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The strength of male-driven evolution – that is, the magnitude
of the sex ratio of mutation rate – has been a controversial
issue, particularly in primates. While earlier studies estimated
the male-to-female ratio (α) of mutation rate to be about 
4–6 in higher primates, two recent studies claimed that α is
only about 2 in humans. However, a more recent comparison
of mutation rates between a noncoding fragment on Y and a
homologous region on chromosome 3 gave an estimate of
α = 5.3, reinstating strong male-driven evolution in hominoids.
Several studies investigated variation in mutation rates among
genomic regions that may not be related to sex differences and
found strong evidence for such variation. The causes for
regional variation in mutation rate are not clear but GC content
and recombination are two possible causes. Thus, while the
strong male-driven evolution in higher primates suggests 
that errors during DNA replication in the germ cells are the
major source of mutation, the contribution of some 
replication-independent factors such as recombination may
also be important.
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LINE long interspersed elements
MEN2A/B multiple endocrine neoplasia type 2A/B
ZFX zinc finger protein, X-linked
ZFY zinc finger protein, Y-linked

Introduction
Almost 70 years ago, Haldane [1] proposed that the male
mutation rate in humans is much higher than the female
mutation rate because the male germline goes through
many more rounds of cell divisions (DNA replications) per
generation than does the female germline. Under this
hypothesis, mutations arise mainly in males, so that evolution
is ‘male-driven’ [2]. Although a higher mutation rate in
males than in females has been well accepted, the magnitude
of the male-to-female ratio (α) of mutation rate remains a
point of contention. Knowing the magnitude of α is important
because it is related to the issue of whether DNA replication
errors are the major source of mutation [3,4], which has
been a subject of heated debate for the past several
decades. Clearly, resolving these issues has implications for
understanding the mechanism of mutagenesis and for the
generation-time effect hypothesis, which postulates a
faster molecular clock for organisms with a short generation
time than for ones with a long generation time. In this 

article, we review studies on male-driven evolution in
mammals and birds in the past decade and discuss factors
that may affect the sex ratio of mutation rate. Note that
mutation here refers to point (substitution) mutation; we
are not concerned here with deletion or insertion mutation,
which seem to have a mechanism of mutagenesis different
from that of point mutation.

Estimating αα from new or recently produced
mutations
Dramatic advances in DNA technology have allowed the
inference of the origin of a new or recently-produced
mutation. When the origins of many mutations are
inferred, α can be estimated as the ratio of the number of
point mutations of paternal origin to that of maternal 
origin. This direct approach has replaced the indirect
methods for estimating α from incidents of X-linked 
diseases [1]. Application of the direct approach to 119 families
of haemophilia A (an X-linked recessive disease) led to an
estimate of α = 15 [5]. Two small datasets from X-linked
dominant disorders are available (Table 1) and they give an
average α value of 31/3 = 10.3, not significantly different
from the above estimate.

The direct approach has been applied to many autosomal
dominant disorders and a compilation of such studies by
Hurst and Ellegren [6] showed a male excess in most 
estimates. This remains true when more cases are added
(Table 1). The estimates are highly variable. This may be
due in part to small sample sizes. However, the samples for
Apert syndrome and achondroplasia include 40 or more
cases, but no female-derived mutation was found in either
sample. On the other hand, there are two cases — neuro-
fibromatosis type 2 and von Hippel–Lindau disease —
where α is close to 1; but the sample size is small in both
cases, so it is not clear what the true α is. Interestingly,
despite the fact that α is infinite (∞) for many of the cases
in Table 1, when all samples are pooled together the 
average α is only 10.8, similar to the above average α for
X-linked disorders.

