
EM radiation - Lecture 14

1 Review

Begin with a review of the potentials, fields, and Poynting vector for a point charge in ac-
celerated motion. The retarded potential forms are given below. The source is evaluated at
a time that is retarded by the propagation time of the EM wave. Causality has been applied.

V = 1
4πǫ

∫

d3x′
ρ(~x′, t′ = t−R/c)

R

~A =
µ
4π

∫

d3x′
~J(~x′, t′ = t− R/c)

R

From these potential forms, the fields were obtained, where the electric field is given below.
It is found to have two terms. The first term is a quasi-static field, and the second is a
radiation field.

~E =
q

4πǫ [
n̂− ~β

γ2(1− ~β · n̂)3R2
]r +

q
4πǫc [

n̂× ([n̂− ~β]× ~̇β)

(1− ~β · n̂)3R
]r

The radiation field in the above equation can be used to obtain the Poynting vector, and
from the Poynting vector, the power flowing into a solid angle, Ω.

dP
dΩ

=
q2

16π2ǫ0c
[
|n̂× (n̂− ~β)× ~̇β|2

(1− ~β · n̂)5
]r

If the acceleration is in the direction of the velocity this power flow reduces to ( [κ = (1−~β·n̂)]

with n̂ the direction of observation and ~β the velocity);

dPower
dΩ

=
µq2c
16π2

β̇2 sin2(θ)
κ5

The time dependence of the radiated wave, ei[kr−ωt], has been suppressed in the above ex-
pressions by assuming one works in frequency space using with the Fourier transform. Re-
membering that the time average Poynting vector for a wave is obtained from (1/2)| ~E|2,
multiply the above expression by (1/2) to get the average power into the solid angle Ω,
and drop the time dependent terms. Also apply the expression for the impedance of free

space, z0 =
√

µ0/ǫ0 in the above expression, and write the acceleration, ~̇β = ~a. Finally set

κ = (1− ~β · n̂) = 1 for non-relativistic motion.

dP
dΩ

=
z0k

4q2a2 sin2(θ)
32π2ω4

When integrated over the full solid angle (
∫

dΩ);
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PT = (2π)
z0k

4q2a2

32π2ω4

∫

dθ sin3(θ)

PT =
z0q

2a2k4

12πω4

For an oscillating charge, the acceleration is measured by displacement of the charge from
equilibrium.

x = x0 e
iωt

a = d2x
dt2

= −ω2 x

The term a2 in the above equation is the average acceleration. Thus replace a2 by ω2x2
0 and

note that (qx0)
2 is the electric dipole moment. The final result in terms of the electric dipole

moment, p, becomes;

PT =
µ0ω

4p2

12πc

The above equations are valid only when the particle is instantaneously at rest relative to
the observer, ie the particle moves with non-relativistic velocity.

2 Radiated power for an accelerated dipole

The above expression obtained for the radiated power, requires one to obtain the electric
dipole moment of an accelerated charge. Suppose an antenna with the geometry given in
Figure 1. To proceed the current distribution in the antenna is required. Assume that this
distribution has the form;

I(z) = I0(1−
2|z|
d

) eiωt

This assumption, of course, is not exactly correct, but the radiation field is insensitive to the
details of the current configuration. However, proceed by applying the equation of continu-
ity. Note that the time dependence is assumed to be, e−iωt

~∇ · ~J = −
∂ρ
∂t

= iωρ

I =
∫

~J · d ~A =
∫

(~∇ ·~j) dτ = −iω
∫

dz
∫

ρ dA

∂I
∂z

= 2I0
d

= iωλ

In the above, λ, is the charge per unit length. Then
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Figure 1: The geometry of a center-fed antenna. n̂ gives the direction of observation of the
radiated power

λ = 2iI0
ωd

The dipole moment (time dependence suppressed) is

p = 2
d/2
∫

0

dz z(2iI0
ωd

) = iI0d
2ω

Then the radiated power is obtained from the dipole radiation equation previously developed.

