for the substitution’s age when selection is 

estimated at the population level.  

 

All in all, since none of the existing methods in the literature is applicable to population-

level data, I believe that my method is a first step in the right direction.  
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Chapter Six: Phase bias in same-strand overlapping genes  
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Abstract 

 

Same-strand overlapping genes may occur in frameshifts of one (phase 1) or two 

nucleotides (phase 2). In previous studies of bacterial genomes, long phase-1 overlaps 

were found to be more numerous than long phase-2 overlaps. This bias was explained by 

either genomic location or an unspecified selection advantage. A Model that focused on 

the ability of the two genes to evolve independently did not predict this phase bias. 

Same-strand overlapping genes may arise through either a mutation in the termination 

codon of the upstream gene or a mutation at the initiation codon of the downstream 

gene. I hypothesized that given these two scenarios, the frequencies of initiation and 

termination codons in the two phases may determine the number for overlapping genes. I 

examined the frequencies of initiation- and termination-codons in the two phases, and 

found that termination codons do not significantly differ between the two phases, 

whereas initiation codons are more abundant in phase 1. I found that the primary factors 

explaining the phase inequality are the frequencies of amino acids whose codons may 

combine to form start codons in the two phases. I show that the frequencies of start 

codons in each of the two phases, and, hence, the potential for the creation of 

overlapping genes, are determined by the abundance of amino acids in proteins and by 

species-specific codon usage, leading to a correlation between long phase-1 overlaps and 

genomic GC content. My model explains the phase bias in same-strand overlapping 

genes by compositional factors without invoking selection. Therefore, it can be used as a 
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null model of neutral evolution to test selection hypotheses concerning the evolution of 

overlapping genes.   

 

Introduction 

  

In bacteria, overlaps on the same strand are by far the most abundant (Fukuda, Washio, 

and Tomita 1999; Johnson and Chisholm 2004), most likely because, on average, 70% 

of the genes in bacterial genomes, are located on one strand (Fukuda, Nakayama, and 

Tomita 2003). Same-strand overlaps occur in frameshifts of one nucleotide (phase 1) or 

two nucleotides (phase 2, Figure 1.3). Overlaps in the same frame (phase 0) are rare 

(Johnson and Chisholm 2004), and since the reading frame is unaffected, they may be 

thought of as genes with alternative initiation or termination sites rather than overlapping 

genes. Phase-0 overlaps are not dealt with here. Several studies have shown that there 

are significant differences between the frequencies of phase-1 and phase-2 overlapping 

genes (Johnson and Chisholm 2004; Cock and Whitworth 2007; Lillo and Krakauer 

2007) (Figure 6.1). Overlapping-gene pairs, in which the overlap sequence is of length 

one to five bases (short overlaps), are abundant in phase 2, but rare in phase 1. This 

difference is dictated by the sequence of termination codons of the upstream gene (Cock 

and Whitworth 2007). Since none of the stop codons (TGA, TAG, and TAA) ends with 

AT, GT, or TT (needed to create an initiation codon ATG, GTG or TTG in phase-1 two-

nucleotide overlap) or starts with G (needed to create an initiation codon in phase-1 five-

nucleotide overlap), short phase-1 overlaps can only use alternative initiation codons. In 
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contrast, as far as long overlaps (seven nucleotides or longer) are concerned, phase-

1overlapping gene pairs are more frequent than those of phase 2 (Johnson and Chisholm 

2004; Cock and Whitworth 2007). Cock and Whitworth (2007) suggested that the phase 

bias in long overlaps is due to some unspecified selective advantage of phase-1 over 

phase-2 overlapping genes. They also hypothesized that since the bias was found to be 

universal and independent of gene function, it might be a property of the gene location.  

