
Cosmology (Cont.)
Lecture 21

1 Critical Density

The mass density of the universe determines whether the universe is closed or open. The
baryonic density component has been experimentally determined to be ρ(tp) = 2×10−29 g/cm3.
So that the Robertson-Walker metric with k 6= 0 when inserted into Einstein’s field equa-
tions, results in the Friedmann equation which was introduced in the last lecture. The critical
density as a function of time is;

ρc(t) = 3
8πG (Λ̇Λ)2 = 3

8πG h2(t)

Now suppose we write Ω(t) = ρ(t)/ρc(t), and substitute into the Friedmann equation;

Λ̇2 − 8πGρ
3 Λ2 = −kc2

To obtain the expression;

Ω(t) − 1 = kc2

Λ̇2

When Ω(t) = 1 then k = 0. In this case space is flat as may be seen from the equations
in the last lecture. There it was pointed out that the curviture of space is related to the
current ratio of the density to the critical density. The Cosmological Constant, Λ, in the
Einstein field equation is called Dark Energy. The matter required to make Ω = 1 is called
Dark Matter. The universe appears to be spatially flat and homogeneous. Thus experimen-
tally Ω ≈ 1. From the Friedmann equation;

Ω(t) − 1 = kc2

Λ̇2
≈ 9kc2(t − t0)

2/3

4γ2/3

Note that Ω(t) diverges as t → ∞. To get Ω(t) ≈ 1, all parameters must be fine tuned in
the distant past. Inflation stretches space and partially solves this problem, making Ω−1 → 0

2 Dark Mater

The energy budget in the universe is shown in the pie graph. Only about 4% of the total
energy in the universe is directly observed, figure 1. About 22% is composed of dark matter
and 74% is dark energy. As previously seen, the CMB requires a dark matter component in
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Figure 1: The energy budget in the universe

order to fit the anisotropy observations. However, there are other observations which require
additional an mass which does not interact electromagnetically.

After the Big Bang, ordinary baryonic matter had too high a temperature and too much
pressure to form structures. Thus dark matter acted as the framework around which galaxies
formed. This is evident from the time evolution figure of the CMB shown in the last lecture.
To produce the observed structure, a cold dark matter component is needed which is visible
at present only by its gravitational interaction. From the evolution of the CMB, as previously
seen, neutrinos - at least the conventional neutrions - cannot account for the required matter.

Non baryonic dark matter is divided into three types;

• Hot - ultra-relativistic

• Warm - relativistic

• Cold - non-relativistic

Hot dark matter is identified with neutrinos as their low mass allows high velocities. These
neutrinos remain relativistic until approximately the time when electrons and protons com-
bine to atoms. Warm dark matter may be due to as yet undiscovered heavy neutrinos. Cold
dark matter may exist as tiny black holes, axions, very heavy neutrinos, or WIMPS (Weakly
Interacting Massive Particles). There is a possible supersymmetric particle, the neutralino,
which is stable and sufficiently massive to be a WIMP. Experimental searches have been
underway in the last few years in order to observe WIMPS which collide with detector nuclei
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Figure 2: The square of the velocity of stars predicted from the luminous matter and exper-
iment.

as the earth moves through spacial halo of dark matter.

3 Experimental Evidence

An example of evidence for Dark Matter is the motion of stars in the spiral arm of a galaxy.
Most stars in spiral galaxies orbit the galactic center with an approximately uniform velocity.
This implies that the mass in the galaxy is uniform well beyond the location of the stars, or
that Newtonian gravity does not apply on large scales. The figure below shows the observed
and predicted velocities of stars as a function of the distance from the radial center of the
galaxy, figure 2 .

Very simply, a mass, m, outside a spherically symmetric mass distribution, M , has a
centrifugal acceleration, V 2/r, which equals the gravitational acceleration, MG/r2. Thus its
velocity squared equals GM/r. More generally we can apply the virial theorem, to obtain
the average velocity of the system.

Suppose there are N particles interacting pairwise. The particles have mass mk and are
a distance, rk, from the galactic center. As they move in orbit, the moment of inertia of the
system is;
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I =
N∑

k=1

mkr
2

k

Then define a function, H such that;

H =
∑

~pk · ~rk

Here ~pk is the momentum of the kth particle. Therefore;

H = (1/2)dI
dt

=
∑

mk
d~rk
dt

· ~rk

Apply the time derivative of H ;

dH
dt

=
∑

~pk · d~rk
dt

+
∑ d~pk

dt
· ~rk

dH
dt

=
∑

mk
~rk
dt

· d~rk
dt

+
∑

~Fk · ~rk

Where Fk is the force on particle k. Then;

dH
dt

= 2T +
∑ ~Fk · ~rk

In the above T is the kinetic energy. Now for 2-body forces;

~Fk =
∑

j

~Fkj

so that;