A serious problem with the direct methods of estimating α
is that the majority of the mutations are only from a few
specific sites that mutate at unusually high rates. About
half of these sites are at CpG dinucleotide sites, which
tend to be mutational hotspots because of methylation (see
later). In four of the cases in Table 1 — achondroplasia,
Apert syndrome, MEN2A and MEN2B — the mutations
were recurrent at a few specific sites. As an extreme case,
achondroplasia is mainly (>95% of the cases examined)
caused by mutations at site 1138 of the coding sequence
(mostly G→A mutations, or C→T mutations in the other
strand). This site is at a CpG dinucleotide site. In the case
of MEN2B, >98% of the patients have a specific T→C
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mutation at the second position of codon 918, which is not
at a CpG site. Clearly, in these cases the inference of the
exclusively paternal origins of the mutations do not reflect
the general male to female mutation rate ratio. Thus,
although the direct approach is an improvement over 
the indirect approach, there are difficulties in using it to 
estimate α.

Evolutionary approach
In addition to the drawbacks mentioned above, the direct
method may not be applicable to non-human organisms. As
an alternative, Miyata et al. [2] proposed to estimate α from
the mutation rates of the two sex chromosomes or of a sex
chromosome and an autosome (or autosomes). Let Y, X,
and A be the mutation rates for a Y-linked sequence, an
X-linked sequence, and an autosomal sequence, respectively.
Noting that in a population all Y-linked sequences are
derived from the fathers, whereas one-third of the X-linked
sequences are derived from the fathers and two-thirds from
the mothers, Miyata et al. [2] showed Y/X = 3α/(2 + α).
From this formula, one can estimate α if the ratio Y/X is
known. To estimate the Y and X values, one can use a pair
of homologous nonfunctional Y-linked and X-linked
sequences from two or more species, because in a nonfunc-
tional sequence, the rate of nucleotide substitution is equal
to the rate of mutation. In the same manner, Miyata et al. [2]
showed Y/A = 2α/(1 + α) and X/A = (2/3)(2 + α)/(1 + α), and
so α can also be estimated from a pair of homologous
Y-linked and autosomal sequences or a pair of X-linked 
and autosomal sequences from two or more species. This 
evolutionary approach benefits from the comparison of
mutation rates over a large number of sites and from the
accumulation of mutations over long evolutionary times.

In higher primates, the α value was estimated to range
from 4.2 to 6.3 by obtaining the intron sequences of several
pairs of homologous genes on chromosomes X and Y
(Table 2). In mice and rats α was estimated to be ~2 from
the intron sequences of two pairs of homologous genes on
the X and Y chromosomes (Table 2). These studies all
strongly supported male-driven evolution. However,
McVean and Hurst [7] hypothesized that the high α value
might be caused by a reduced mutation rate on chromo-
some X rather than an elevated mutation rate on
chromosome Y. They reasoned that chromosome X is in a
hemizygous state in males, so that all deleterious mutations
on the X chromosome are exposed to natural selection
every generation, and it is advantageous for the X chromosome
to evolve a low mutation rate. This hypothesis was not 
supported by the finding of male-driven evolution in birds;
that is, α was estimated to be 4–5, despite the fact that
females are heterogametic (ZW) and males are homogametic
(ZZ) [8]. The existence of male-driven evolution in birds
was further supported by the analyses of intronic
sequences of additional genes and in additional species
[9,10] (Table 2). Male-driven evolution was also observed
in felids and ovids [11,12] (Table 2). Thus, by the end of the
last century, male-driven evolution was considered a well-
established phenomenon in primates, rodents, and birds.

With the Human Genome Project approaching completion,
it became tempting to use a large amount of sequence data
to estimate α. Two studies claimed that α is only ~2 in
humans, significantly lower than the earlier estimates.
First, Bohossian et al. [13] studied a 38.6 kb segment that
was transposed from X to Y in the human lineage after the
human–chimpanzee split and estimated α to be only 1.55.

Table 1

Estimates of the ratio (�) of the number of point mutations of paternal origin to those of maternal origin leading to X-linked
dominant disorders or autosomal dominant disorders in humans.