 

Krakauer (2000) introduced a model in which the frequencies of overlapping genes in 

different phases are determined by their degree by which the two overlapping proteins 

can evolve independently, which is defined by the probability for changes, which are 

nonsynonymous in one gene and synonymous in the overlapping gene (Figure 1.7). That 

model assumes an adaptive advantage for overlapping genes in evolvable phases 

(Krakauer 2000). For example, in the case of opposite-strand overlaps, phase 1 in which 

the second codon position of one gene corresponds to the third codon position of the 

second gene (and vice versa), maximizes the freedom of each gene to evolve 

independently (Krakauer 2000) (Figure 1.7). In support of this model, Rogozin et al. 

(2002) found that among opposite-strand overlaps in bacteria, the most evolvable 

overlap phase (phase 1) was the most abundant. In contrast, Kingsford et al. (2007) 

explained this phase distribution in opposite-strand overlapping genes by the frequency 

of reverse-complementary stop codons in coding sequences. For same-strand overlaps, 

phase-1 and phase-2 overlaps have equal protein evolvability and are predicted by that 

model, to occur in equal frequencies (Krakauer 2000).  
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Figure 6.1: Illustration of the phase-distribution for same-strand overlapping genes 

in bacterial genomes as observed by previous studies. Given an upstream gene 

(phase 0), genes can overlap in phase 1 (dark blue) or phase 2 (red). The frequency 

of overlaps (Y axis) is plotted against overlap length (X axis). Short overlaps, in 

which the start codon overlaps the stop codon of the upstream gene, are marked in 

purple. Long overlaps are marked in green. 

 

Previous studies (Fukuda, Nakayama, and Tomita 2003; Johnson and Chisholm 2004) 

have found that the number of overlapping genes in bacterial genomes is positively 

correlated with the number of genes, implying that gene overlap may be mainly the 
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result of accidental or random “trespassing” of one gene into another. There can be two 

scenarios for the creation of same-strand overlapping genes from pre-existing 

neighboring genes (Figure 6.2a): (1) a mutation in the termination codon of the upstream 

gene, resulting in an extension of the gene downstream to the first in-frame termination 

codon and (Figure 6.2b) (2) a mutation in the initiation codon of the downstream gene, 

resulting in an extension of the gene upstream to the first in-frame functional initiation 

codon (Fukuda, Nakayama, and Tomita 2003) (Figure 6.2c). As in point mutations, 

where the effect of nonsynonymous mutation is expected to be stronger than that of 

synonymous ones, the impact of mutations that cause extension is expected to vary 

according to the length of the extension. Since most mutations are deleterious, long 

extensions of genes are expected to be under stronger purifying selection than short ones 

(Kingsford, Delcher, and Salzberg 2007) and the frequency of initiation and termination 

codons in a certain phase is an upper-limit constraint to the possible number of 

overlapping genes in that phase.  
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Figure 6.2: An adjacent gene pair on the same strand (a) can evolve into an 

overlapping gene pair through a mutation in the termination codon of the upstream 

gene (b), or a mutation in the initiation codon of the downstream gene (c). 

 

Here, I tested the influence of initiation- and termination-codon frequencies as well as 

genomic GC-content on the number of overlapping genes in the two phases.  
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Methods 

 

Data of overlapping genes from 167 bacterial genomes that employ the universal genetic 

code were acquired from the BPhyOG overlapping-genes database (Luo et al. 2007). 

Same-strand overlapping genes in each genome were classified according to phase and 

the length of the intersecting segment. I defined overlap frequency as the number of 

same-strand overlapping genes divided by the number of same-strand neighboring gene 

pairs (i.e., adjacent genes, which are located on the same strand and in between them 

there are no genes on the opposite strand) in the genome. In the analysis, I explicitly 

ignored recombination and therefore I used the number of same-strand neighboring gene 

pairs, rather than the number of genes, because a neighboring gene pair located on 

opposite strands cannot become overlapping on the same strand as a result of point 

mutation. Short overlaps (two and five bases in phase 1 and one and four bases in phase 

2) were dealt separately from long overlaps of seven bases or longer.  

