The lecture notes and homework will be posted on the Web

http://www.bcbs.edu/~glegge/teaching/

These notes are not a substitute for class participation. These notes are posted on the web, although they may be altered before class. They are intended to make you pay attention in class, so take these notes with you. Don’t just sit in class and just copy notes!!

Read the assigned material before the lecture.

Collect Homework 1 and START IT!!!

Biochemistry: Life at the Molecular Level

Biochemistry is the study of biological processes at a chemical level

Introduction to the Chemistry of Life

THE ORIGIN OF LIFE

• Universe is 15-20 billion years old – BIG BANG
• Initially H2 was made then condensed to He
• Over the billions of years under the right conditions complex molecules formed.
• Complicated chemical reactions started occurring - intermolecular interactions and carbon based chemistry developed.

From this milieu sprang the property of LIFE
The Physical Laws of Life

- Philosophers thought life contained a “vital force” or vitalism but this has been rejected by modern science.
 - Haldane – simple organic compounds from H_2O, N_2 and CO_2
 - Urey – chemical synthesis of urea
- Living organisms operate within the same physical laws that apply to physics and chemistry:
 - Conservation of Mass, Energy
 - Laws of Thermodynamics
 - Laws of Chemical Kinetics
 - Principles of Chemical Reactions

Molecular Logic of Life

These physical laws describe several axioms that make up the Molecular Logic of Life. These axioms define:

- Energy converted to work
- Catalytic chemical transformations
- Assembly of molecules with great complexity from simple subunits.
- Complex molecules combine to form supra molecular components, organelles and finally assemble into a cell.
- Store and pass on instructions for the assembly of all future generations from simple non-living precursors

Life is in constant flux

Enzyme catalyzed reactions - Substrates \Rightarrow Products 10^{-3} sec - milli sec
Unwinding of DNA 10^{-6} sec - micro sec

- 10^{-15} s 10^{-12} s 10^{-9} s 10^{-8} s 10^{-6} s 10^{-3} s 10 s 10^3s
- femto pico nano micro milli sec
 - femto fs excitation of chlorophyll
 - pico ps charge separation in photosynthesis
 - nano ns hinge protein action
 - 10^{-8} 10 ns fluorescence lifetime
 - micro μs DNA unwind
 - milli μs enzymatic reactions
 - 10^{1} generation of bacteria
 - 2.3×10^9 sec average human life span

What distinguishes living organisms?

1) Structurally complicated and highly organized
 a. intricate internal structures
 b. many kinds of complicated molecules
 proteins, DNA, RNA, starches, and lipids etc. (inanimate objects sand clay are mixtures of simple compounds)
2) Living organisms:
 a. extract
 b. transform
 c. store
 d. use

Living things can extract energy from the environment

Chemical: Chemoautotrophs or lithoautotrophs

$H_2S \rightarrow 2H^+ + S^2- + 2e^-$
$2NH_3 + 4O_2 \rightarrow 2HNO_3 + 2H_2O$
$4FeCO_3 + O_2 + 6H_2O \rightarrow 4Fe(OH)_3 + 4CO_2$

or

Sunlight: Phototrophs

$nCO_2 + nH_2O + h\nu \rightarrow (CH_2O) + nO_2$

Energy is needed to build and maintain structures

- a) mechanical energy - muscles
- b) chemical energy - electric eel
- c) osmotic energy - plant turger
- d) light energy - bioluminescence
3) Most characteristic attribute of living things is self-replication and self-assembly. It is the quintessence of the living state.

1 single bacteria \(\rightarrow \) \(10^9 \) in 24 hr

With near-perfect fidelity during replication!

A crystal at equilibrium grows but life at equilibrium is death!

Life is a set of relationships characterizing the nature, function and interaction of biomolecules.

The Essential Role of Water

- \(H_2O \) is the key to understanding the behavior of macromolecules. It is the solvent of life and all living transformations occur in an aqueous media-

Life is thought to have arisen from the sea

- Even water-insoluble compounds such as lipid membranes derive their nature and function by their interactions with \(H_2O \).

Condensation reactions

- Chemical Evolution, simple molecules condense to form more complex forms (polymers)

\[
\begin{align*}
\text{Condensation} & \quad \text{Hydrolysis} \\
\text{H}_2\text{O} & \quad \text{H}_2\text{O} \\
\begin{array}{c}
\text{O} \\
R-C-OH
\end{array} + \begin{array}{c}
H-N-R' \\
\text{H} \\
\text{H}
\end{array} & \quad \begin{array}{c}
\text{O} \\
R-C-NH-R
\end{array}
\end{align*}
\]

Reaction of a carboxylic acid with an amine

Replication through complementarity

- Specific pairing of functional groups gives rise to complementarity
- More complex molecules increases chemical versatility
- Complementarity makes it possible for macromolecules to replicate
- Over time natural selection favored molecules that made accurate copies of themselves
How did organisms evolve?

• Blind watchmaker principle, small mutations arise at random.
 1. Evolution is not directed
 2. Evolution requires built-in sloppiness
 3. Evolution is constrained by the past
 4. Evolution is ongoing

• Cell → multi cell, varied and diverse and evolutionary processes lead to diversity but life has many common themes and processes.

Organic compounds found in living organisms are a product of biological activity.

Biomolecules are selected by evolution - the fit are kept, the not fit are discarded.

The more fit remain and continue to evolve.

The Evolution of Cells Provided the Advantage of COMPARTMENTATION

Cellular Architecture

• Vesicles (fluid-filled sacs) are thought to be the precursors to cells
• These entities would have had the ability to shield self-replicating chemical reactions and catalyzed reactions so that they were taking place in a sheltered environment, giving them a competitive advantage
• This process is called compartmentation
• This compartment then has the opportunity to further evolve in order to enhance its advantage.
 — It may do so by binding cations and ions
• A typical animal cell contains as many as 100,000 different types of molecules
• A common bacterium, E. coli, contains millions of molecules, representing 3000-6000 different compounds.
Prokaryotes and Eukaryotes

- All modern organisms are based on the same morphological unit, the cell
- Prokaryotes – lack a nucleus (e.g., bacteria)
- Eukaryotes – sometimes referred as possessing their DNA
- Viruses are not cells and are not living since they lack the apparatus to reproduce outside of their host cells
- Prokaryotes range in size from 1 to 10 μM
- Eukaryotes range in size from 10 to 100 μM and thus have a thousand to a million times as much volume as a prokaryotic cell

Phylogenetic Tree of Showing Three domains of Organisms

Lecture 2
Thursday 8/27/09
Units and Thermodynamics