
Review of Electrostatics

1 Gradient

Define the gradient operation on a field F = F (x, y, z)
by;

~∇F = x̂∂F
∂x + ŷ∂F

∂y + ẑ∂F
∂z

This operation forms a vector as may be shown by its
transformation properties under rotation and reflection.
Write the following using the above definition of a partial
derivative and the chain rule of differentiation.

dF = ∂F
∂x

dx + ∂F
∂y

dy + ∂F
∂z

dz = ~∇F · ~ds

Here ~ds = dx x̂ + dy ŷ + dz ẑ. In Cartesian coordinates
the gradient operator is defined by ;

grad = ~∇ = x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

Then write in polar coordinates using the length of the
differential vector, ds =

√

dx2 + dy2 + dz2 ;
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∂F
∂s = |~∇F | cos(θ)

The derivative, ∂F
∂s

, is a maximum only when ~ds is in the

direction of ~∇F , and has magnitude equal to |~∇F | .

2 Flux

The definition of flux comes from an analogy to flow
through a surface. This is generalized to define the dif-
ferential flux for any vector field ~F as;

d flux = ~F · d~σ

The dot product projects the direction of the field per-
pendicular to the surface. The total flux through an area
is ;

flux =
∫

area

~F · d~σ
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3 Divergence

The divergence of a vector field, ~F , is defined as the flux
out of a volume per unit volume, and written, Div ~F or
in Cartesian coordinates ~∇· ~F . Develop this in a general-
ized, orthogonal set of coordinates, but note that applying
the ~∇ operator in non-Cartesian coordinates for the di-
vergence is NOT correct. From the definition;

Div ~F = limdτ→0

∫

~F · d~σ
∫

dτ

In Cartesian coordinates;

~∇ · ~F = ∂Fx
∂x

+
∂Fy

∂y
+ ∂Fz

∂z

4 The Circulation

Next consider the line integral of a vector field, F , be-
tween spatial points a and b. This is defined as;

I =
b
∫

a, path(L)

~F · d~l
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The circulation of the vector field, ~F , is then;

Γ =
∮

L

~F · d~l

The differential operation of Curl is the circulation per
unit enclosed area. As with the divergence, do not di-
rectly use the ~∇ operator on a vector field ~F unless in
Cartesian coordinates.

Curl ~F = limdσ→0

∮

~F · d~l
∫

dσ

In Cartesian Coordinates;

~∇ × ~F =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fy

∣

∣

∣

∣

∣

∣

∣

5 Integral Theorems

Recall that the definition of the divergence operation is
the flux out of a volume per unit volume, and direction
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of the area area vector is the outward normal to a closed
surface. Thus the differential element of the flux through
a small volume, d τ , is;

d flux = (Div ~F ) d τ

Then sum all the volume elements contained within a fi-
nite volume to obtain the flux out of the volume. This is
a statement of Gauss’ theorem.

∮

~F · d~σ =
∫

d τ (Div ~F )

Here d σ is an element of the surface area enclosing the
volume, d τ . Then the Curl operation is defined as the
circulation per unit area, so that for an infinitesimal area;

(Curl ~F ) · d~σ = (~F · d~l)closed path

By combining small, infinitesimal paths around the perime-
ters of a set of infinitesimal areas one obtains;

∫

(Curl ~F ) · d~σ =
∮

~F · d~l

This is stokes theorem. Finally, consider the line integral
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over a path from a to b which results in a scalar function.

∫

path

d F =
∫

path

~∇F · d~s = F (a) − F (b)

6 The Laplacian Operator

On a number of occasions we use the combination of the
Div operating on the Grad of a scalar (and later a vector)
function. In Cartesian coordinates this takes the form
∇2. Again be careful not to apply the Cartesian form of
this operator in other coordinate systems, or to a vector
function. We discuss later the differential equations that
are produced by these various vector operators, and their
physical implications.

7 Coulomb’s Law

The force between 2 static charges, q1 and q2, separated
a distance r12 is described by the equation;

~F = κ
q1q2

r2
12

r̂12

If a charge is defined as a Coulomb which is defined by
the measure of a current (ie charge per second), the force
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is measured in Newtons, then κ = 1
4πǫ0

. This defines

the rationalized MKS system of units. Here ǫ0 is the per-
mittivity of free space, and has the value 8.85 × 10−12

farad/m.