P =
I20 (kd)

2

48π

The power input into the antenna is lost by driving the current, and goes into the radiation
field. This appears as an effective resistance, R, in series with the antenna. Therefore on
time average;

z0I
2
0 (kd)

2

48π = (1/2)I20R

In the above, R is called the radiation resistance. Let k = 2π/λ for the wavelength, λ. Then

R = (πz06 )(d
λ
)2

As an example, suppose a long power transmission line (500 km) with frequency of 60 cycles/s

λ = 3× 1010

60 = 5× 108 cm

Rrad = 7.9Ω

Compare this to the resistance of a copper wire. The resistivity of copper is ρ = 1.7× 10−6
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Ω-cm and R =
ρL
A . For a wire radius of 0.5 cm then R = 108 Ω.

3 Dipole radiation

Radiation due to absorption of an EM wave almost always results in dipole radiation and
is used to describe scattering of the electromagnetic wave. Consider dipole radiation as a
simple example of the more general case to be discussed in the following section. Begin with
the retarded potentials. In the expressions below; R = |~r − ~r′| ;

V =
∫

d3x′
ρ(~r′, t− R/c)

R

~A =
∫

d3x′
~J(~r′, t−R/c)

R

where R = |~x− ~x′|. Then let r ≫ r′ so that R ≈ r−~r · n̂ as seen in Figure 2. This assumes
that the period of oscillation is much greater than the time for the EM wave to traverse the
source. If this were not the case, then we would need to take into account phase shift differ-
ences in the radiation from different points in the source. In the figure n̂ is in the direction
of observation of the radiation. In the dipole approximation, neglect the factor of ~r · n̂ in the
denominator. However, this cannot be done in general because of phase differences between
different points of the moving charges. In the case of the dipole, the retarded time is simply
replaced by the present time. In the radiation zone ~E is perpendicular to ~B and ~E, ~B are
perpendicular to n̂. Thus;

r’

r

n̂

R

Figure 2: The geometry of dipole radiation

~E = ~B × n̂ = −~∇V − (1/c)∂
~A

∂t

~B = ~∇ × ~A
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Now ~J = ρ~v, and write

~A =
µ

4πR
∑

i

qi~vi =
µ

4πR
d
dt

∑

i

qi~ri

In the above equation q~r is the electric dipole moment p, and p̈ is the second time deravitive
of the dipole moment (an acceleration term). The fields in the radiation zone, where E, B
are perpendicular to each other and perpendicular to the energy flow, become;

~B =
µ
4πc (

p̈× n̂
r )

~E =
µ
4π (

(p̈× n̂)× n̂
r )

The radiation intensity is given by the Poynting vector. For the dipole case multiply by the
differential area R2dΩ and obtain the radiated power as;

dP
dΩ

=
µp̈2

16π2c
sin2(θ)

In this expression θ is the angle of observation with respect to the dipole moment. A similar
development gives the power and fields for magnetic dipole radiation.

4 General look at radiation

In general all EM fields are created by a system of charges and currents. Assume that one
can work in frequency space, so look for solutions for each frequency, ω, in the spectrum.
Therefore the time dependence is;

ρ(~r, t) → ρ(~r)e−iωt

~A(~r, t) → ~A(~r)e−iωt

Then the vector potential is;

~A(~r, t) =
µ
4π

∫

dx′ 3
∫

dt′
~J(~r′, t′)
|~r′ − ~r|

δ(t′ −
|~r′ − ~r|

c − t)

Causality is preserved by the δ function. The equation for the charge density can be obtained
from the equation of continuity.

ρ = (1/iω)(~∇ · ~J)
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When a harmonic form is assumed, eiωt
′

, the time dependence can be removed after inte-
gration over t′ and replacing ~J(~r′)eik[(~r

′
−~r)] eiωt by ~J eik[(~r

′
−~r)] so that the vector potential

becomes the static equation;

~A(~r) =
µ
4π

∫

dx′ 3 ~J eik[(~r
′
−~r)]

|~r′ − ~r|

In the above, k = ω/c, and the fields are constructed from the potentials. Suppose the
source dimensions are d, and invesitgate solutions for λ ≫ d and λ ≪ d. The integral over
the source is confined to integration over ~r ′. There are several distance scales.

