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1 Neutron stars

A neutron star is formed from the remnant of a supernova, leaving a 1.3 to perhaps 2.1
solar mass in the collapse. A typical radius is about 10 km producing approximately 10
times nuclear density in its interior. The nuclear equation of state can only be theoretically
estimated, but calculations indicate that hyperons appear as constituents at about twice
nuclear density and can become significant components at about 4 time nuclear densities.
More recently, the observation that the Σ−-nucleus potential is repulsive has led to the re-
organization of the list of hyperon components with the Ξ− replacing the Σ− constituents.
The component population is sensitive to the in-medium potentials, and of course there is
no experimental hyperon-hyperon data.

The introduction of hyperons into a neutron star affects the maximum mass of the star.
Without hyperons and a soft equation of state, the maximum mass is approximately 2.4
solar masses. With hyperons the maximum mass can apparently be no larger than 1.7 solar
masses. However, a recently identified neutron star appears to have a mass of about 2.1
solar masses. Perhaps the equation of state is too soft and/or hyperon-hyperon interactions
are not properly included. However, it is also possible that a star having a mixed phase
of hyperons and quarks in its interior is produced. Because the star rapidly rotates, losing
energy via radiation, the rotational inertia of the star changes, and the rotational frequency
depends on its composition which is coupled to the rotational frequency. Obviously more
astrophysical observations are needed, however the only terrestrial handle on this physics
comes from hypernuclei, particularly multi-strange hypernuclei.

Although neutron star composition at low density is dominated by neutrons, transmutation
to hyperons, beginning at 2 to 3 times normal nuclear matter density ρ0 = 0.17 fm−3, would
act to alleviate the Pauli pressure of nucleons and leptons. Matter in the core of neutron
stars can be further compressed to about (5 − 6)ρ0. At these densities strange hadronic
matter, which may already be self bound at densities (2− 3)ρ0, could become stable even to
weak decay. Such matter may perhaps form kaon condensates and even deconfine to quarks,
forming strange quark matter.

2 Strange hadronic matter

Strange quark matter, with roughly equal composition of u, d and s quarks, might provide
an absolutely stable form of matter. Finite strange quark systems, so called strangelets, have
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also been considered.

Less known is the more recent observation that metastable strange systems with similar
properties, i.e. a strangeness fraction fS ≡ −S/A ≈ 1 and a charge fraction fQ ≡ Z/A ≈ 0,
might also exist in hadronic form at moderate values of density between twice and three
times nuclear matter density. These strange systems are made of N , Λ and Ξ baryons.
The metastability (i.e. stability with respect to strong interactions, but not to ∆S 6= 0
weak-interaction decays) of these strange hadronic systems was established by extending
relativistic mean field (RMF) calculations from ordinary nuclei (fS = 0) to multi-strange
nuclei with fS 6= 0. Although the detailed pattern of metastability, as well as the actual
values of the binding energy, depend specifically on the incompletely known hyperon poten-
tials in dense matter. A conservative example is given in Fig. 2, assuming a relatively weak
hyperon-hyperon attractive interaction. The figure shows the calculated binding energy of
56Ni + NΛΛ multi-Λ hypernuclei for NΛ = 0, 2, 8, 14 and how it becomes energetically favor-
able to add Ξ hyperons when NΛ exceeds some fairly small threshold value. As soon as the
Λ p-shell is filled, Ξ hyperons may be placed in their s-shell owing to Pauli blocking of the
strong-interaction conversion process ΞN → ΛΛ which in free space releases about 25 MeV.

In other calculations, it was found that strange hadronic matter (SHM) is comfortably
metastable for any allowed value of fS > 0. However for fS ≥ 1, Σs replace Λs due to the
exceptionally strong ΣΣ and ΣΞ interactions in this model. A first-order phase transition
occurs from NΛΞ dominated matter for fS ≤ 1 to NΣΞ dominated matter for fS ≥ 1, as
shown in Fig. 3 where the binding energy versus the baryon density is shown for several
representative values of fS. At fS ≈ 1.0 a secondary minimum at higher baryon density be-
comes energetically favored. The system then undergoes a first-order phase transition from
the low density state to the high density state.

Fig. 4 demonstrates explicitly that the phase transition involves transformation from
NΛΞ dominated matter to NΣΞ dominated matter, by showing the calculated composition
of SHM for this model (denoted N for Nijmegen) as function of the strangeness fraction fS.
The particle fractions for each baryon species change as function of fS. At fS = 0, one
has pure nuclear matter, whereas at fS = 2 one has pure Ξ matter. In between, matter is
composed of baryons as dictated by chemical equilibrium. A change in the particle fraction
may occur quite drastically when new particles appear, or existing ones disappear. A sudden
change in the composition is seen in Fig. 4 for fS = 0.2 when Ξs (long-dashed line) emerge
in the medium, or at fS = 1.45 when nucleons (short-dashed line) disappear. The situation
at fS = 0.95 is a special one, as Σs (solid line) appear in the medium, marking the first-order
phase transition observed in the previous figure. The baryon composition alters completely
at that point, from NΞ baryons plus a rapidly vanishing fraction of Λs (dot-dashed line)
into ΣΞ hyperons plus a decreasing fraction of nucleons. At the very deep minimum of the
binding energy curve (not shown here) SHM is composed mainly of Σs and Ξs with a very
small admixture of nucleons. Unfortunately, it will be difficult to devise an experiment to
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determine the depth of the ΛΞ, ΞΞ, ΞΣ, ΣΣ interaction potentials, which are so crucial to
verify these results.