Disease Gene No. of mutations � CpG dinucleotide involved References

X-linked dominant diseases
Pelizaeus–Merzbacher disease PLP 5 4 No [44]
Rett syndrome MECP2 29 13.5 Yes (~70 %) [45,46]

Subtotal 34 10.3

Autosomal-dominant diseases
Achondroplasia FGFR3 40 � Yes (>97%) [47]
Apert syndrome FGFR2 57 � Yes (~62%) [48]
Crouzon syndrome and Pfeiffer syndrome FGFR2 22 � No [49]
Denys–Drash syndrome WT1 2 � No [50]
Hirschsprung disease RET 3 0 1/3 [51]
MEN2A RET 10 � No [52]
MEN2B RET 25 � No [53]
Neurofibromatosis type 2 NF2 23 1.3 Yes (~35%) [54]
von Hippel–Lindau disease VHL 7 1.3 2 paternal CpG transitions [55]

Subtotal 189 10.8
Total 223 10.7

FGFR, fibroblast growth factor receptor; MECP2, methyl-CpG-binding protein 2; NF2, neurofibromatosis type 2; PLP, proteolipid protein;
RET, Ret protooncogene; VHL, von Hippel-Lindau syndrome.
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However, this study has two problems [14••]: it used an
erroneous phylogeny for the Y-linked sequence and it
compared closely related sequences, so that α could have
been underestimated because of the effect of pre-existing
polymorphism (Figure 1). Second, α was estimated to be
only 2.1 from a comparison of the substitution rates in
young subfamilies of long interspersed nuclear elements
on X and Y [15]. However, corrections for multiple 
substitutions were not made and it was assumed that the
repetitive elements of the same subfamily were inserted
into the genome at the same time, which is not true.

In an attempt to resolve the controversy, Makova and Li
[14••] compared mutation rates in humans and apes in a
pair of homologous noncoding regions (~11 kb) on 
chromosome Y and chromosome 3. This Y-linked locus was
transposed from chromosome 3 after the New and Old
World monkeys split. The α estimated from external
(species-specific) branches was only 2.23, but it could have
been underestimated because the species used are closely
related so that the effect of pre-existing polymorphism in
the ancestral population is not negligible (Figure 1). Indeed,
the α value estimated from internal branches was 5.25.
This supports the estimate of α being ~4–6 in higher primates.

Methylation effects
In mammalian cells, DNA methylation occurs mostly at
the C residue of CpG dinucleotides and a methylated C
residue is easily transformed to a T through deamination,
which creates a C→T transitional mutation. If the C→T
transition occurs on the antisense strand of DNA, it is
reflected as a G→A transition on the sense strand. As
methylation occurs at a considerably higher rate in sperm
DNA than in oocyte DNA [16], it increases the frequency
of the paternal origin of mutation. For example, in Rett
syndrome and achondroplasia (Table 1), the majority of the
mutations occurred at a specific CpG dinucleotide site,
and it is likely that methylation was a major factor for the
strong male bias in these two cases. However, methylation

probably did not play a major role in the majority of the
other disorders in Table 1. In the case of Apert syndrome
(the most frequent case in Table 1), all mutations occurred
at only two specific sites, one of which is a CpG dinucleotide
site. However, because all mutations at this site were 
C→G transversions, they might not be caused by methylation.
Note also that the majority of the other cases in Table 1 do
not involve any CpG dinucleotide sites. Thus, the overall
contribution of methylation to the paternal origin of genetic
disorders may not be as important as commonly thought.
In fact, when all the sites in Table 1 are considered together,
the average of α is only 10.7. Nevertheless, as methylation
can certainly produce an extreme bias in certain cases, it
posts a serious problem for estimating α from new or
recently-produced mutations.