Charge is quantized in units of the electronic charge 1.6×
10−19 Coulomb. Positive and negative charge have equal
electronic units to the extent that this can be measured.
Now return to the 1/r2 behavior of the force. Is the power
of r really 2, or is this just approximate? Experimentally
it can be tested, of course, but there is always be some
uncertainty in a measured number. However one asserts
the power is exactly 2 for other reasons. This law de-
scribes the interaction of charges through the exchange
of photons, that is quanta of the electromagnetic field.
These quanta in free space have zero mass, and for (and
only for) for zero mass particles does the force decrease
exactly as 1/r2.

8 Superposition

In addition to Coulomb’s law, the law of superposition
also applies. This law states that the total force on a
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charge is the vector sum of all the electrostatic forces act-
ing on the charge.

~FT = κ q1

∑

i

qi

r2
1i

r̂1i

The accumulation of forces could have been non-linear,
and is not necessarily linear for fields in a medium. Super-
position is a separate law and is applied with Coulomb’s
law in electrostatics.

9 The Electric Field

Now the electric field is discussed. Remember that a field
has a mathematical definition but more importantly, it
connects physics to space-time geometry. Assume that
each point in space-time is effected by a charge so that
if another charge is placed at that point, it experiences
a force given by Coulomb’s law. In this way the interac-
tion is separated into two components. Thus one charge
alters space-time at all geometric points, and the other
interacts with the space time point at its geometric po-
sition, resulting in the force. Of course the interaction
is mutual and is symmetric in the case of static charge.
The description of interactions through fields is essential
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to allow a relativistic formulation of the electromagnetic
interaction.

~F = q1 [κ
∑

i

qi

r2
1i

r̂1i]

Here κ = 1
4πǫ0

. Define the electric field as;

~E = [κ
∑

i

qi

r2
1i

r̂1i]

so that;

~F = q1
~E

The electric field is a vector quantity that is a function
of position. If the field is known at ALL points in space
then the charge distribution which caused the field can
be determined.

10 Gauss’ Law

Gauss’ law assumes both Coulomb’s law and the law of
superposition. Now find the flux which penetrates a sur-
face enclosing a net charge composed of both positive
and negative charges. For the moment, assume a positive
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charge density, ρ.

The elemental charge creating a quantity of elemental flux
is ρ dτ . The flux through the surface area, d~σ is then;

d flux = ~E · d~σ = κ
ρ dτ
r2
2

r̂2 · dσ

The solid angle subtended by dσ is dΩ so that;

r2 dΩ = r̂ · d~σ

Shifting the origin write;

dflux = ~E · d~σ = κ dQ
(r − R cos(θ))r2dΩ

[R2 + r2 − 2Rrcos(θ)]3/2

Keep r = r0 (a constant) and integrate over angles.

dflux =

(dQ/2ǫ)
∫

d cos(θ)
1 − (R/r0)cos(θ)

[1 + (R/r0)
2 − 2(R/r0)cos(θ)]3/2

This integrates to dQ/ǫ0 which should not be surprising.
One can always draw a sphere centered on the point con-
taining the charge dq. The total flux through this sphere
is given by Coulomb’s law and equals dQ/ǫ0. However,

10



the flux out of this sphere is the same as the flux out of
any surface which encloses the sphere. Finally, the to-
tal flux by superposition of all the elements of enclosed
charge is obtained.

Flux =
∮

~E · d~σ = QTotal/ǫ0

This is Gauss’ law. Use the divergence theorem (Gauss’
theorem) to write;

∫

div ~E dτ = Q/ǫ0 =
∫

ρ/ǫ0 dτ

In differential form, because the volume is arbitrary;

div ~E = ρ/ǫ0

Now a combination of both positive and negative charge
could lie within the volume. However, by superposition
the charge Qenc is the net enclosed charge within the vol-
ume.