3 Summary

As a function of density, the first hyperon to appear is the lightest one, the Λ at about 2ρ0,
by converting protons and electrons directly to Λs instead of neutrons, thereby decreasing
the neutron Pauli pressure. It is reasonable to assume that this composition varies radially,
perhaps having a crust and an atmosphere composed of neutrons. Among the negatively
charged hyperons the lightest one, Σ−, does not appear at all over the wide range of densities
shown owing to its repulsion in nuclear matter, and most likely also in neutron matter. Its
potential role in reducing the Pauli pressure of the leptons (e− and µ−) could be replaced
by the heavier Ξ− hyperon, assuming overall Ξ-nuclear attraction. The specific calculation
sketched by Fig. 5 predicts that the hyperon population takes over the nucleon population
for densities larger than about 6ρ0, where the inner core of a neutron star may be viewed as
a giant hypernucleus.

Given the high matter density expected in a neutron star, a phase transition from or-
dinary nuclear matter to some exotic mixtures cannot be ruled out. Whether a stable star
is composed dominantly of hyperonss, quarks, or some mixture thereof, and just how this
occurs, is not clear as both the strong and weak interactions, which operate on inherently
different time scales, are in play. The equation of state (EoS) of any possible composition
constrains the mass-radius (M − R) relationship for a rotating neutron star. Thus, the
maximum mass Mmax for a relativistic free neutron gas is given by Mmax ≈ 0.7M⊙, whereas
higher mass limits are obtained under more realistic EoS assumptions. Without strangeness,
but for interacting nucleons (plus leptons) Mmax comes out invariably above 2M⊙, as shown
by the curves marked n-matter and ChEFT in Fig. 6. Allowing for strangeness through
hyperons softens the EoS, thereby lowering Mmax to the range (1.4 − 1.8)M⊙ , also if/when
a phase transition occurs to strange hadronic matter . Considerably lower values of Mmax,
below M⊙, are reached for purely two-body interactions as shown by the ΛN red curve in
Fig. 6 taken from a recent Quantum Monte Carlo (QMC) calculation of Λ hypernuclei. The
effect of kaon condensation, delayed by hyperons, is to lower Mmax further by just a tiny
≈ 0.01M⊙ . Mmax values of up to 2M⊙ are within the reach of hybrid (nuclear plus quark mat-
ter) star calculations in which strangeness materializes via non-hadronic degrees of freedom .

Until recently, the neutron star mass distribution for radio binary pulsars was given
by a narrow Gaussian with mean & width values (1.35 ± 0.04)M⊙, somewhat below the
Chandrasekhar limit of 1.4M⊙ for white dwarfs, above which these objects become gravita-
tionally unstable. However, there is now some good evidence from X-ray binaries classified
as neutron stars for masses about and greater than 2M⊙ . The highest accepted value of
neutron star mass is provided at present by the precise mass measurements of the pulsars
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PSR J1614-2230 and PSR J0348+0432 , marked by horizontal lines in Fig. 6. These yield
nearly 2M⊙ and thereby exclude several ‘soft’ EoS scenarios for dense matter . The figure
demonstrates how the gradual introduction of repulsive ΛNN interactions , from version 1
to version 2, leads to a corresponding increase of the calculated Mmax value by increasing
the matter density ρmin at which Λ hyperons appear first in neutron matter to higher values,
until this ρmin exceeds the value ρmax corresponding to Mmax. When this happens, for version
2, the mass-radius dotted curve overlaps with the purely ‘n-matter’ green curve below the
point marked in the figure for the value of Mmax reached. This scenario of including strongly
repulsive ΛNN forces may prove instrumental in resolving the ‘hyperon puzzle’, by explain-
ing why and how hyperons are excluded from the EoS of neutron stars. Fig. 7 shows how
the introduction of these repulsive ΛNN interactions within QMC calculations relieves the
over-binding of Λ hypernuclei which arises progressively with increasing the mass number
A (corresponding to smaller values of A−2/3 in the figure) upon using microsocopically con-
structed purely two-body ΛN interactions dominated by attraction. In particular, the same
version ‘ΛN+ΛNN (II)’ that according to Fig. 6 resolves the ‘hyperon puzzle’, according to
Fig. 7 also resolves the ‘BΛ over-binding’ problem. More work is required in this direction,
say by introducing Ξ− hyperons, to make sure that the ‘hyperon puzzle’ has indeed been
resolved in this way.
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Figure 1: Population of neutron star matter, allowing for kaon condensation, calculated as
a function of nucleon density.
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Figure 2: Calculated binding energy of multistrange nuclei of 56Ni plus Λ and Ξ hyperons,
as function of baryon number A.
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Figure 3: Transition from NΛΞ to NΣΞ matter upon increasing the strangeness fraction.
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Figure 4: Strange hadronic matter composition as function of strangeness fraction fS .
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Figure 5: Neutron star matter fractions of baryons and leptons, calculated as a function of
density.

Figure 6: Mass-radius relationship for various EoS scenarios of neutron stars, including
nucleons and leptons only as well as upon including Λ hyperons.
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Figure 7: QMC calculations of Λ hypernuclear binding energies for purely two-body ΛN
interactions and for two versions of adding repulsive ΛNN interactions. Figure adapted
from .

8