By contrast, methylation causes no serious problem in the
evolutionary approach for two reasons. First, this approach
considers the mutation rates at a large number of
nucleotide sites, so that it is less affected by biases at 
mutational hotspots. Second and more importantly, it uses
nonfunctional sequences, which usually have very few
CpG dinucleotide sites, as such sites tend to disappear
quickly in a nonfunctional sequence. For example, in the
primate ZFX (zinc finger protein, X-linked) and ZFY (zinc
finger protein, Y-linked) introns studied by Chang et al.
[17], no CpG site was found in the ZFY introns, and only
five CpG sites were found in the ZFX introns, and only 2
of these were mutated in at least one of the lineages stud-
ied, representing only 2% of the total number of variable
sites (97) in the sequence alignment (~1,140 bp long). This
example shows that the effect of methylation on the 
estimation of α is minor and actually tends to reduce α
because of an absence or near absence of CpG dinucleotide
sites on Y-linked sequences. The same comment applies to
the other introns studied (Table 2). In the case of a
Y-linked sequence that has been derived recently from an
autosomal or an X-linked sequence, there might initially
be some CpG dinucleotide sites on the sequence, but

Table 2

Ratio of nucleotide substitution rates on different chromosomes (m) and estimated male-to-female ratio of mutation rate (�)
in different organisms.

Taxa Gene pair (length studied) Rate ratio (m)  � (95% CI) References

Higher primates AMELY/AMELX (1.1 kb) Y/X = 2.16 5.14 (2.42–16.6) [56]
Higher primates ZFY/ZFX (0.9 kb) Y/X = 2.27 6.26 (2.63–32.4) [57]
Higher primates SMCY/SMCX (1.4 kb) Y/X = 2.03 4.20 (2.20–10.0) [17]
Human and apes Noncoding (10.4 kb) Y/A3 = 1.68 5.25 (2.44–�) [14��]
Cats ZFY/ZFX (0.8 kb) Y/X = 2.06 4.38 (3.76–5.14) [11]
Sheep and goat ZFY/ZFX (0.8 kb) Y/X = 1.99 3.94 (1.25–32.29) [12]
Mouse and rat ZFY/ZFX (1–1.3 kb) Y/X = 1.42 1.80 (1.0–3.2) [3]
Mouse and rat Ube 1Y/Ube 1X (0.9kb) Y/X = 1.50 2.0 (1.0–3.9) [58]
Birds CHD1Z/CHD1W (0.3 kb) Z/W = 4.65 6.5 (2.8–10.2) [8]
Birds CHD1Z/CHD1W (0.4 kb) Z/W = 3.06 4.1 (3.1–5.1) [9]
Birds ATP5A1Z/ATP5A1W (0.8 kb) Z/W = 1.53, 1.87, 3.67 1.8; 2.3; 5.0 [10]
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these sites would disappear quickly. Therefore, it can be
concluded that in the evolutionary approach the effect of
methylation on the estimation of α is minor.

Regional effects
The possibility that mutation rate may vary among genomic
regions was first proposed, on the basis of very limited
data, by Filipski [18] and Wolfe et al. [19]. Support for this
hypothesis came from a study that detected substantial
variation in both mutation rate and pattern among three
primate arginosuccinate synthetase processed pseudo-
genes located in different regions of the genome [20].
Later, in a comparison of human and mouse genes, Matassi
et al. [21] found that synonymous substitution rates are
significantly more similar for neighboring genes than for
genes located far apart. This study provided the first 
statistical evidence on a genomic scale that the rate of 
synonymous substitution varies among genomic regions.
Further genomic-scale evidence came from the observation
of a positive correlation between the GC content of old
repetitive elements and their surrounding regions [22].
Comparing orthologous human and mouse genes, Lercher
et al. [23••] detected a significant similarity in synonymous
rates for linked genes; the rate similarities extended over
whole chromosomes. By contrast, substantial rate differ-
ences were found between chromosomes. This finding
was supported by a more extensive analysis of human and
mouse genes [24] and an analysis of ~2 million base pairs
between the chimpanzee and human genomes [25•].
Thus, there is now strong evidence for the regional 
mutation pressure hypothesis.