11 Line Integrals and the Electric Potential

Using mechanics the energy difference, W , generated by
moving a charge, q, between positions a and b along a
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path in a static electric field is obtained from the expres-
sion of the electrostatic force, ~F = q ~E, where ~E is the
electric field.

W =
b
∫

a, Path

d~l · ~F

W = −
∫

Path

qE dr =
q Q
4πǫ

a
∫

b

(1/r2) dr =
q Q
4πǫ[1/r]ba

Thus the energy is independent of the path, and depends
only on the end points. By superposition, add contribu-
tions for each charge of a charge distribution. This shows
that the energy obtained by moving a charge in any elec-
tric field is independent of the path. The energy obtained
from an integral over a closed path vanishes.

∮

~E · d~l = 0 =
∫

(~∇ × ~E) · d~σ

The above result is obtained from Stokes theorem where
the integral on the right hand side is over the area en-
closed by the path integral on the left hand side. Since
the path and the area are arbitrary, the integrand must
vanish;

~∇ × ~E = 0
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This result is a consequence of Coulomb’s law, superpo-
sition, and the fact that the charge is static.

The energy is a numerical value for a specific charge
distribution, as opposed to the electric potential which is
a field function. From the above equations;

dW = q dV = −q ~E · d~s

This results in the definition of the electric potential, V ,
which is a scalar FIELD obtained from the vector elec-
tric field, ~E. If a unit charge is placed at a geometric
position in an electric potential, then the result is the
potential energy of this dual charge distribution. The
potential energy is always measured with respect to an-
other point in space, (ie in this case, the potential at a is
measured relative to that at b which are the integration
limits). From the definition of the gradient, the electric
field may be obtained from the electric potential.

~E = −~∇V

Again the above results are for a static charge distribu-
tion.
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12 Including the Electric Potential in Gauss’ Law

Gauss’ law in differential form is ~∇ · ~E = ρ/ǫ. Insert
the above expression for the electric field in terms of the
electric potential. This results in;

~∇ · ~∇V = −ρ/ǫ0

The above is a partial differential equation (Poisson’s
equation), which can be solved to obtain the electric po-
tential, and from the potential, the electric field. In the
case where ρ = 0 the equation is called Laplace’s equation
and the operator, ∇2, is the Laplacian. These equations
are 2nd order, linear, partial differential equations.

13 Total energy of a charge distribution

Assume a set of positive charges which are placed at var-
ious positions in space. Energy is required to assemble
this distribution, and this can be calculated by moving
each charge from far away to its position. Note here that
the energy is assumed to vanish at infinity, and energy
is always measured relative to an arbitrary position set
to zero energy. As each charge is assembled, the next
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charge experiences a potential due to the other charges
previously moved into position. The energy is given by
the value of the charge multiplied by the electric potential
created by the assembled charge. Write for this energy;

W = κ [q1q2/r12 + q1q3/r13 + · · ·

q2q3/r23 + q2q4/r24 + · · · ]

This is;

W = κ
∑

i>j

qiqj/rij = (κ/2)
∑

i 6=j

qiqj/rij

Note the sum can be rearranged to be written in the form;

W = (κ/2) [q1

∑

1 6=j

qj/r1j + q2

∑

2 6=j

qj/r2j + · · · ]

Here the electric potential is just;

Vi = κ
∑

i 6=j

qi/rij

Which can be used above to obtain;

W = (1/2)
∑

i

qiVi
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Now change the discrete charge distribution to a contin-
uous one so that the sum is changed to an integral.

W = (1/2)
∫

dτ ρ V

Then apply Poisson’s equation ~∇ · ~E = ρ/ǫ0

W = (ǫ0/2)
∫

dτ ρ ~∇ · ~E

Here;

~∇ · ~E = ∂Ex
∂x

+
∂Ey

∂y
+ ∂Ez

∂z

Substitute into the above equation and integrate by parts
or use the identity ~∇ · (V ~E) = (~∇V ) · ~E + V (~∇ · ~E).
If the surface terms in the integration by parts vanish (ie
taken at large distances) we obtain;

W =
∫

dτ (ǫ0/2)( ~E · ~E)

From the above, assign an energy per unit volume of
(ǫ0/2) ~E2 to the electric field. This is the energy which
was needed to assemble the charge distribution creating
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the field.