 

The coding sequences of the studied genomes were downloaded from NCBI. Codon and 

amino-acid frequencies, as well as initiation and termination codon frequencies in phase 

1 and phase 2, were calculated from the coding sequences of each genome. I denote the 

frequency of a codon or a group of codons with a superscript for the codon’s phase and a 

subscript for the codon. For example, 1
ATGf  denotes the frequency of ATG in phase 1 

and 0
NATf  denotes the frequencies of codons in phase 0 that end in AT, where N denotes 

any of the four nucleotides. The expected frequencies of each start and stop codons are 
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calculated as the products of the frequencies of the codons that combine them, i.e., 

00
GNNNAT ff ×  and 00

TGNNNA ff ×  for ATG in phase 1 and phase 2, respectively. If the codons 

frequencies in phase 1 and phase 2 are primarily determined by the frequencies of the 

codons in phase 0 that combine them, the expected frequencies would match the 

observed frequencies.  

 

Results  

 

I identified 71,210 same-strand overlapping gene pairs (Table 6.1). Short overlaps (of 

length two or five bases) are rare in phase 1. In this sample, I found only 18 phase-1 

short overlaps (0.08%, Table 6.1). In contrast, the majority of phase-2 overlaps are of 

length one or four bases (20% and 65%, respectively).  

 

Table 6.1: Number of same-strand overlapping genes. 

  Short overlaps  
(1-5 bases) 

Long overlaps  
(7 bases or more) Total 

Phase 1 18 21,550 21,568 

Phase 2 42,177 7,465        49,642 

Total 42,195 29,015        71,210 
 

The frequency of long phase-1 overlaps exceeds that of long phase-2 overlaps by a 

factor of almost 3 (Table 6.1, Figure 6.3, paired Student t-test, p < 0.001). The frequency 

of long phase-1 overlaps is negatively correlated with genomic GC content (Figure 6.3 r 
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= –0.39, p < 0.001). In contrast, the correlation between the frequency of long phase-2 

overlaps and GC content is not significant (p = 0.4). The frequencies of start and stop 

codons in phase 1 and phase 2 in the coding regions of the genomes are presented in 

Figure 6.4. Pooling together phase 1 and phase 2, the frequency of stop codons (average 

of 13.16%) is significantly higher than that of start codons (average of 9.36%, paired 

Student t-test, p < 0.001).  

 

Figure 6.3: Frequency of overlapping genes in 167 bacterial genomes plotted 

against genomic GC content. Long phase-1 overlaps are marked in blue. Long 

phase-2 overlaps are marked in red. 
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Figure 6.4: a. Start codon frequencies in phase-1 (blue) and phase-2 (red) reading 

frames plotted against genomic GC content. b. Stop codon frequencies in phase-1 

(blue) and phase-2 (red) reading frames plotted against genomic GC content. 

 

I found that the frequency of start codons in phase 1 is significantly higher than that in 

phase 2 by a factor of 5.2 on average (Figure 6.4a, paired Student t-test, p < 0.001). 

There is no significant difference between the frequencies of stop codons in the two 

phases (Figure 6.4b, paired Student t-test, p = 0.13). These results suggest that the 

difference between the number of long overlaps in phase 1 and phase 2 is primarily 

influenced by the frequencies of start codons in the two reading frames. The difference 

in start codon frequencies between phase 1 and phase 2 can be explained by the codons 

in phase 0 that may potentially lend a dinucleotide to a start codon (ATG, GTG, and 

TTG) in each of the phases. In phase 2, all start codons consist of phase-0 TGN codons, 

which may lend TG to form a phase-2 start codon. One of these codons, TGA, is a stop 

codon that cannot be a part of long overlap. The remaining three codons (TGT, TGC, 

TGG) encode for two amino acids (cysteine and tryptophan), which are among the rarest 
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in protein-coding genes, with a mean frequency of ~1% (Table 6.2). In contrast, in phase 