However, the causes for regional variation in mutation rate
are not clear. One possible cause is the timing of replication
and the abundance of free dNTPs during the cell cycle in
the germ line [19]. Another possible cause is differences in

the efficiency of DNA repair across the genome [18,21].
Two other possible factors, GC content and recombination
rate, are discussed below.

There have been conflicting conclusions on whether the
GC content of a region can affect the mutation rate. Earlier
studies suggested a negative correlation between synony-
mous substitution rate and GC content (e.g. [26]) or a
nonlinear relationship [19,24,27], or no correlation [21,28].
However, recent studies showed a positive correlation
between GC content and synonymous rate [24,29,30,31•].
A positive correlation between GC content and substitution
rate has also been found in primate introns [32]. The
recent studies seem more reliable because they used more
extensive data and employed a maximum likelihood
method for synonymous rate estimation. Nevertheless,
variation in GC content cannot completely account for the
variation in synonymous rates [23••,24].

Recombination seems to be an even more important factor.
There is evidence that mutation rate increases with local
recombination rate. For instance, the pseudoautosomal
region in mice has an unusually high recombination rate
and a remarkably high synonymous rate [33]. Moreover,
Lercher and Hurst [31•] found a strong positive correlation
between nucleotide diversity (single nucleotide polymor-
phisms) sampled throughout the human genome and local
recombination rate and showed that at least part of the cor-
relation is mediated by mutation rate. Why is mutation rate
correlated with recombination rate? Evidence from yeast
[34] and from mammalian mutation hotspots [35] suggests
that repair of double-stranded breaks during recombination
is mutagenic. Moreover, GC content and local recombination
rate are correlated [36,37•,38•]. However, the causality of
this relationship remains uncertain. Some studies concluded
that recombination might be a cause of positive correlation

Figure 1

Effect of preexisting polymorphism on the
estimation of α. In the figure, the divergence
between two species is equal to d0 + 2µt,
where t is the divergence time between the
two species, µ is the rate of substitution, and
d0 is the average divergence between two
sequences (pre-existing polymorphism) in the
ancestral population [60]. In practice, the ratio
of mutation rates between chromosome Y 
and an autosome is estimated by 
Y/A = (y + εy) /(a + εa), where y and a are the
numbers of mutations per site on
chromosome Y and on an autosome,
respectively, because the divergence of the
two species, and εy and εa are the preexisting
polymorphisms at the point of speciation on
chromosome Y and an autosome,
respectively. The level of pre-existing
polymorphism (εy) on chromosome Y is
extremely low because there is no
recombination and a small effective population
size. On the other hand, εa — or εx, if

X chromosome sequences are used — can be
high enough to substantially underestimate
the Y/A ratio (or the Y/X ratio) and,
consequently, α. Thus, the effect of pre-existing

polymorphism on the estimation of α is not
negligible when the two species are closely
related, or in other words, closely related
species are not suitable for estimating α.

εa εy

a

y

Speciation

Human 3 Bonobo 3

Human Y Bonobo Y
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between GC content and recombination rate [39,40],
whereas others suggested that high levels of GC content
enhance recombination (e.g. [41]). Although further studies
are required to resolve this issue, GC content and recom-
bination rate appear to be two important factors for
regional variation in mutation rate.

Conclusions and future directions
The above survey of studies that used the method of Miyata
et al. [2] to estimate α suggests that it is between 5 and 6 for
hominoids (humans and apes) (Table 2). The α value (~11)
estimated from the direct method (Table 1) was consider-
ably higher for two reasons. First, it included the effect 
of methylation. Second, it referred to humans only; α is
expected to be higher in humans than in apes because it
increases with generation time. There is indeed a positive
correlation between α and generation time (Table 2): the
generation times are longest in hominoids, intermediate in
cats and sheep, and shortest in rodents, and the α values for
these organisms are ~5–6, 4, and 2, respectively.