14 Boundary conditions

The electric field must be perpendicular to a conducting
surface, and must vanish within an enclosed conducting
volume. This means that the potential has a constant
value on the surface. There is no field within the conduc-
tor so no flux penetrates the Gaussian surface. Outside
the conductor, the E field is perpendicular to the surface
at the interface. Shrink the dimensions of a Gaussian
cylinder so that the outer end cap approaches the sur-
face. The field out of this surface is perpendicular to the
area vector and equal to the perpendicular value of E at
that point. The flux is then E⊥ Area = Q/ǫ0 ;

~E = (σ/ǫ0) n̂

where σ is the surface charge density and n̂ is the out-
ward normal. Then the surface charge on a conductor is
given by;

σ = −ǫ0
~∇V · n̂
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Γ = E‖ abovedl − E‖ belowdl

For static charge Γ = 0 so that E‖ above = E‖ below, and
for a conductor both equal zero.

15 Uniqueness

Look for solutions to a second order partial differential
equation. These solution can be determined in several
ways, and will usually be represented in the form of a
series of special functions obtained from the solutions to
a set of eigenvalue equations. Thus the solution may take
different forms, and an important question arises. How
do we know that the solution we find is unique? There are
mathematical proofs that unique solutions to various sec-
ond order differential equations are unique if they satisfy
the differential equation and also have a specified value
on a set of boundaries in the geometric space in which the
equation applies. These conditions are specified in table
1. Finding a proper solution is called a boundary value
problem.
The Dirichlet boundary conditions require specification
of the value of the solution on the boundary. The Neu-
mann boundary conditions require the specification of the
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Table 1: Boundary conditions required for unique solutions to various

2nd order partial differential equations

Poisson’s Eqn Wave Eqn Diffusion Eqn

∇2V = ρ/ǫ ∇2V = (1/c2)∂
2V

∂t2
∇2V = (1/a)∂V

∂t
Dirichlet
Open Surface not enough not enough unique

Closed Surface unique too much too much
Neumann
Open Surface not enough not enough unique

Closed Surface unique too much too much
Cauchy
Open Surface unstable unique too much

Closed Surface too much too much too much

derivative of the solution on the boundary. The Cauchy
boundary conditions require the specification of both the
value of the solution and its normal derivative on the
boundary. For electrostatics, we are interested in the so-
lution to Laplace’s (or Poisson’s) equation which requires
specification of the value of the solution (or ) its deriva-
tive on a closed surface.

16 The Sturm-Liouville Problem

The Sturm-Liouville solutions are eigenfunctions and the
value of λn are the corresponding eigenvalues. The gen-
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eral Sturm-Liouville equation is;
d
dz

[p(z) dF
dz

] + [q(z) + λ r(z)]F = 0

These functions form an orthogonal set of functions in the
space defined within the problem boundaries, a ≤ z ≤ b.
Thus any function, F (z), can be represented by a linear
sum of eigenfunctions;

F (z) =
∞
∑

n=0
An ηn(z)

so that;

limm→∞
b
∫

a

dz [F (z) −
m
∑

n=0
An ηn(z)]2r(z) = 0

This represents convergence in the mean. In addition;

∫

dz r(z) ηn(z) ηm(z) = 0 when m 6= n and
(λn − λm) 6= 0

So that the eigenfunctions are orthogonal using a weight-
ing factor r(z) which comes from the ode.
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17 Potential and Multipole Expansions

First look at the potential of a charge distribution ρ. It
is given by;

V = κ
∫

dτ ′ ρ(~r′)
|~r − ~r′|

Now suppose r > r′ and look at the term;

1
|~r − ~r′| = (1/r) 1

√

1 + (r′/r)2 − 2 (r′/r) cos(θ)

Make a power expansion of the fraction;

1
√

1 + (r′/r)2 − 2 (r′/r) cos(θ)
= [1+(r′/r) cos(θ)+

(r′/r)2[1 + (2/3)cos2(θ) + · · · ]

1
√

1 + (r′/r)2 − 2 (r′/r) cos(θ)
= 1+

∞
∑

n=1

2n − 1)!!
2n!! [2(r′/r) cos(θ) − (r′/r)2]

Here introduce the Legendre polynomials;

Pn(x) =
n/2
∑

k=0

(−1)k)
(2n − 2k)!