1, the amino acids coded by NAT, NGT, and NTT codons that may lend a dinucleotide 

to one of the start codons (ATG, GTG, and TTG, respectively), are found in moderate to 

high frequencies in proteins (Table 6.2). Interestingly, the abundance of NAT-, NGT-, 

and NTT-encoded amino acids is inversely correlated with the frequency of start codons 

(Table 6.2). Moreover, amino acids encoded by NAT codons which can form the most 

common start codon, ATG, appear in lower frequencies than amino acids encoded by 

NGT- and NTT-encoded amino acids. For all bacteria and for all GC contents the 

frequencies of amino acids coded by TGN codons are lower than each of the amino acid 

groups encoded by NAT, NGT, and NTT (Figure 6.5, all pairwise paired Student t-tests, 

p < 0.001).  

 

Table 6.2: Codons in phase 0 that may lend a dinucleotide to form a start codon in 

phase 1 and phase 2. The usage of each start codon in (a) all genes; (b) the 

downstream gene of long phase-1 overlaps; and (c) the downstream gene of long 

phase-2 overlaps, is noted.  

Start Codon  
(usage in: all genes, 

phase1, phase 2) 
Phase Codon Group Amino Acids Mean amino 

acid frequency

1 NAT Tyr, His, Asn, Asp 3.67% ATG (a77%, b73%, c64%) 
  2 TGN Cys, Trp 1.06% 

1 NGT Cys, Arg, Ser, Gly 4.87% GTG (a14%, b15%, c23%) 
  2 TGN Cys, Trp 1.06% 

1 NTT Phe, Leu, Ile, Val 7.12% TTG (a9%, b12%, c14%) 
  2 TGN Cys, Trp 1.06% 
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Figure 6.5: Mean frequencies of groups of amino acids in the 167 bacterial genomes 

plotted against genomic GC content. Mean frequency of amino acids, which are 

encoded by TGN, NAT, NGT, or NTT codons, are marked in red, blue, green, and 

black, respectively. NAT, NGT, and NTT codons may lend a dinucleotide to one of 

the start codons in phase 1. TGN codons may lend a dinucleotide to one of the start 

codons in phase 2. 

 

Thus, consideration of the number of amino acids and their frequencies alone will lead 

us to expect start codons to occur much more frequently in phase 1 than in phase 2. 

However, the difference in amino acids usage does not provide a very good fit to the 

observed frequencies. This can be achieved by a more detailed compositional argument, 

one that is based on codon frequencies. Such a model will accommodate differences in 

GC content and codon usage among the bacteria under study. I found that the 

frequencies of the codons that combine to form start and stop codons (e.g., 00
GNNNAT ff ×  
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and 00
TGNNNA ff ×  for ATG), are strongly correlated with the frequencies of start and stop 

codons in both phases, as well as with genomic GC content (Table 6.3). 

 

Table 6.3: The correlation between the frequency of frame-shift start and stop 

codons and (a) their expected frequencies; and (b) the genomic GC content. All 

correlations are significant at the p < 0.001 level (sample size is 167). 

Frame-Shift 
Codon Phase Combining 

Codons 
aCorrelation 

Observed-Expected 
bCorrelation 

Observed-GC% 
Start ATG 1       NAT,GNN 0.96 –0.84 

  2 NNA,TGN 0.89 –0.76 

 GTG 1       NGT,GNN 0.94 –0.34 

  2 NNG,TGN 0.86 0.80 

 TTG 1       NTT,GNN 0.96 –0.80 

   2 NNT,TGN 0.87 –0.70 

Stop TAA 1       NTA,ANN 0.98 –0.87 

  2 NNT,AAN 0.97 –0.93 

 TAG 1       NTA,GNN 0.96 –0.89 

  2 NNT,AGN 0.90 –0.84 

 TGA 1       NTG,ANN 0.86 0.51 

   2 NNT,GAN 0.92 –0.84 
  

 

To control for potential annotation errors, I used a subset of overlapping genes that were 

not annotated as “hypothetical,” “putative” or “pseudogene” in the NCBI genome data. 