1. Near Field d ≪ λ > r

2. Far Field d ≪ λ ≪ r

3. Intermediate field d ≪ λ ≈ r

Here one always assumes that at least d ≈ r′ ≪ λ. If this is not the case then there are
phase problems to address. With this assumption, the exponential in the integrand can be
written;

eikr[1−2~r·~r′/r2+r′ 2/r2]1/2 ≈ eir[1−(r′/r) cos(θ)]

Expand this in a power series of (r′/r and neglect the denominator, for the moment. The
mth term of the vector potential is ;

~Am =
µ
4π (e

ikr/r)
(ik)m

m!
[1 + a1

ikr
+ · · ·+ am

(ikr)m
]
∫

dτ ′ ~J (r′ cos(θ))m

The coefficients in this series, aj are integers. For the near field kr ≪ 1;

Am →
(−1)mµam

4πm!
(1/rm+1)

∫

dτ ′ ~J(r′ cos(θ))m

Since eikr ≈ 1, the leading term is independent of k. Thus this term has a time dependence
of e−iωt but no traveling wave develops. In the far field case kr ≫ 1 so that;

~A → µ(−ik)m eikr

4πrm!

∫

~J(r′ cos(θ))m

Using this expression, the vector potential becomes;
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~A(~r) =
µeikr

4πr

∫

dτ ′
~J(r′) e−ikr′ cos(θ)

1− (r′/r) cos(θ)

This expression is valid for (r′/r) ≤ d/r ≪ 1. Here one must be careful to evaluate the phase
where terms of order (r′/r)2 have been neglected. However so long as 2πr′/λ ≪ 1, expand
the exponential and the denominator in powers of (r′/r).

e−ikr′ cos(θ)

1− (r′/r) cos(θ)
= 1 + (1/r − ik)r′ cos(θ) + · · ·

In this region the fields fall like 1/r and are transverse to the radial vector r. The potential is
dominated by the lowest, non-zero term in the expansion. Note that this is just the multipole
expansion previously developed for a static charge distribution. Thus the radiation problem
for a specified, harmonic frequency, is determined by the lowest, non-zero multipole moment
of the potential. Note that the development requires a harmonic time dependence. If this
is not the case, then the source forms must be broken into Fourier components by a Fourier
transformation.

5 Electric dipole

In the last section using m = 0, the vector potential will be;

~A ≈
µeikr

4πr

∫

dτ ′ ~J(~r ′)

If this does not vanish, then integration by parts gives;

∫

dτ ′ ~J = −
∫

dτ ′ r′(~∇ · ~J) = −iω
∫

dτ ′ ~x ′ρ(~r ′)

A harmonic time dependence is assumed and used in the equation of continuity. Note that
∫

dτ ~xρ is the dipole moment of the charge distribution. Thus;

~A =
−iµ
4πr eikr ω~p

Here choose ~p = p0e
−iωtẑ. The magnetic field is then;

~B = ~∇ × ~A

The vector potential points along the direction of observation, so to have ~p point along the
ẑ axis, project ẑ onto r̂.

~A =
−iµω
4πr eikr p[cos(θ) r̂ − sin(θ) θ̂]
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The magnetic field is obtained from ~∇ × ~A in spherical coordinates.

~∇ × ~A = [−
kµω
4π (eikr/r)p sin(θ) +

iµω
4π (eikr/r2)p sin(θ)]φ̂

Drop the last term as it has the functional form, 1/r2, to obtain;

~B = −
kµωp0
4π p sin(θ)(eikr/r) φ̂

The electric field is;

~E = i
ωµǫ

~∇ × ~B

~E = −
µω2p
4πµǫc2

sin(θ) (eikr/r) θ̂

The time averaged Poynting vector is;

〈S〉 = (1/2) ~E × ~H =
µp2ω4

32π2cr2
sin2(θ)r̂

The total power radiated is obtained by integration over the solid angle.

