
Models

Lecture 18

1 Introduction

In the next series of lectures we discuss various models, in particluar

models that are used to describe strong interaction problems. We

introduce this by discussing the hadronic force in terms of the ex-

change of mesons. Mesonic exchange basically gives the long range

behavior of the interaction, ∼ 1 fm or greater. Shorter range forces

would be described by gluon exchange between the quarks (QCD)

but as we know QCD cannot be easily solved. Thus models can help

develop physical intuition of these process, and good models contain

the power to predict system behavior. Therefore instead of QCD in-

troduce models using the generic term of Quantum Hadro-Dynamics

(QHD). Some QHD models have been used in one form or another

since the foundation of hadronic physics.

2 The hadronic many body problem

In general, the description of interacting hadrons via QHD is also

a complex problem. Even when describing the interaction of only

2 hadrons, the strength of the interaction is sufficient to prevent

pertubation calculations in most cases, and due to the interaction

of virtural mesons, the description requires a multi-body system of

strongly interacting particles. However, models can be used to sim-
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plify the system, hopefully capturing the essence of the physics.

Begin looking at the interaction of nucleons at non-relativistic en-

ergies. The nucleon mass is approximately 939 MeV and a nucleon

should be treated relativisticaly if its kinetic energy is close to its rest

mass. Binding energies of nucleons are of the order of a few to a few

10’s of MeV, and a nucleon-nucleon potential formulation has a well

depth of approximately 50 MeV. Thus nuclear systems can be treated

to good approximation by non-relativisitic kinematics. However, the

nuclear potential is obtained from the difference between vector and

scalar meson exchange, both of which are large. In addition, spin is

a relativistic effect, so that relativity cannot be completely ignored.

To expand on this subject, nucleons are composed of massless

quarks which interact by gluon exchange. At short range (high en-

ergy) the interaction is weak and at long range, (low energy and

comparable to the range of the nuclear force -∼ 1 fm) the interaction

is very strong. Conversely, QHD is mediated by meson exchange (qq

pairs) and meson exchange can be used to model the long range, low

density interactions. In a non-relativistic interaction, the interaction

force can be described in terms of the deriviatve of a potential func-

tion. Simple, non-relativistic potentials in common use are shown in

Figure 1.

An idealized QHD system is nuclear matter, which is formed of

equal numbers of protons and neutrons without the Coulomb inter-

action. The baryon number of this system → ∞, i.e. surface effects

are neglected. A solution using a realistic potential provides an av-
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Figure 1: Common potentials used to describe the hadron-hadron interaction

erage binding energy and a nuclear density for ∞ nuclear matter.

Values of these variables can be compared to those found in a heavy

nucleus such as Pb.

〈BE〉/A ≈ −15.75 MeV

〈ρ〉 ≈
2k3

F

3π2 kk ≈ 1.36 ± 0.06 fm−1

Here ρ is the density in terms of the Fermi Momentum. From this

calculation we see that the nuclear force is relatively independent of

the number of interacting nucleons. Thus we think of nuclear matter

as an incompressible liquid, perhaps similar to a condensed gas.

Because the energy per nucleon is approximately stable, the nu-
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Figure 2: Common potentials used to describe the hadron-hadron interaction
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clear force saturates. If each nucleon interacts with another through

an attractive force due to meson exchange, the potential energy would

be proportional to the number of interacting pairs [A(A − 1)]/2 ≈

A2. But B/A is approximately constant, so that each nucleon in-

teracts with only a few others. From the figure, saturation occurs

at about 10 particles. In addition, if the force were entirely attrac-

tive, the nucleus would collapse, so there must be a repulsive force in

addition to Pauli exclusion. This short range behavior is called the

repulsive core of the potential.

3 Averaged nuclear parameters

For finite nuclei, the surface is important, and in addition to the

Coulomb force, a few other properties of the interaction must be

included in any realistic model. Recall that the nuclear radius is

given by r = 1.2A1/3. The proton radius is approximately 0.77

fm, so that a nucleus is almost a close-packed array. Obviously the

hard core is “very” hard so that the nucleus is nearly incompressible.

The original nuclear model was that of an incompressible fluid, and

this model is still used in a slightly different form, as we will later see.

4 Liquid drop model

The first model of a system of interacting nucleons was that of an

incompressible fluid. The model can only describe average properties

of the nuclear system, such as its geometry, density and binding en-

5



ergy. It has features that are easily understood from classical physics.

One of the most important successes is the development of the semi-

empirical mass formula, Figure 3.