This subset of overlapping genes, which I assume to be more accurately annotated, 

contains 31,767 gene pairs (45% of the complete set). As in the complete set, the 
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frequency of long phase-1 overlaps exceeds the frequency of long phase-2 overlaps by a 

factor of 3.1 and the frequency of long phase-1 overlaps is negatively correlated with 

genomic GC content (r = –0.28, p < 0.001), whereas the frequency of long phase-2 

overlaps is not (p = 0.6). Therefore, the influence of misannotation seems not to be 

significant.  

 

Discussion 

 

Understanding the distribution of overlapping genes in different phases is a key step 

towards distinguishing between the effects of selection and mutation on the evolution of 

overlapping genes. Krakauer (2000) showed that overlapping genes in different 

orientations and phases differ in the freedom for each gene to evolve independently. 

Therefore, he suggested that the variation in protein evolvability would be reflected in 

the frequency of the overlap phases. In the case of same-strand overlapping genes, his 

model predicted no difference between the frequency of phase-1 and phase-2 overlaps 

(Krakauer 2000). However, in agreement with previous studies (Johnson and Chisholm 

2004; Cock and Whitworth 2007; Lillo and Krakauer 2007), my results indicate a 

preponderance of long phase-1 overlaps over long phase-2 overlaps. Cock and 

Whitworth (2007) attributed the difference between the number of long overlaps in the 

two phases to either gene location or to an unspecified selective advantage.  
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Considering the two scenarios for the creation of same-strand overlapping genes (Figure 

6.2), I showed that the phase bias in long overlaps might be attributed to a great extant to 

overlaps created by 5’-end mutation of the downstream gene. Since there is purifying 

selection against long overlaps, the frequency of start codons in phase 2 constrains the 

number of overlap that can be created in that phase and leads to the phase bias. In 

addition, I showed that the difference in start codon frequencies between phase 1 and 

phase 2 is dictated by the frequencies of amino acids whose codons may combine to 

form start codons in the two phases. Finally, the dependency of frame-shift start and stop 

codons on species-specific codon usage result in a correlation between long phase-1 

overlap frequency and genomic GC content.  

 

Although my model explains the phase bias in overlap frequency, I do not have a full 

explanation for the absence of correlation between GC content and long phase-2 

overlaps as expected from the frequency of frame-shift start and stop codons. This 

correlation is expected to have lower statistical significance than that of phase-1 overlaps 

because of the smaller sample size, but it is also possible that other factors affect the 

potential for overlap as well. A more complex compositional model for overlapping 

genes frequency, might include the length distribution of overlaps, the frequencies of 

regulatory elements (e.g., Shine-Delgarno sequences) and the strand-specific 

composition bias, since bacterial genomes have an asymmetrical chirochoric base 

composition (Lobry 1996b; Lobry 1996a; Frank and Lobry 1999).  

 



 102

The wide abundance of overlapping genes and the straightforward definition of phase 

evolvability make the phase distribution of overlapping genes an interesting case study. 

If evolvability is selected for, the expectation is for a positive correlation to exist 

between the frequency of an overlap phase and its evolvability. Evolvability 

considerations predict phase-1 and phase-2 overlaps to occur at equal frequencies 

(Krakauer 2000). Therefore, my data does not support a role for evolvability in the 

evolution of same-strand overlapping genes. 