〈P 〉 =
µp2ω4

12πc2

6 Magnetic dipole radiation

Return to the general expansion developed earlier and take the 2nd term in the series for ~A.
This gives;

~A =
µ
4π (eikr/r) (−ik/1!)

∫

dτ ′ ~J(r′)(r′ cos(θ))

Write r′ cos(θ) = n̂ · ~r ′ for n̂ in the direction of the radiation. Then expand as follows.

(n̂ · ~r ′) = (1/2)[~r ′ × ~J × n̂] + (1/2)[( ~J · n̂)~r ′ + (n̂ · ~r ′) ~J ]

The first term is anti-symmetric in (r′, J) and the 2nd is symmetric. The first term pro-

duces magnetic dipole radiation and the second electric quadrupole radiation. Now ~M =
(1/2)(~r ′ × ~J) where M is the magnetization (magnetic moment per unit volume). Thus the

integral of the anti-symmetric term of (n̂ · ~J) = (n̂×~r ′ × ~J) over the volume is n̂× ~m where
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~m is the magnetic dipole moment. The vector potential becomes;

~A =
ikµ
4π (n̂× ~m)(eikr/r)

~m = (1/2)
∫

dτ ′ (~r ′ × ~J(~r ′))

The fields can be obtained from A.

~B =
µ
4π [k

2(n̂× ~m)× n̂(eikr/r) +

[3n̂(n̂ · ~m− ~m](1/r3 − ik/r2))eikr

The first term is the radiation field. Then

~E = −
z0k

2(n̂× ~M)
4π (eikr/r)

The time averaged Poynting vector is;

〈S〉 =
µm2ω4

32π2c3
(sin2(θ)/r2)r̂

7 Quadrupole radiation

First note that the parity symmetry (~r → −~r) of the electric dipole (l = 1) is odd and in
fact all higher odd electric multipoles will be odd, while all magnetic multipoles will be even.
Thus the magnetic dipole (l = 1) has even parity. This is the reason the expression for the
symmetry of vector potential was used so that appropriate multipoles could be combined.
The ratio of magnetic to electric multipoles is approximately β for the same order of mul-
tipolarity. Then use the symmetric term in the expression as discussed in the last section.
One writes the equation;

(n̂ · ~r ′) = −(1/2)[~r ′ × ~J × n̂] + (1/2)[( ~J · n̂)~r ′ + (n̂ · ~r ′) ~J ]

Look at the second term;

∫

dτ ′ [(n̂ · ~r ′) ~J + (n̂ · ~J)~r ′] = −iω
∫

dτ ′ ~r ′(n̂ · ~r ′)ρ(~x ′)

In the above the continuity equation has been used. This is an electric quadrupole source.
Substitute into the expression for the vector potential to obtain;

~A =
µ
8π (e

ikr/r)(kω)
∫

dτ ′ ~r ′(n̂ · ~r ′)ρ(~x ′)
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The magnetic field is;

~B = ikn̂× ~A = −
ik2ωµ
8π

∫

dτ ′ ~r ′(n̂ · ~r ′)ρ(~x ′)

Now write a quadrupole tensor in the form;

Qij =
∫

dτ [3xixj − r2δij ]ρ

n̂×
∫

dτ ~r ′(n̂ · ~r ′)ρ = (1/2)n̂× ~Q

~Q =
∑

Qijn̂i

The magnetic field becomes;

B =
ik2µω
24π (eikr/r) n̂× ~Q

The radiated power per solid angle;

dP
dΩ

= c2z0
1152π2k

6|(n̂× ~Q)× n̂|2

8 A half-wave, center-fed linear antenna

Remember that the current must vanish at the ends of the antenna wire. Assume that the
wire is thin so that radial currents can be neglected, and the radiation field is insensitive to
the current distribution.

x

y

z
d/2

−d/2

n̂θ

Figure 3: The linear center fed antenna. We neglect the radial width of the antenna wire