5 The semi-empirical mass formula

In a finite nucleus, the Bethe-Weisäcker semi-empirical mass formula

is written;

BE = −a1A + a2A
2/3 + a3

Z2

A1/3 + a4
(A− 2Z)2

A + a5
λ
A3/4

In this equation, A is the number of nucleons, and Z is the num-

ber of protons. The various terms are ;

a1 = 15.75 MeV The volume term

a2 = 17.8 MeV The surface term

a3 = 0.71 MeV The Coulomb term

a3 = 23.7 MeV The symmetry term

a5 = 34. MeV The paring term

Each term in the formula is justified by the liquid drop model.

The volume energy was described in the previous section, and the

Coulomb energy is obvious. The surface energy can be viewed as a
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Figure 3: A plot of the semi-empirical mass for A = 127 showing the most stable system

surface tension resulting from attraction of the interior nucleons. The

symmetry energy attempts to make the number of neutrons equal to

the number of protons, and the paring energy term has λ = +1 for

odd-odd nuclei, 0 for odd-even nuclei, and -1 for even-even nuclei (i.e

it recognizes that like nucleons wish to form pairs). The coefficients

of each of these terms is an average of vaues obtained by fitting to a

wide range of masses.

6 Fermi momentum

Nucleons within the nucleus must be in motion, as we know from

the uncertainty principle. Thus if the nucleons are bound within a

potential well, they must have a momentum, δp = ~/δx. To find

the Fermi momentum, consider a 1-D wave function;
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ψ = Acos(kx)

Then constrain the wave function to dimensions −a ≤ x ≤ a so

that ψ = 0 when x = ±a. This means that

k =
(2n + 1)π

2a

auli principle allows 1 particle per quantum number. Write;

∆k = 2π
2a ∆n

In a similar way one can obtain the change in k for each dimen-

sion. Thus for 3-D space;

∆nx∆ny∆nz =
(4π)k2dk

(2π)3
(V olume)

The volume comes from multiplying the box sides 2a together for

each dimension. Assume 2 protons and 2 neutrons occupy a bin (spin

up and down for each nucleon). The number density is therefore;

number/V olume = 2k2dk
π2

Integration over the total momentum k from zero up to the Fermi

momentum level is;

ρ = 2
π2

kF∫

0

dk k2 = 2
3π2 k

3
F
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Now the number of particles per volume is A
(4π/3)(1.2A1/3)3

=

1.4 × 1038 nucleons/cm3 The energy density (Energy/Volume with

939 MeV the nucleon mass)

Energy/V olume = (1.4×1038)(939)(10−13)3 = 130 MeV/fm3

This must be related to the number density previously obtained

Energy Density = 2
3π2k

3
F (939)

This gives kF = 1.3 fm−1

7 Fermi energy

Because we consider a system at zero temperature, the lowest en-

ergy states are filled and the Pauli principle is applied so that only

2 protons and 2 neutrons (one for each spin state) occupy one bin in

momentum space. The Fermi energy is the energy of the highest oc-

cupied energy level after all nucleons have been placed in the lowest

available energy states. In the case of nucleons in a nucleus this is

approximately;

EF = [
(~π)2

2mV 2/3 ]nF ≈ 30MeV

Here nF is the number of nucleons per unit volume. The Fermi en-

ergy can be related to the Fermi temperature of the system given by
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TF = EF/k

Here k is the Boltzman constant and TF the Fermi temperature.

8 Fermi gas model

The above description leads to another model, somewhat connected

to the liquid drop model. This model of a many nucleon system is

composed of a degenerate gas of non interacting nucleons. It is a use-

ful concept for electrons in a metal or in a neutron star. The model

is also applied to nuclear interactions at energies much higher than

the Fermi energy (quasi-free scattering). The kinetic energy of the

nucleons in a degenerate gas at zero temperature, is the sum of the

proton and neutron energies. Fermi levels for neutrons and protons

in a nucleus are shown in the figure.

For the proton;

E0 = 2V olume
(2π~)3

pF∫

0

dp 4π(
p2

2m) p2 = π4/335/3
~

2

10m (ZV )2/3Z =

(3/5)EFZ

The zero energy value for the neutron is similar. The total energy

of the nucleus is then;

ET − E0 = 0.08A2/3(Z1/3 + (A− Z)1/3)(kT )2

For A = 100, Z = 44 and ET = 11(kT )2 then kT = 1MeV
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Figure 4: Fermi levels for neutrons and protons in a heavy nucleus

corresponds to ET − E0 = 11 MeV. Each degree of freedom of the

gas would have a kinetic energy of 1/2kT . For A = 100 there are

3 × 100 = 300 degrees of freedom so that ET − E0 = 300MeV .

