
Phys 6321 Final Exam - Solutions

May 3, 2013

You may NOT use any book or notes other than that supplied with this test. You
will have 3 hours to finish. DO YOUR OWN WORK. Express your answers clearly and
concisely so that appropriate credit can be assigned for each problem. There are 6 problems.
You must do 5 for full credit. TURN IN ONLY 5 PROBLEMS - I WILL GRADE

ONLY THE FIRST 5 PROBLEMS YOU SUBMIT. Full credit for each problem is
25 points.

1)

A square loop of wire lies in the (x, y) plane (see the figure below). In the rest frame it carries
a current, I0. Assume the wire has square cross sectional area with negligible thickness. It
is boosted with a velocity, V , parallel to the x̂ direction. Find the linear charge densities in
the wire on the top and bottom of the loop in the moving frame.
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Figure 1: The geometry of problem 1

Solution 1

In the rest frame, the top and bottom of the loop have vanishing linear charge density since
the positive and negative charge on the wire are equal.

λt − λ+ − |λ−| = δQ+/δl − |δQ−/δl| = 0.

δQ+ = |δQ−| = δQ

In the moving frame, the above equation equating the charge is also true since charge trans-
forms as a scalar. However, length is contracted in the moving frame as compared to the
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rest frame by a factor of γ =

√

1
1 − β2 with β = V/c. Thus if the negative charge moves

for provide the current, I, we obtain in the moving frame;

For postiive charge δQ/δlmov = Qγ+/δlrest

For negative charge δQ/deltalmov = Q(γ+/γ−)/δl

Note that the ratio of the γ factors above, (γ−/γu) transforms the length in the frame moving
with the current to the system rest frame before the boost, and then transforms this length
to the moving frame of the system after the boost. Then we need values for gamma. For

the rest frame to the moving frame; γ+ =

√

1
1 − β2 . For the transformation of the negative

charge to the rest frame the velocity using U1 as the velocity due to the current in the rest
frame.

U ′

−
= V ± U

1 ± V U/c2

γ− −
√

1
1 − U ′ 2

−
/c2

Insert the value for Upr
−

into the above equation for γ and work through the algebra. This
results in;

γ− = γuγ+(1 ± ββu)

Therefore the linear charge density after subtraction of the negative charge density form the
positive charge density, is ;

λmov = ∓ββuγ+ λrest

2)

A conducting cube with side lengths, a, has the upper side (z = a) held at a potential,
V = V o. All other sides are held at a potential, V = 0. Find;

1) The resulting electric field in the interior of the cube;

2) The force on the upper side (z = a) of the cube using the Maxwell stress tensor.

Solution 2

Solve Laplace’s equation for the electric potential using separation of variables in Cartesian
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Figure 2: The geometry of problem 2

coordinates to get the electric field inside the cube.

∇2V = 0
After application of the boundary conditions on all sides but the top, the solution takes the
form;

V =
∑

nm

Anm cos(nπx/a) cos(mπy/a) sinh(γz)

In the above, n, m must be odd for the potential to vanish at x, y = ±a/2. Also γ2 =
(nπ/a)2 + (mπ/a)2. Now use orthogonality of the cosine functions to find Anm so that
V = V0 when z = a.

Anm = 4
π2nm

(V0/sinh(γa))
a/2
∫

−a/2

dx
a/2
∫

−a/2

dy cos(nπx/a) cos(mπy/a)

The electric field is ~E = −~∇V

~E = −
∑

nm

Anm[(nπ)sin(nπx/a) cos(mπy/a) sinh(γz)]x̂ + [(mπ)cos(nπx/a) sin(mπy/a) sinh(γz)]ŷ +

[(γπ)cos(nπx/a) cos(mπy/a) cosh(γz)]ẑ

The field tensor is obtained from only the electric field components. By symmetry, only the
force in the z direction is non-zero, Fz.

Tzz = (1/2)ǫ0[E
2
z − E2

x − E2
y ]

Fz =
a/2
∫

−a/2

dx
a/2
∫

−a/2

dy Tzz |z=a
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3)

A cylindrical wave guide is constructed of perfect conductors in a coaxial geometry. Although
the TEM is the lowest mode, the geometry also supports both TE and TM modes. Find an
expression for the lowest frequency of the TM mode. The inner conductor has radius, a, and
the outer conductor radius, b

Inner radius a
Outer radius b

Figure 3: The geometry of problem 3

Solution 3

The equation for a wave traveling in the z direction in the wave guide is;

[∇2 + µ0ǫ0ω
2 − k2]Ez =

For the TM mode the magnetic field in the z direction vanishes. Thus we solve for Ez and
apply the boundary condition that Ez = 0 for ρ = a, b using cylindrical coordinates. Sepa-
ration of variables gives;