2nk!(n − k)!(n − 2k)!
xn−2k
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For even n, Pn has even powers of x and for odd n, odd
powers of x. Some examples are;

P0(x) = 1

P1(x) = x

P2(x) = 3/2(x2 − 1/2)

1
|~r − ~r′| = [

∞
∑

n=0
(r′/r)nPn(cos(θ))]

The Legendre polynomials are an orthogonal set of func-
tions;

1
∫

−1

dxPn(x)Pm(x) = 2
2n + 1

18 Spherical Harmonics

In the case that there is no axial symmetry, one must in-
clude eigenfunctions of φ in the solution. This introduces
the associated Legendre polynomials as well. Combine
these angular functions into an orthonormal set called
the spherical harmonics.
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Y M
l (θ, φ) =

√

2l + 1
4π

(l − m)!
(l + m)!

Pm
l (cos(θ)) eimφ

Note that;

Y −m
l = (−1)m Y m ∗

l

The functions are orthogonal;

∫

dΩ Y m′ ∗
l′ Y m

l = δl,l′ δm,m′

Y 0
0 = 1

4π

Y 1
1 = − 3

8π sin(θ) eiφ

Y 1
0 = − 3

4π cos(θ)

Y 2
2 = − 15

32π sin2(θ) ei2φ

Y 2
1 = −15

8π sin(θ) cos(θ) eiφ

Y 2
0 = − 5

4π ((3/2)cos2(θ) − 1/2)

An arbitrary function can be expanded in spherical har-
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monics, for example;

f(θ, φ) =
∑

l,m

AlmY M
l (θ, φ)

19 The Addition Theorem

The addition theorem allows representations in abritrary
spherical coordinate frames.

Pl(cos(γ)) = 4π
2l + 1

l
∑

m=−l

Y m ∗
l (θ′, φ′) Y m

l (θ, φ)

The following expansion results;

1
|~r − ~r′| = 4π

∑

l,m

1
2l + 1

(rl
</rl+1

> ) Y m ∗
l (θ′, φ′) Y m

l (θ, φ)

20 Induced and Permanent Electric Moments

Approximate the macroscopic potential due to an arbi-
trary charge distribution. From previous lectures this can
be written as;

V = κ
∫

dτ ′ ρ(~r′)
|~r − ~r′|
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Now make the assumption that r > r′, and expand right
hand side of the equation in Legendre polynomials. The
first 2 terms have the form;

V = κ
r [

∫

dτ ′ ρ(~r′) + (1/r) r̂′ · ~p + · · · ]

Here ~p is the dipole moment of the charge distribution,
and the terms in the above series are called the multipole
moments of the charge distribution. The full expansion
in terms of the Spherical harmonics is;

V =
∑

l

l
∑

m=−l

1
ǫ0(2l + 1)

gm
l

rl+1 Y m
l (θ, φ)

The multipole qm
l is;

qm
l =

∫

dτ ′ Y ∗m
l (θ′, φ′) r′ l ρ(r̂′)

The first few terms are;

q0
0 = Q/

√
4π

q0
1 =

√

3/4π pz
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q1
1 = −

√

3/8π (px − ipy)

Using the above, the dipole moment ~p as ;

~p =
∫

dτ ′ ~r′ρ(~r′)

21 Gauss’ Law and the Electric Displacement

Suppose we apply Gauss’ Law inside a dielectric material.
The Gaussian surface cuts through atoms/molecules such
that some induced charge is always included within the
surface. Gauss’ Law still holds, but it must be modified to
include all charge enclosed within the surface. Therefore
for a system of free, Qfree, and induced, QInd, charge,
Gauss’ Law is;

∮

~E·d ~A = (Qfree+QInd)/ǫ0 = (1/ǫ0)
∫

dτ (ρfree+
ρInd)