∑

k

~Fk · ~rk =
∑

k j 6=k

~Fkj · ~rk =
∑

k j 6=k

~Fkj · (~rk − ~rj)

Since ~Fkj = −~Fjk we have;

~Fkj = −~∇V = dV
dr

(~rk − ~rj)/rkj

Substitution

∑ ~Fk · ~rk = − ∑

k j 6=k

dV
dr

(~rk − ~rj)/rkj = −∑ dV
dr

rkj

Finally;

dH
dt

= 2T −
∑ dV

dr
rkj

and if V (rkj) = α/rkj then;
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Figure 3: The mass density and calculated velocity distribution of stars in a galaxy

∑ dV
dr

rkj = − ∑

kj 6=k

V (rkj) = VTOT

Here VTOT is the total potential energy of the system. For a gravitational field;

dH
dt

= (1/2) d2I
dt2

= 2T + VTOT

Average this over time. For a system in equilibrum 〈dH
dt

〉 = 0. Then

T = (1/2)[(1/2)MV 2] = (1/2)〈VTOT 〉

The empirical mass density of a galaxy is;

ρx = ρ0

√
2

(1 − x2)5/2

where x = r/a and a is the galactic mass. This can be modeled to give the velocity distri-
bution as shown in figure 3.

Thus the gravitating mass must extend well beyond the star field. However, not all galaxies
appear to have formed around dark matter. Our galaxy has a dark matter mass 10 times
the luminous matter.

4 Gravitational lensing

Recently the observation of distant supernova has observed the effects of light bending around
astrophysical objects in the foreground of the image. This bending can be used to obtain
mass-to-light ratios. The required dark matter needed by these ratios corresponds to the
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Abell 2218

Abell 2218. Credit: NASA/ESA

core into long arcs. The lensed galaxies are all stretched along

Figure 4: An example of gravitational lensing. The blue arcs in the picture are due to light
that has been bent around a galaxy in the foreground

dark matter densities obtained by other observations. An image of gravitational lensing is
shown in figure 4.

5 Other explainations of dark matter

It is possible that Newtonian gravity is not correct at large distances, but the effects of
lensing and light deflection are difficult to reconcile with alternative theories. Other ideas
involve modifications to gravity due to string theory and extra dimensions. However, these
are not sufficiently developed for further discussion.

6 Dark energy - introduction

The cosmological constant was proposed by Einstein in order to obtain a static solution to his
field equations. However, it was found that any local fluctuations would lead to instabilities
as the system was in an unstable equilibrum. Thus a fluctuation which caused a contraction
would create a continued contraction, while an expansion would lead to a continued expan-
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sion. For this reason the cosmological constant was ignored.

In 1970 Guth proposed that negative pressure could drive an inflation, and this was
needed to explain cosmological features as previously discussed. However, inflation requires
a much larger energy density than presently allowed, and in any event a connection between
dark energy and inflation has not been made.

Accelerated expansion, as observed by the redshift of distant supernova, means that an
additional mass-energy component of the universe is needed. This placed the cosmological
constant on a firmer foundation. We have also seen that the CMB requires dark energy
in order to fit the experimental data. Dark energy can be explained by the Cosmological
Constant, and the present standard model of cosmology is Λ-CDM, where the Λ is the cos-
mological constant.

7 Models of dark energy

There are two proposed models of dark energy;

• The cosmological constant

• A scalar field that dynamically alters space-time called quintessence

A scalar field can also have a constant term which cannot be distinguished from the effects
of the cosmological constant, as it is equivalent to vacuum energy density.

However, the simplest explanation of dark energy is the negative energy expended in
the creation of the virtual energy density of space. While field theories in particle physics
require a vacuum energy density, this energy density is orders of magnitude larger than
would be obtained from a cosmological constant - about 10−120 to 1. In order to make this
explanation viable, extreme fine tuning of parameters is required to cancel terms. In some
supersymmetric theories the cosmological constant is exactly zero. Philosophically, one has
the somewhat unsatisfactory answer that although such fine tuning has a small probability
of occurrence, it is not zero and it only needs to happen only once. Finally there are prob-
lems with singularities at low matter density which effect the time scales at early times, so
perhaps the interpretation of the supernova data is incorrect.

Quintessence models assume the acceleration is due a dynamically changing potential
energy, and so it can vary in space and time. It assumes a scalar potential which is at
an unstable point at the time of the Big Bang. This scalar form moves toward a stable
equilibrum releasing energy. This is illustrated in figure 5 and is comparable to spontaneous
symmetry breaking. The Standard Model and String Model of particle physics predict scalar
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Figure 5: An example of gravitational lensing. The blue arcs in the picture are due to light
that has been bent around a galaxy in the foreground

fields, but these fields have masses that are much too large. The scalar field must be coupled
to the radiation density so that it becomes more important at later times in the evolution.
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