Ez =
∑

ν

AνDo(γνρ) eikz

In the above, we choose the zeroth order cylindrical Bessel function, D0(γρ) to give the low-
est mode and the solution in independent of the azimuthal angle. To match the boundary
conditions at ρ = a, b the Bessel function takes the form;

D0(γρ) =
J0(γρ)
J0(γa)

− N0(γρ)
N0(γa)

Here, J0 and N0 are the cylindrical Bessel and Neumann functions, respectively. Then αν

are the zeros of D0(αnu) = 0. Thus, γnub = αν and the dispersion relation is;

(αν/b)
2 = ν0ǫ0ω

2 − k2
z

From this choose the lowest zero, α0, to get the lowest frequency.
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4)

Show that the equation of continuity (charge conservation) results directly from Maxwell’s
equations.

Solution 4

Maxwell’s equations are;

~∇ · ~E = ρ/ǫ ~∇ · ~B = 0

~∇ × ~E = −∂ ~B
∂t

~∇ × ~B = µ ~J + 1/c2 ∂ ~E
∂t

Then consider;

~∇ · (~∇ × ~B) = 0 = µ~∇ · ~J + (1/c2)~∇ · ∂ ~E
∂t

~∇ · ~J + ǫ ∂
∂t

~∇ · ~E

~∇ · ~J +
∂ρ
∂t

5)

A charge falls from rest under the influence of gravity. Using an approximation as guided
below, find the approximate time it takes the charge to fall a distance, d

1) Write the equation for the system energy including radiation as a function of
time.

2) Write an equation for the energy balance at the time when the charge reaches
the distance, d.

3) Assume the charge falls without radiation, and write the equation in (2) above
using the time to reach d without radiation.

4) Solve the equation in (3) for the time.

Solution 5
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The radiative power loss is given by the Larmor equation (non-relativistic). The acceleration
is v̇ = g.

P = = E
dt

= (2/3)(q2/c3)a2

The energy loss due to the radiation is obtained by integration.

Etotal = (2/3)(q2/c3)
T0
∫

0

a2 dt

The energy balance at position, d, is;

mgd = (1/2)mv2
0 + Et

In the first approximation, a = g, T0 =
√

2d/g, and v0 = gT0. Substitution for T0, a, and
v0 gives;

(gT0)
2 + αg2T0 − 2gd = 0

Solving for T0.

T0 = (1/2)[−α ±
√

α2 + 8d/g]

Expansion yields for small α yields;

T0 ≈
√

2d/g − α/2 +
α2g
4d

√
2dg

In the above, neglect the term in α2, as in general there are additional terms of this order
which are not included in this expression.

6)

Two equal charges, each Q/2, are placed 180◦ apart, and lie in the (x, y) plane. The charges
spin with angular velocity, ω, about the ẑ axis keeping their radial distance, a, from the
origin constant. Find the power radiated in the lowest multipoles for both the electric and
magnetic radiation fields. (Note that you needt to write the charge motion in terms of eiωt

in order to use the expressions for the radiation source components in the notes)

Solution 6

The charge density is;
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Figure 4: The geometry of problem 6

ρ = Q/2 (δ(r − a)/a2) δ(cos(θ)) [δ(φ − φ0) + δ(φ − (φ + π))]

Integration over the spherical volume gives the total charge, Q, as it should. We let φ0 = ωt
below. Now to write the charge density in a form with time dependence eiωt, apply a Fourier
time de-composition.

ρ =
∑

n

ρn cos(nωt) = Re
∑

n

ρn einωt

ρn = (ω/2π)
2π/ω
∫

dt ρ e−inωt

Substitute in to the above equation the expression for ρ and integrate over time.

ρn = (Qω/2π)(δ(r − a)/a2) δ(cos(θ))einωt[1 + (−1)n]

Thus n must be even or 0, however 0 has no time dependence and the lowest possible value
would be n = 2. Subsitute into the source term for the electric multipole. There is no
magnetization term, M = 0.

Qm
l =

∫

d3x rl Y ∗m
l

Note that Y 2
2 = (1/4)

√

15/2π sin2 ei2φ with φ = ωt. Thus;

Q2
2 =

Qω
8π sqrt15/32π

∫

d3x r2 sin2(θ) δ(r − a)/a2 δ(cos(θ))e−i2φ ei2φ

Q2
2 =

Qω
8π

√

15/2π

To obtain the magnetic radiation source component the current density is;

~J = ρnV φ̂
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Then ~r× ~J = ρa2ωẑ. The divergence of this vanishes after converting to cylindrical coordi-
nates or converting ẑ to spherical coordinates. Thus there is no magnetic component.

The electric radiation component is;

aE = ck4

i(5!!)

√

3/2Q2
2

The radiated power is;

P = Z0

2k2 |aE|2 Z0 =
√

µ0/ǫ0
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