9 Mean Field

From comparison of data to the above models we learn that;

1. The nucleons are held together in the nucleus by a long range

force generated by pion (and other meson) exchange.

2. The repulsive core of this potential and the Pauli principle keeps

the nucleus from collapsing
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3. The repulsive core and a sufficiently weak attractive well allow

the nucleons to have equilibrium positions providing a density of

approximately 1 nucleon/fm.

4. The binding energy saturates indicating that a nucleon interacts

with only a few neighboring nucleons.

We then presume that the nucleus is defined by a non-relativistic

potential acting between pairs of nucleons. The Hamiltonian is ;

H =
∑

i

Ti +
∑

i6=j

Vij

with solution ψ. Obviously this is an equation depending on 3 spatial

coordinates for each of the nucleons, and is usually much too compli-

cated to solve. We attempt to find a solution by the self-consistent

Hartree-Foch method is used to solve the many-electron atom prob-

lem. Thus we assume that the solution has the form;

ψ =
i∏
ψi

The above form must be appropriately anti-symmetrized but we

leave it in this form for convenience. Then we average the two body

potential for particle, i, over all the other particles, j, to obtain a

meanfield potential for the particle i. Thus the mean field potential

is written;

Vi =
∑

j 6=i

〈ψj|Vij|ψj〉
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We then solve the Hamiltonian;

Hi = Ti + Vi

for each wave function ψi and iterate this set of equations until self

consistancy is obtained. In general the idea is to obtain a mean-

field potential in which the nucleons move. The solution can then be

further refined by using these wave functions to diagonalize a full po-

tential Hamiltonian. Below we simply use the extreme single particle

model, where a nucleon moves in a central potential field created by

all of the other nucleons. A set of energy levels for the single particle

model is given in Figure 5 below. It shows solutions for the extreme

cases of a harmonic oscillator and square well potentials, as well as

a diagonalization for a spin-orbit potential.

10 Magic numbers and the spin-orbit term

In the case of atomic structure, shell closure is responsible for unusual

stability or reactivity of the nuclei near certain atomic numbers. In

the case of nucleons, there appears binding energy gaps (separation

energy) near mass numbers 2, 8, 20, 28, 50, 82, 126 for both neutrons

and protons. These represent the closure of shells for these nucleons,

but this closure does not generally correspond to the shell closure

calculated by a common potential forms. To account for this ex-

perimental difference it is necessary to introduce a strong spin-orbit

coupling, (Vs0 = −A(~s · ~L) where ~s is the nucleon spin and ~L is its

angular momentum ). Of course the Coulomb potential also affects

proton binding. Adjusting the strength of the spin orbit potential
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can reproduce the experimental numbers. While the spin orbit term

was introduced here by hand, this term would come naturally in a

relativistic formulation.

11 Collective model

The treatment of the nucleus as a continuium structure of nuclear

matter was extended to include a quantum description of the classical

motion of a liquid. This allowed the description of excited states in

terms of rotations and vibrations. Any quantum drop can experience

vibrational excitations, but only a deformed nucleus can have rota-

tional excitations. Note above that nuclei near the so-called magic

numbers are spherical. However, nuclei can have deformed ground

state structure if the number of nucleons is far from a magic number.

A schematic potential well is shown in Figure 6, illustrating a mini-

mum in the potential (binding energy) as the deformation parameter

is varied.

Rotation of the deformed system adds an energy that is classically

equal to Iω2/2 where I is the rotational inertia, and ω the rotational

velocity. This can be connected to the angular momentum of the ro-

tation, so that quantum mechanically the excitation energy is;

ER = (~2/2I)L(L + 1)

The rotational inertia I is only due to the component of the nu-

cleus that is rotating, and this is just the small component of the
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nucleus that is involved with the deformation, Figure 7.

This raises the issue of reconciling the single particle model which

describes excitations of a nucleus as due to a nucleon moving in a

mean field, with the collective model which describes excitations in

terms of the collection of nucleons. The connection is made by un-

derstanding that the collective model actually describes the motion

of only a few nucleons around a nuclear core.

A representative set of nuclear excitations is shown in Figure 8.

Note the energy scale. Core excitations are due to resonant motion

of neutrons against protons.

Radial vibrations (breathing modes) measure nuclear compress-

ibility.

15



Figure 5: Single particle shell model states. Left is harmonic oscillator, right is square well,

enter shows splitting due to a spin-orbit term
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Figure 6: Potential energy as a function of deformation
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Figure 7: Geometric shapes and rotation of nuclei in the collective model
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Figure 8: A schematic of models and energy levels predicted by various models
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