 

Fukuda et al. (2003) examined homologous overlapping genes in related bacterial 

species and found that the rate of accumulation and degradation of overlapping pairs is 

higher for overlaps caused by mutation at the 3’-end of the upstream gene compared to 

overlaps caused by mutation at the 5’-end of the downstream gene. The difference in 

rates was suggested to be a result of an evolutionary constraint imposed on the 5’-end of 

genes (Fukuda, Nakayama, and Tomita 2003). Our model predicts a difference in these 

rates simply because of the higher frequency of frame-shift stop codons compared to the 

frequency of frame-shift start codons. It would be interesting to test whether the rate 

difference of accumulation and degradation of overlapping gene pairs in the two 

scenarios holds even when accounting for the difference in frequency of frame-shift stop 

codons compared to frame-shift start codons.  

 

The high frequency of frame-shift stop codons was previously suggested to be under 

positive selection for minimization of frame-shift translation errors (Seligmann and 

Pollock 2004; Itzkovitz and Alon 2007). I found that the frequency of frame-shift stop 
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codons is strongly correlated with genomic GC content leading to AT-rich genomes 

having five times more frame-shift stop codons than GC-rich genomes. Therefore, it 

seems that the mutation pattern is a major player in determining frame-shift stop-codon 

frequencies, while selection does not seem to play a major role.   

 

Viral genomes also exhibit high frequencies of overlapping genes. In a study of RNA 

viruses, Belshaw et al. (2007) distinguished between internal overlaps, in which one 

gene is embedded within the other, and terminal overlaps. For internal overlaps, it was 

found that, similar to bacteria, there is a predominance of phase-1 overlaps (Belshaw, 

Pybus, and Rambaut 2007). In the case of terminal overlaps, Belshaw et al. (2007) 

reported no frequency difference between phase 1 and phase 2. However, Belshaw et al. 

(2007) did not distinguish between short overlaps, in which phase-1 overlaps are 

extremely rare, and long overlaps. I showed that at least as far as bacteria are concerned, 

pooling short and long overlaps together results in obscuring the pattern for long 

overlaps (Table 6.1). Therefore, the similar frequencies of over all overlaps in phase 1 

and phase 2 in RNA viruses (2007), suggests that the phase bias in long overlaps was 

most likely unnoticed.  

 

In this chapter, I have shown that the phase-distribution of same-strand overlapping 

genes in bacteria is determined by the frame-shift frequencies of start and stop codons in 

protein-coding genes. The predominance of long phase-1 overlaps results from a lower 

frequency of start codons in phase 2 that limits the potential overlaps created by an 

upstream extension of the downstream gene. The difference in the frequency of start 
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codons is dictated by the abundance of those amino acids that are encoded by codons 

that combine to form start codons in phase 1 and phase 2. This difference is conserved 

among all the bacterial genomes in the study. The variability of codon usage across 

bacterial genomes leads to a correlation between long phase-1 overlaps and genomic GC 

content. My model explains the phase bias in same-strand overlapping genes by 

compositional factors without invoking selection. Therefore, it can be used as a null 

model of neutral evolution for testing selection hypotheses affecting the evolution of 

overlapping genes.  
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Chapter Seven: Summary  
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Overlapping genes were first discovered in viruses and for many years were considered 

limited to small genomes (Barrell, Air, and Hutchison 1976; Szekely 1978). Later, it 

became clear that gene overlap is present in all domains of life. As a result, several 

studies have suggested unique roles for gene overlap in multiple regulatory processes 

(Normark et al. 1983; Cooper et al. 1998; Boi, Solda, and Tenchini 2004; Johnson and 

Chisholm 2004) and in the evolution of genome architecture (Keese and Gibbs 1992; 

Makalowska, Lin, and Hernandez 2007; Assis et al. 2008). Recently, studies have begun 

to employ systematic and comparative-genomic approaches to elucidate the evolutionary 

dynamics of overlapping genes. 