In the dipole approximation the radiation field is;
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r

R

dz
z

θ

−d/2

d/2

Figure 4: The geometry to properly include the phase factor for the antenna field

~E = −
µω2p
4π sin(θ)(eikr/r)θ̂

In the above equation, ~p is the electric dipole moment. Now suppose the charge moves in
an antenna wire such that I = I0 cos(

π
d
z) eiωt. Recall in a previous section, electric dipole

radiation was developed using a current distribution, I(z, t) = I0[1 − 2z/d]eiωt. Both as-
sumptions applied a current distribution which vanishes at the ends of the antenna wire and
is harnonic in time. The later choice for the current is a solution of the boundary value
problem for current in a thin wire antenna, and is a better approximation. Then;

q = q0 cos(
π
d
z) q0 = I0/ω

The differential dipole moment is dp = q dz. Then since d ≈ λ, the phase of each oscillating
charge element must into taken into account. Do this by summing the amplitudes of small
antenna elements and properly including their phases.

dE = −
µω2

4π sin(θ) (eikr/r)(q dz)

dE = −
µω2

4π sin(θ) (eikr/r) cos(πz
d
) dz

Consider Figure 4, where the phase term for the factor eikr is approximated.

R = r + z cos(θ)

Substitution gives;

dE = −
µq0ω

2

4π sin(θ) (eikR/R) eikz cos(θ) cos(πz
d
) dz

Integration gives;
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φo

q/2

q/2

v

v

Figure 5: Radiation from sets of charge rotating in a circle

E =
µq0ω

2 sin(θ)
4π (eikR/R)[

2cos(π/2 cos(θ))
cos2(θ)− 1

]

E =
µq0ω

2

2π (eikR/R)[
cos(π/2 cos(θ))

sin(θ)
]

The Poynting vector is;

〈S〉 =
(2q0µω

2 sin(θ))2

2µc(4π)2R2 (2π/d)2[(
cos(kd/2 cos(θ))

k2 cos2(θ)− (π/2)2
]2

The radiation resistance is obtained from the Power = I2R

R = Power/(
dq
dt

)2 = P/ω2q0

The radiation resistance can be evaluated numerically in this case by integrating over the
solid angle for the power. The result is;

R = 73.1 Ω

Now an accelerated charge radiates energy. Suppose we set 2 charges in symmetric posi-
tions on a loop and let them spin around the z axis as shown in Figure 5. This results in
radiation because the charges are accelerated. Now suppose we consider the loop filled with
a continuium charge distribution which rotates. Contrary, perhaps to intuition, there is no
radiation. This occurs due to coherence of the radiation from each of the elemental charge
distributions. We see this as follows. The charge distribution of the two elements, as shown
in the figure, can be written;

ρ = (q/2)
δ(r − a)

a2
δ(θ − π/2)[δ(φ+ φ0) + δ(φ− φ0)]
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Rewrite the charge per unit length so that additional symmetric units of charge can be added.

λ =
q

(n + 1) πa
δ(φ− πk/N − φ0) k = 0, 1, 2, · · · , N − 1

All of the charge elements rotate with the frequence ω. The charge density is then written;

ρk =
q

(n + 1)π
δ(r − a)

a2
δ(θ − π/2) δ(φ− πk/N − ωt)

Now work out the Fourier components of the distribution.

ρk =
∑

An cos(n[φ− ωt])

The coefficients An are found using othorgonality of the Fourier functions, so that;

ρk =
q

(n + 1)2π
δ(r − a)

a2
δ(θ − π/2)

∑

n

cos(2πkn/N) cos(n[φ− ω])

Then;

ρ =
N−1
∑

k=0

ρk

The sum over k provides the following;

N−1
∑

k=0

cos(2πnk/N) = cos(nπ[1− 1/N ])
sin(nπ)

sin(nπ/N)

This is zero unless n = N or 0. Thus the radiation has multipolarity N . But if N → ∞ there
will be no radiation. In effect the radiation from each charge element contributes coherently,
cancelling the radiated power.
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