Introduce a new vector called the electric displacement;

~D = ǫ0
~E + ~P
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The vector, ~P , above is the dipole moment per unit vol-
ume of the polarization. Then form a new Gauss’ Law
dependent only on the free charge enclosed within a vol-
ume;

∫

~D · d ~A =
∫

dτ ρfree = Qfree

In differential form this is;

~∇ · ~D = ρfree

Note that the field is still static so
∮

~E · d~l = 0 has not
changed. Then for a class A dielectric the polarization,
~P , is in the direction of, and proportional to, the applied
field. Thus write;

~D = ǫ0ǫr
~E = ǫ ~E

The Polarization is then;

~P = (ǫ − ǫ0) ~E
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22 Magnetic Force

The magnetic force on a charge moving with a velocity,
~v, is obtained from the Lorentz force equation;

~F = q[ ~E + ~v × ~B]

In the above, both the electric field and a magnetic field
are included. The form of the electric field is given by
previous expressions, and the magnetic field can be ob-
tained from the Biot-Savart Law;

~B =
µ0
4π I

∫ d~l × r̂
r2

In the above expression, the multiplying constant
µ0
4π pro-

vides a force in Newtons for current, I , in amperes. The
term, µ0, is the permeability of a material for free space,
and the integral is along the current filament d~l. More
correctly, ~B is called the magnetic induction while the
magnetic field is defined by ~H , to be introduced later.
Units of ~B are Tesla or Weber/m2. The Gaussian unit
of magnetic induction is the Gauss. For conversion, 1
Webber/m2 = 104 Gauss. In what follows, we interchange
the terms “magnetic field” and “magnetic induction” un-
less the meaning is not clear.
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If the current flows through a filament of finite size, in-
troduce a current density, ~J such that;

dI = ~J · d ~A

where dA is the infinitesmal area perpendicular to the
current flow. The Biot-Savart law is then written;

~B =
µ0
4π

∫

dτ ′ ~J × (~r′ − ~r)
|~r − ~r|3

23 Ampere’s Law and the Vector Potential

In the case of electrostatics, the various results were de-
veloped by applying the differential opperators for the
divergence, curl, and gradient. Now apply these to the
magnetic field, ~B. First define a magnetic flux by φM =
∫

~B · d ~A. Then apply the divergence theorem (Gauss’s
Law).

∫

~B · d ~A =
∫

dτ (~∇ · ~B)

Substitute the expression for ~B using the Biot-Savart law;
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~B =
µ0
4π

∫ ~J × r̂
r2

This gives ~∇ · ~B = 0 so that ~B = curl ~A

~A = µ0
4π

∫

dτ ~J/r

Note the similarity to the expression for the electric po-
tential;

V = κ
∫

dτ
ρ
r

~A is called the vector potential. Now consider ~∇ × ~B.

~∇ × ~B = ~∇ × ~∇ × ~A = ~∇(~∇ · ~A) − ∇2 ~A

Remember from an earlier discussion one must be care-
ful with ∇2 operations on a vector. In this case one can
ignore the complications of this operation. Now look at
each term in the above expression. This results in

~∇ × ~B = µ0
~J

This is Ampere’s Law in differential form. In integal form
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it is;

∮

~B · d~l = µ0

∫

~J · d ~A = µ0I

24 Equation of Continuity

The current density ~J is the charge density multiplied
by the velocity. Obviously the velocity gives the direc-
tion and for a differential distance in the direction of
the current flow, v = dx/dt. The charge density is
ρ = dQ/(area dx). Then

ρ v = dQ/(area − dt) = I/area

Here, the area is perpendicular to the current flow in the
direction dx. From the definition of the current density,
~J · d ~area = dI , and as a result ~J = ρ~v. Now consider
∫

~∇ · ~J dτ =
∫

~J · d ~area. This last equation represents
the current flux out of the volume. That is the flow of
charge out of the volume per unit time. This must equal
the change per unit time of the enclosed charge within
the volume.
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∫

dτ (~∇ · ~J) = −
∫

dτ
∂ρ
∂t

This is the equation of continuity which represents con-
servation of charge. Similar equations appear for other
conserved quantities, such as energy or mass.