 

Shortly after the discovery of overlapping genes, Miyata and Yasunaga (1978) noted that 

because of the overlap, the evolutionary rates of the two genes are interdependent. Still, 

this sequence interdependence remained a challenge in molecular evolutionary analyses 

and was, consequently, ignored by many studies. In Chapter Two, I demonstrated that 

estimates of selection intensity that ignore gene overlap are biased and that this bias 

differs among overlap types. I presented a new method for the simultaneous estimation 

of selection intensities in overlapping genes that accounts for the sequence 

interdependence and allows for an accurate estimation of selection intensities. With the 

new method, I showed that overlapping genes are mostly subjected to purifying 

selection, in contradistinction to previous studies, which detected an inordinate 

prevalence of positive selection. In future studies, it would be valuable to extend this 

method to deal with multiple sequences in a phylogenetic framework and to incorporate 

models of variable selection pressures among lineages and among sites, in analogy to the 
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methodology employed with non-overlapping sequences (Nielsen and Yang 1998; Yang 

and Nielsen 1998; Zhang, Nielsen, and Yang 2005).  

 

In some cases, overlap occurs between genes in which one (or both) is an RNA gene 

(Sleutels, Zwart, and Barlow 2002; Das 2009). Therefore, another important extension 

would be to enable the estimation of selection in overlaps between two RNA genes and 

between an RNA gene and a protein-coding gene. Similar to protein-coding genes, 

models of nucleotide substitution in RNA genes (e.g., Rzhetsky 1995; Yu and Thorne 

2006) could be incorporated to account for the sequence interdependence of gene 

overlap and allow an accurate estimation of selection intensity in these cases.  

 

In Chapter Three, I used the new method to estimate selection intensity, thereby 

distinguishing between spurious and functional overlapping genes. I examined the 

“Rosetta stone” hypothesis for the origin of the two aminoacyl tRNA synthetase classes 

from a pair of overlapping genes (Carter and Duax 2002). This fascinating hypothesis, 

whose implications on other questions (such as the origin of the genetic code) are wide-

ranging (Delarue 2007; Rodin and Rodin 2008; Schimmel 2008), was recently 

questioned (Williams, Wolfe, and Fares 2009). I used my method, which is independent 

to the approach of Williams, Wolfe, and Fares (2009), to show that there is no signature 

of purifying selection acting on the overlapping ORF. This result implies that the gene is 

non-functional, thus rejecting the “Rosetta stone” hypothesis.  
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Although false-positive predictions of overlapping genes are problematic, it is the false-

negatives, i.e., genes that were missed in the annotation, that pose an even greater 

problem, especially in viruses with small genomes. In Chapter Four, I presented 

evidence for the existence of a novel overlapping gene in the genomes of the Israeli 

acute paralysis virus (IAPV) and three related viruses. IAPV was found to be associated 

with colony collapse disorder (Cox-Foster et al. 2007), a syndrome characterized by the 

mass disappearance of honeybees from hives (Oldroyd 2007). I hope that the discovery 

of this new gene will improve our understanding of this virus and its interaction with its 

host. The belated discovery of new overlapping genes in well-studied viruses (e.g., in 

influenza A, Chen et al. 2001), suggests that there are many more unidentified 

overlapping genes waiting to be found. 

 

My method for detecting functional overlapping genes, which I discussed in Chapters 

Three and Four, as well as other methods (e.g., Firth and Brown 2006) are limited to the 

analysis of orthologous sequences within a range of divergence of about 5-30%. In 

Chapter Five I presented a method for the detection of selection signatures on 

hypothetical overlapping genes using population-level data (less than 5% divergence). 

Although, as I showed, the method is not ideal, it is the first attempt to tackle this 

problem and, thus, can be considered as a starting point for the development of more 

advanced methods.  

 

Future studies should also focus on development of a statistical framework for predicting 

the functionality of a hypothetical overlapping gene when sequence divergence is high 
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(above 30%). Such a framework could model the factors that affect the conservation of a 

non-functional overlapping ORF throughout evolution, including (1) time, (2) mutation 

rate, (3) mutation pattern, (4) ORF length, and (5) selection intensity on the overlapping 

functional gene. Given that the current genomic data is only a small fraction of the 

world-wide genetic pool, I believe that use of methods for the detection of functional 

overlapping genes will continue to unveil new genes for many years to come.     

