Andrea's Help Sheet on Preparing Solutions

There are several types of stock solutions made in the research lab: Percent (\%) solutions, Molar (M) solutions, X solutions, and $\mathrm{mg} / \mathrm{ml}$ solutions. First are instructions on how to make \% solutions.

First, know the definition of a \% solution: 1\% = 1g/ 100ml

That's the basic formula, and it is logical because "per cent" means "per hundred".
So, let's say you are assigned the task of making 1 liter of 20% SDS stock solution, a lab basic.
(On quizzes, you may be told the MW of the chemical; it is not used in \% solutions, so ignore it.)
The three steps are:
1: write out the formula:

$$
\begin{gathered}
1 \%=1 \mathrm{~g} / 100 \mathrm{ml} \\
\mathbf{2 0 \%}=\mathbf{2 0 g} / 100 \mathrm{ml}
\end{gathered}
$$

2: scale it up on the percentage:
3: scale to the final volume by multiplying by 10: $\quad 20 \%=\mathbf{2 0 0 g} / \mathbf{1 0 0 0 m l}$
Write out the description in the following manner:
Place 200 g of SDS powder a 1 L beaker and add $\mathrm{H}_{2} \mathrm{O}$ up to 900 ml . When dissolved, transfer solution to a 1 L graduated cylinder and add $\mathrm{H}_{2} \mathrm{O}$ to 1000 ml .

This works whether for a \% w/v solution (as exampled above) or a \% v/v solution. Suppose you
need 100 ml of $20 \% \mathrm{EtOH}$:
$1 \%=1 \mathrm{ml} / 100 \mathrm{ml}$
$20 \%=20 \mathrm{ml} / 100 \mathrm{ml}$
Mix 20 ml EtOH with $80 \mathrm{~m} / \mathrm{H}_{2} \mathrm{O}$ for a final volume of 100 ml .
Next, let's look at Molar (M) solutions.
First, know the definition of a Molar solution: 1M = 1MW(in grams)/ Liter
(MW = molecular wt.) That's the basic formula, and is logical because Molar is defined as a solution concentration having one mole of solute per liter of solution.
So, lets say you are assigned the task of making $\mathbf{1 0 0} \mathbf{m l}$ of $\mathbf{5 M} \mathbf{~ N a C l}$. Here, you will need the molecular wt for NaCl ; it is 58.44 .

The three steps are:

1: write out the formula:
2: plug in the numbers \& scale it up on the Molarity: \& work out the calculations:

$$
\begin{aligned}
1 \mathrm{M} & =1 \mathrm{MW}(\mathrm{~g}) / 1000 \mathrm{ml} \\
\mathbf{5 M} & =\mathbf{5 (5 8 . 4 4)} \mathbf{g} / 1000 \mathrm{ml} \\
5 \mathrm{M} & =292.2 \mathrm{~g} / 1000 \mathrm{ml} \\
5 \mathrm{M} & =\mathbf{2 9 . 2 2 g} / \mathbf{1 0 0} \mathbf{m l}
\end{aligned}
$$

3: scale to the final volume by dividing by 10 :
Write out the description in the following manner:
Dissolve 29.22 g of NaCl in $90 \mathrm{~m} / \mathrm{H}_{2} \mathrm{O}$ in a $100 \mathrm{~m} /$ beaker. Transfer solution to a $100 \mathrm{~m} /$ graduated cylinder and add $\mathrm{H}_{2} \mathrm{O}$ to 100 m .

If you are assigned a specific pH , make sure to titrate the solution in your description:
Making 500 ml of 1 M Tris, pH 8.2 would go like this (Tris MW = 121.14):

$$
1 \mathrm{M}=121.14 \mathrm{~g} / 1000 \mathrm{ml}
$$

$$
1 \mathrm{M}=60.57 \mathrm{~g} / 500 \mathrm{ml}
$$

Dissolve 60.57 g of Tris in $450 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ in a $500 \mathrm{~m} /$ beaker. Titrate the solution to 8.2 using either HCl (acid) or NaOH (base) as needed. Transfer the solution to a $500 \mathrm{~m} /$ graduated cylinder and add $\mathrm{H}_{2} \mathrm{O}$ to 500 ml .

Next, let's look at how to make other solutions from our stock solutions:

You have been taught the formula $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$.
Here's the formula that I have used for years in the lab, and it is really just the same equation in a logical order, with the order to punch it in the calculator:
"What you have (stock conc) \div what you want (final conc); invert that under 1 with the ${ }^{1 / x}$ key, then multiply by the volume you want to make."

That also looks like this: final volume
(stock conc/final conc) $<$ dilution factor
That's the same as the $C_{1} V_{1}=C_{2} V_{2}$ formula, solving for V_{2}. The (stock conc. / final conc.) is also known as your "dilution factor."

So, let's say you already have stock solutions of 5M NaCl; 1M Tris, pH 8; and 1M Imidizole, and you need to make 500 ml of $100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ Tris, pH 8 , and 20 mM Imidizole. Here' s how you do the calculations:

Step:	NaCl	Tris, pH 8	I midizole
Have \rightarrow Need	$5 \mathrm{M} \rightarrow 100 \mathrm{mM}$	$1 \mathrm{M} \rightarrow 10 \mathrm{mM}$	$1 \mathrm{M} \rightarrow 20 \mathrm{mM}$
(get same units)	$5000 \mathrm{mM} \rightarrow 100 \mathrm{mM}$	$1000 \mathrm{mM} \rightarrow 10 \mathrm{mM}$	$1000 \mathrm{mM} \rightarrow 20 \mathrm{mM}$
Have/need = Dil Fctr	$1: 50$ dilution	$1: 100$ dilution	$1: 50$ dilution
scale up:	$10: 500$ dilution	$5: 500$ dilution	$10: 500$ dilution
add units:	10 ml stock: 500 ml total	5 ml stock: 500 ml total	10 ml stock:500ml total

Plugging in the calculator for NaCl would be:
$5000 \triangle 100=\square / x \times 500 \square$, and the result will be 10 , or 10 ml . Try this method for the other 2 solutions above.

