
Antenna Arrays - Lecture 15

1 Two linear, in-phase antennas

Consider two linear, half-wave antennas separated by a distance, d, which are driven in
phase. Find the radiation field in the far-field, R ≫ d. In the last lecture the following
equation for the E field of a half wave antenna was developed.

E =
µq0ω

2

2π (eikR/R)[
cos(π/2 cos(θ))

sin(θ)
]

Now superimpose the fields of two half-wave antennas assuming that the field magnitudes
are the same (Far Field) at the same field point, but allowing the phase to be different. This
geometry is shown in Figure 1. The phase is approximated for each antenna.

R2 = r2 ± 2r(d/2) cos(η) + (d/2)2 ≈ r2[1 ± (d/2r) cos(η)]

Using the above expression for the phase, the equation for the field is;

E =
µq0ω

2

2π (eikR/R)[
cos(π/2 cos(θ))

sin(θ)
][eikd/2 cos(η) + e−ikd/2 cos(η)]
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Figure 1: The geometry of 2 half-wave, linear, in-phase antennas separated by a distance d

In the above the phase difference between the antennas is obtained from the exponential
term ikR.

ikR → ±ikd/2 cos(η)

The expression for E when using cos(η) = sin(θ) cos(φ) is;
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E =
µq0ω

2

2π (eikR/R)[
cos(π/2 cos(θ))

sin(θ)
][cos([πd/λ] sin(θ) cos(φ))]

When the antennas are a half wave length apart, d = λ/2. In the (x, y) plane, θ = 0 and
the intensity varies as cos(φ). This vanishes when φ = 0, π and is a maximum at φ = π/2.
There is constructive interference along the y axis and destructive interference along the x
axis. The ampliudes in other directions are easily determined and interpreted by analysis of
the phase differences between the waves from the antennas.

2 Linear quadrupole

An expression for the radiation from a general quadrupole distributon of charge was also
obtained in the last lecture. Now consider two dipole antennas arranged so that a linear
quadrupole charge distributon is produced. To do this, look at the multipole series expan-
sion and take first non-zero term. For the quadrupole, cancel the charge and dipole terms.
Thus compose the distribution by two dipoles pointed in opposite directions. In this case
there is no net charge (monopole distribution vanishes) and the dipole distribution cancels.
Then evaluate the quadrupole moment as illustrated in Figure 2 where point charges are
used in the general definition for a quadrupole distribution.

Qij =
∫

dτ [3xixj − r2δij ]ρ

Qzz = 2qs2
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Figure 2: The geometry of a linear quadrupole composed of two in-line electric dipoles

Assume that this distribution is harmonic with time dependence, eiωt. In this case, return
to the results of the last section,
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dP
dΩ

= [ c2z0

1152π2 ]k6 |(n̂ × ~Q) × n̂|2

.
Qj =

∑
Qijn̂i

Consider the radiation due to the superposition of two dipoles. As in the last section, assume
that the amplitudes from the dipoles are equal but properly account for phase differences.
The E field from a dipole has the form;

E = −
p0 sin(θ)

2ǫλ2 (eikR/R)

Then superimpose the fields from each dipole taking into account phase differences.

E = −
p0 sin(θ)

2ǫλ2 (eikR/R)[eiπs cos(θ)/λ − e−iπs cos(θ)/λ]

Expand the exponentials in a power series when s ≪ λ. Collecting terms;

E = −
p0 sin(θ)

4ǫλ2 (eikR/R) cos(θ)(2πscos(θ)/λ)

The magnetic field in the radiation zone is perpendicular to E and equal to E/c, so the
Poynting vector is easily determined.

3 Magnetic quadrupole

As in the previous section, develop the electric field for a magnetic quadrupole by superposi-
tion of two magnetic dipoles of opposite directions, separated by a small distance, a, Figure
3. The expression for a magnetic dipole as obtained from the last lecture is;

E = −
z0k

2m sin(θ)
4π (eikR/R)

The phase difference between the two E field amplitudes is ±ka/2 cos(θ). Because the mag-
netic dipoles are in opposite directions, the amplitudes, including the phase components, are
subtracted. The magnitudes of the amplitudes are the same and the phase components take
the form;

eika/2 cos(θ) − e−ika/2 cos(θ) ≈ 2ka cos(θ)

The expression above is obtained by expansion of the exponential assuming λ ≫ a. The
final result is;
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Figure 3: The geometry of a magnetic quadrupole composed of two magnetic dipoles pointed
in opposite directions

E = −z02π
2ma

λ3 sin(θ) cos(θ)

Again the Poynting vector is easily obtained using B which is perpendicular to E and
B = E/c in the radiation zone.
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