 

Although the sequence interdependence imposed by gene overlap adds complexity to 

many molecular evolutionary analyses, it also provides us with the opportunity to study 

a couple of fundamental questions in evolution. One such question is the evolvability of 

biological entities, which has been a subject of great interest in the recent years 

(reviewed in Pigliucci 2008). A biological system is evolvable if it can acquire novel 

functions through genetic change. However, the quantification of evolvability has been a 

difficult task. In the case of overlapping genes, evolvability is defined simply as the 

degree to which each of the overlapping genes can evolve independently (Krakauer 

2000). Several studies suggested that the phase distribution of overlapping genes is 

shaped by positive selection for genes in evolvable phases (Krakauer 2000; Rogozin et 

al. 2002). In contrast, I have shown in Chapter Six that the phase distribution of 

overlapping genes (at least in bacteria) can be explained by the frequencies of start and 

stop codons in the different phases (see also Kingsford, Delcher, and Salzberg 2007; 

Sabath, Graur, and Landan 2008). These frequencies, which specify the potential for the 

creation of overlapping genes, are determined by the abundance of amino acids in 

proteins and by species-specific codon usage. Another interesting result that came out of 
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this study reflects on the evolution of the genetic code, which was previously suggested 

to be under selection for minimization of frame-shift translation errors (Seligmann and 

Pollock 2004; Itzkovitz and Alon 2007). I have found that AT-rich genomes have five 

times more frame-shift stop codons than GC-rich genomes. Therefore, it seems that the 

impact of selection on frame-shift stop codon frequency should be small compared to the 

impact of the mutation pattern that affects genome composition.    

 

The variation of evolutionary rates among proteins is another topic that has been under 

extensive investigation (Graur and Li 2000). Among several possible factors that 

influence this variation, the age of a gene was found to be inversely correlated with 

evolutionary rate (Alba and Castresana 2005; Toll-Riera et al. 2009; Wolf et al. 2009). 

This inverse relationship was suggested to result from stronger purifying selection on old 

genes than on new ones. In a simple simulation study (Elhaik, Sabath, and Graur 2006), I 

demonstrated a bias in the common methodology for age classification of genes that 

employs homology searches by Blast (Altschul et al. 1990). Since genetic distance 

increases with time of divergence and rate of evolution, it is difficult to identify 

homologs of fast-evolving genes in distantly related taxa. Thus, fast-evolving genes 

could be misclassified as new (Elhaik, Sabath, and Graur 2006). In the case of 

overlapping genes, the age of the younger gene within an overlapping pair can be 

assessed while its overlapping gene serves as a control for homology detection. Hence, 

overlapping genes could facilitate the study of the relationship between gene age and the 

rate of evolution. 
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Finally, many questions regarding overlapping genes remain open. As first predicted by 

Barrell, Air, and Hutchison (1976) and later confirmed by Belshaw, Pybus, and Rambaut 

(2007), gene overlap is more common in small genomes. However, we do not know yet 

whether the benefit of the overlap is caused by a lower genomic (contrary to per-base) 

mutation rate, a faster replication rate, a physical compactness of the genome, or other 

factors. The regulatory roles of overlapping genes, which have been documented by 

individual examples (Cooper et al. 1998; Yu et al. 2007; Herrera et al. 2008; Wadhawan, 

Dickins, and Nekrutenko 2008), is another topic that would benefit from more 

comprehensive study. Specifically, the abundant data on gene expression, protein 

abundance, and protein interactions, may be used to test the implications of overlap on 

gene regulation and protein-protein interactions on a large scale. I hope that the tools I 

have developed will prove useful in addressing these challenges and, as phrased by Boi 

et al. (2004), will help “shed light on the dark side of the genome.”   
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