The description of how to make the solution is this:

To a graduated cylinder, measure by pipette $10 \mathrm{~m} / 5 \mathrm{M} \mathrm{NaCl}, 5 \mathrm{ml} 1 \mathrm{M}$ Tris, pH 8.2, $10 \mathrm{~m} / 1 \mathrm{M}$ Imidizole, and water to a total volume of $500 \mathrm{~m} /$.

Since all the stock solutions are already liquid, there is none of that tedious "Stir to dissolve" or transferring to a graduated cylinder later; the solution can be made directly in the grad cylinder in the first place, and brought to final volume in one easy step. It will mix as you pour it into your bottle for storage (which you will clearly label...but that's another lesson!)

You can do the same for \%-solutions: suppose you need to make 100 ml of a solution with a final concentration of 1% SDS, and you already have a bottle of 20% stock on your shelf.
$20 \% \rightarrow 1 \%$ SDS $=1: 20$ dilution, and that's the same as $5: 100$, so you would use 5 ml of the 20% stock in the total volume of 100 ml .
Plugging in the calculator would be:
$20 \because 1 \square 1 / x \times 100 \boxed{\square}$, and the result will be 5 , or 5 ml in a total of 100 ml .
The next type of solution we use in the lab is an \mathbf{X}-solution. This is a solution that someone has worked out in the past which may have several fairly dilute components, and we have found it is generally easier to measure out 10-times the amount of each and prepare the stock solution in a
more concentrated strength. For use, the 10X solution is diluted out to 1 X or 0.5 X , and is labeled as such.

For example, a common X-solution is 10X PBS (PBS stands for Phosphate-Buffered Saline). The 1X concentrations are listed as:

137 mM NaCl ,
2.7 mM KCl ,
$10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$,
$2 \mathrm{mM} \mathrm{KH} \mathrm{PO}_{4}$.
The recipe for this would be $8 \mathrm{~g} \mathrm{NaCl}, 0.2 \mathrm{~g} \mathrm{KCl}, 1.44 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}$, and $0.24 \mathrm{~g} \mathrm{KH}_{2} \mathrm{PO}_{4}$ per 1000 ml total volume, pH 7.4. (You should practice those calculations yourself, using MWs of 58.44 for $\mathrm{NaCl}, 74.55$ for $\mathrm{KCl}, 141.96$ for $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 136.09 for $\mathrm{KH}_{2} \mathrm{PO}_{4}$.) PBS is generally used in large volumes (500 ml 1000 ml at a time), so it would be a waste of time to make 1 liter of 1X PBS over and over again. However, making a concentrated (10X) solution is more time efficient; the larger masses are easier to weigh out; the pH titration is done only once per 10 liters total volume if the solution is made at the 10 X concentration. Additionally, it is a simple process to dilute the 10 X solution to 1 X as it is needed.

So, to prepare 1L of 10X PBS (notice how the weights are all 10x as listed above):
 with acid. Pour the solution into a 1000 ml graduated cylinder, and add $\mathrm{H}_{2} \mathrm{O}$ to a total volume of $1000 \mathrm{~m} /$.
\{This particular solution needs to be sterilized by autoclaving or filter sterilization before use and storage, so you would either pour it into a sterile bottle through a 0.22 um sterile filter, or put it into glass bottles and autoclave it for 20 minutes at 15 psi on the liquid cycle.\}

There is one other type of solution to make, and is mostly used for things like antibiotics: it is a simple $\mathbf{m g} / \mathbf{m l}$ or $\mu \mathbf{g} / \mathbf{m l}$ solution (the same as a w/v solution). For instance, Ampicillin is generally made at a stock concentration of $50 \mathrm{mg} / \mathrm{ml}$. Suppose you need to make some of this stock for use over the next few months. I'd make at least 50 ml , so the calculation is like this: $50 \mathrm{mg} / \mathrm{ml}=500 \mathrm{mg} / 10 \mathrm{ml}=2500 \mathrm{mg} / 50 \mathrm{ml}$, or $2.5 \mathrm{~g} / 50 \mathrm{ml}$.

You would weigh out 2500 mg of Ampicillin, put it into a 50 ml graduated cylinder, and add water to 50 ml . Capping and sealing the cylinder with Parafilm (a handy lab supply) allows you to rock or invert the cylinder in your hand until the powder is dissolved. Even though the antibiotic does kill non-resistant bacteria, it needs to be sterile-filtered (autoclaving it would inactivate its activity) to be used in sterile plates and media.

Once you have your sterile stock of $50 \mathrm{mg} / \mathrm{ml}$, you find that you need to make some LB media with Ampicillin at $50 \mu \mathrm{~g} / \mathrm{ml}$; diluting mg to $\mu \mathrm{g}$ is a $1: 1000$ dilution. So if you want to make 25 ml of LB with Ampicillin at $50 \mu \mathrm{~g} / \mathrm{ml}$, you would add $1 \mu \mathrm{l}$ Amp per ml of media (that's a $1: 1000$ dilution), or $25 \mu \mathrm{l}$ Amp $/ 25 \mathrm{ml}$ LB. The volume of Ampicillin being added ($25 \mu \mathrm{l}$) is inconsequential to the total volume $(25 \mathrm{ml})$, so don't worry about off-setting that in the preparation.