Knowing the sex ratio of mutation rate (α) has important
implications for the mechanisms of mutagenesis. Chang et al.
[3] found that in rodents and higher primates the α value is
approximately equal to the sex ratio (c) of the numbers of
germ-cell divisions per generation in males and females, and
concluded that errors during DNA replication in the
germline are the major source of mutation (i.e. the germ-cell
division hypothesis). For example, in mice α was estimated
to be ~2 (Table 2) and c was estimated from gametogenesis
data to be ~2 if the father is 5 months old at the time of fer-
tilization. In humans, c was estimated to be ~6 if the father’s
age is 20 and ~10 if the father’s age is 25. It has been claimed
that in humans α is much smaller than c because the gener-
ation time in humans can be longer than 25 years and c can
be larger than 10 [6]. However, it should be noted that the 
α values shown in Table 2 are not for humans but for higher
primates — including Old World monkeys and New World
monkeys in the majority of cases. In higher primates, an
assumption of 20 years for the generation time seems 
reasonable. Further, it should be noted that data for 
estimating the number of germ-cell divisions in humans is
scanty and estimates of c may not be reliable. This is a sub-
ject that deserves future attention. The estimate of c in mice
was based on more data and should be more reliable.

It has been argued that the large variation in silent substitution
rate among autosomes (i.e. regional effects) is incompatible
with the germ-cell division hypothesis because rate hetero-
geneity among autosomes cannot be as a result of differing
times spent in the male and female germlines [23••,25•].
However, it should be noted that a cause for regional variation
in mutation rate may be compatible with the germ-cell 
division hypothesis. To illustrate this, let us consider the four
possible factors for regional variation that have been proposed
to date. The first factor — DNA replication time in the germ-
cell cycle — assumes that the GC content in the nucleotide
precursor pool (free dNTPs) changes with DNA replication

time and that this change affects the rate of misincorporation
of nucleotide bases during DNA replication. This model
assumes that errors during DNA replication are the primary
source of mutation. The second factor is variation in repair 
efficiency among genomic regions. Like the first model, this
one also assumes that the ultimate source of mutation is 
misincorporation of bases during DNA replication. The third
model assumes that the GC content of a region can affect the
rate of misincorporation of bases during DNA replication, or
the efficiency of error repair, or it can cause bias in gene 
conversion or can affect recombination rate. Except for the last
two possibilities, this factor is also compatible with the germ-
cell division hypothesis. The fourth factor is recombination. As
recombination occurs at meiosis in both male and female germ
lines, it may not contribute to sex differences in mutation rate
except for the X and Y chromosomes. Therefore, if recombi-
nation is indeed mutagenic, it may be an important factor for
mutation besides DNA replication errors.

It is worth noting that if recombination is mutagenic, then
the α value can be underestimated from a comparison
between a Y-linked sequence and an X-linked or an auto-
somal sequence because recombination is absent in Y unique
regions. Note also that recombination rate is generally lower
on the X chromosome than on autosomes because recombi-
nation on the X chromosome is absent in males. This may
partly explain why silent substitution rates tend to be lower
for X-linked sequences than for autosomal sequences
[23••,24,25•,42]; the lower rates should be caused in part 
by sex differences in mutation rate. In view of this and 
the above issues, the potential effect of recombination on 
mutation should be eagerly pursued.

The germ-cell division hypothesis predicts a higher rate of
nucleotide substitution in organisms with a short rather than
a long generation time (i.e. the ‘generation-time effect’)
because the number of male germ cell divisions per unit
time is expected to be higher for short-lived organisms than
for long-lived ones. This prediction has indeed been sup-
ported by the observation of a faster molecular clock in Old
World monkeys than in hominoids [4,32] and a much faster
molecular clock in rodents than in higher primates [4,43].

In conclusion, much progress has been made in the past
decade on sex differences in mutation rate in mammals.
The exact magnitude of sex differences and the causes for
regional variation in mutation rate, however, still need much
further investigation.
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