25 Magnetic pressure and energy

Consider two parallel current sheets separated by a dis-
tance, d, with uniform, constant currents flowing in op-
posite directions. The magnetic field is obtained using
Ampere’s law. Because of symmetry the magnetic field
must be directed parallel to the sheet, and can only de-
pend on the perpendicular distance from the sheet to the
field point. Evaluation of the integral form of Ampere’s
law gives;

∮

~B · d~l = 2BL = µ0I

The factor of 2 comes from adding the fields above and
below the sheet, and L is the distance parallel to the
sheet over the path along ~B. I is the current which flows
through this Amperian loop. Thus for one sheet;
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B = µ(I/L)/2 = (µ/2) I

In the above, I is the current per unit width on the sheet.
The direction of the magnetic field is given by the right-
hand-rule. Note that the field is independent of the dis-
tance from the sheet. Thus the fields when superimposed
from the two sheets, add between the sheets and can-
cel outside the sheets. Finally we also see that the force
generated by the magnetic field on one sheet interacting
with the current on the other is repulsive. Visualize this
situation by thinking of the magnetic field as creating a
pressure between the plates tending expand the distance
between them.

Use the Lorentz force to calculate this force. In the equa-
tion for the Lorentz force, substitute I dL for qV . The
field and current direction are perpendicular, so F2 =
I2LB1 = I2x2(µ/2)I1. Now the total magnetic field be-
tween the plates comes from the superposition of both
fields which add to BT = 2(µ/2)I1,2. Then I1,2 =
BL/µ which we substitute for I1 in the force equation
yielding;
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F
Lx = 1

2µ0
B2

The above is the force per unit surface area (pressure) of
one current sheet on the other. This pressure attempts to
push the plates apart. Now suppose work is done against
this pressure, by compressing the plates a distance, d.
The movment of the plates removes a volume of the mag-
netic field, Lxd, under the Amperian loop. and puts an
energy into the system given by W = Fd. Remove the
geometry in the equation by dividing by the volume to
obtain the energy per unit volume which we assign to the
magnetic field. Compare this energy density, (1/2µ0)B

2,
to the energy density of the electric field, (ǫ0/2)E2.

26 Macroscopic Equations

Previously it was assumed that ~J was known or could be
determined. In the presence of matter this is not true
or irrevelent on the atomic scale, because all atoms have
currents due to the movement of atomic charge. Of inter-
ested here is a macroscopic average of these currents over
a sufficiently large volume so one can treat fields in mat-
ter as a continuous distribution of mass and current. The

34



solution to this problem is similar to the way the equa-
tions for the electric field in materials were developed.

The current density is divided into 2 components, 1) a

conduction current density, ~Jc and 2) an atomic current

density, ~Ja . In analogy to the electric field case, ~Ja is a
bound current density.

~A =
µ0
4π

∫

dτ
~Jc(r′)
|~r − ~r′| +

µ0
4π

∫

dτ
~Ja(r′)
|~r − ~r′|

Expand the second term by a multipole expansion.

Then identify a new current density;

~J∗
a = ~∇ × ~M

In the above M is the magnetic moment per unit volume
or the magentization, so that

~J∗ = ~Jc + J∗
a

Ampere’s Law then becomes;

~∇ × ~B = µ0
~J∗ = µ0[ ~Jc + ~∇ × ~M ]
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~∇ × ( ~B − µ0
~M) = ~Jc

Define a new quantity, H ;

µ0
~H = ~B − µ0

~M

The variable, H , is usually called the magnetic field and
B the magnetic induction. For comparison, the relation-
ship between the electric displacement, electric field, and
the polarization is;

~D = ǫ0
~E + ~P

In the case of the magnetic field the relationship between
the magnetic field, magnetic induction, and magnetiza-
tion is;

~H = (1/µ0) ~B − ~M

27 Static Maxwell Equations

36



~∇ · ~D = ρ

~∇ · ~B = 0

~∇ × ~E = 0

~∇ × ~H = ~J

~D = ǫ0
~E + ~P

~H = (1/µ0) ~B − ~M
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