
Solution to Laplace’s Equation in Cylindrical
Coordinates

Lecture 8

1 Introduction

We have obtained general solutions for Laplace’s equation by separtaion of variables in Carte-
sian and spherical coordinate systems. The last system we study is cylindrical coordinates,
but remember Laplaces’s equation is also separable in a few (up to 22) other coordinate
systems. As you know, choose the system in which you can apply the appropriate boundry
conditions. It is only through application of the boundry conditions (Dirichlet of Neumann
on a closed surface) that one finds a unique solution to the problem studied. In cylindrical
coordinates apply the divergence of the gradient on the potential to get Laplace’s equation.

∇
2V (ρ, φ, z) = ρ ∂2V

∂ρ2 + ∂V
∂ρ

+ (1/ρ) ∂2V
∂φ2 + ∂2V

∂z2 = 0

We look for a solution by separation of variables;

V = R(ρ)Ψ(φ)Z(z)

As previously, this yields 2 separation constants, k and ν, which will lead to 2 eigen-
function equations. The three separated ode equations are;

d2
Z

dz2 − k2
Z = 0

d2Ψ
dφ2 + νΨ = 0

d2
R

dρ2 + (1/ρ) R
dρ

+ (k2
− (ν/ρ)2)R = 0

The later 2 equations can be set up as eigenfunction equations. The solutions are;

Z ∝ e±kz

Ψ ∝ e±iνφ

R ∝ Jν(kρ), or/andNν(kρ)
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Figure 1: An example of the Cylindrical Bessel function J(x) as a function of x showing the
oscillaltory behavior

2 Bessel Functions

In the last section, Jν(kρ), Nν(kρ) are the 2 linearly independent solutions to Bessel’s equa-
tion. Bessel functions oscillate but not harmonically, see Figure 1. Thus we expect that
the harmonic function solutions for Ψ and the Bessel function solutions for R will be the
eigenfunctions when the boundry conditions are imposed. The Bessel functions, Jν(x), are
regular at x = 0, while the Bessel functions, Nν(x), are singular at x = 0.

The limiting values of the Bessel functions are;

limx→0 Jν(x) → (x2 )ν

limx→0 Nν(x) →

[

(2/π) ln(x) ν = 0

(2/x)ν Γ(ν)
π otherwise

]

limx→∞ Jν(x) →

√

2
πx cos(x − νπ/2 − π/4)

limx→∞ Nν(x) →
√

2
πx sin(x − νπ/2 − π/4)

From the requirement that the solution be single valued as φ → 2π, ie the solution is
must not change when φ is replaced by φ+2π, the values of ν are integral and this produces
eigenfuntions of Ψ. The series solution for the Bessel function Jν can be found by the method
of Frobenius. However, the second linearly independent equation is not easily obtained when
n is an integer, and another technique is required. The Bessel function takes the form;
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Jν(x) =
∞
∑

s=0

(−1)s

s!(ν + s)!
(x/2)ν+2s = xν

2nn!
−

xν+2

2ν+2(ν + 1)!
+ · · ·

For integral values of ν one can show J−ν = (−1)νJν . The Bessel functions also satisfy the
recurrence relations;

Jν−1(x) + Jν+1(x) = ν
x Jν(x)

Jν−1(x) = x
ν Jν(x) + dJν

dx

d
dx

[xνJν(x)] = xνJν−1

At times an integral representation is useful.

Jν(x) = (1/π)
π
∫

0

dθ eix cos(θ) cos(νθ)

The Bessel functions are orthogonal;

∞
∫

0

kdk Jν(kρ) Jν(kρ′) = δ(r − r′)/r

a
∫

0

ρdρ Jν(ανkρ/a) Jν(α
′

νkρ/a) = (a2/2)[Jν+1(ανk)]
2 δkk′

In the above ανk are the zeros of the Bessel function of order ν where k orders these zeros.
As the Bessel functions form a complete set, any function may be expanded in a Bessel series
or integral for an infinite space.

F (ρ) =
∫

kdk A(k) Jν(kρ)

3 Examples

We find the solution for the interior of a cylindrical shell with the top end cap held at a
potential V = V0(ρ) and all the other surfaces grounded, Figure 2. The solution we seek
has the form;

V =
∑

νn

Aνkn
Jν(knρ)sinh(knz)eiνφ

In this case the solution is independent of the angle φ so we take ν = 0. Note that we have
not included Nν in the solution because we want it to be finite as ρ = 0. Also we have chosen
sinh(knz) to satisfy the boundary condition at z = 0. The reduced solution is;
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Figure 2: The geometry of a cylinder with one eddcap held at potential V = V0(ρ) and the
other sides grounded

V =
∑

n

An J0(knρ)sinh(knz)

Now V = 0 for ρ = a. This means that;

J0(kna) = 0

The values of kna are the zeros of the bessel function J0(kna). The first few are, α0n =
2.4048, 5.5201, 8.6537, · · · . Then at Z = L we find An using the orthogonality of the Bessel
functions.

An = 1
a2 [J1(kna)]2 sinh(knL)

a
∫

0

ρdρ J0(knρ) V0(ρ)

The graphic form of the solution is shown in figure 3.
As another example we find the potential inside a cylinder when the potential is spec-

ified on the end caps and the cylindrical wall is at zero potential, figure 4. The boundry
conditions are that;

V = V0 sin(φ) z = L

V = −V0 sin(φ) z = -L

V = 0 ρ = a

The solution must have the form;
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Figure 3: A graphical representation of the above solution
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Figure 4: The geometry of the problem with endcaps held at potential V = V0 ± sin(φ)
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ρV = f(    )   
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Figure 5: The geometry for the problem of two concentric cylinders

V =
∑

νn

Aνn Jν(knρ) sin(νφ) sinh(knz)

Here we have discarded solutions in Nνn(kρ) which are infinite at the origin. To match the
boundry at z = ±L we need to have a term sin(νφ) which requires ν = 1. Then we require
that the Bessel function, J1n(kna) = 0 which determines the zeros of the Bessel function of
order 1. We write these as α1n so that kn = α1n/a. The solution then has the form;

V =
∑

n

An J1(α1nρ/a) sinh(αz/a) sin(φ)

Finally we match the boundry condition at z = ±L where V = V0 sin(φ). Use orthorgonal-
ity to obtain;

(L/2)[J1(α1n)]2An = 1
sinh(αL/a)

a
∫

0

ρdρ J1(α1nρ/a) V0

As another example we look at a solution for concentric cylinders with the boundry
conditions;

r = a, c and z = 0 V = 0

z = b V = f(ρ)

This geometry is shown in Figure 5. We choose a solution to have the form;

V =
∞
∑

n

An sinh(knz) G0(knρ)

Here we have written a superposition of the Bessel and Neumann functions;
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G0 = [
J0(knρ)
J0(knc)

−
N0(knρ)
N0(knc)

]

So that at ρ = c, the cylindrical surface of the inner cylinder, G0 vanishes. Note we have
chosen ν = 0 because the potential is independent of φ, ie the problem is aximuthally sym-
metric. Now we must choose the values of kn to make G0 = 0 when ρ = a. This will select
a set of zeros, ανn, of the function, G0, and in fact make the functions, G0, a complete
orthogonal set. This points out that we separated the solutions of the radial ode into a
form which was regular at ρ = 0 and one which was not. But we could have separated the
solutions so that, G0, was one of the two linearly independent solutions, and thus it would
have similar oscillating properties as the function Jν . Of course the location of the zeros
would be different. Use orthogonality to obtain the coefficients in the above equation.

H An = [1/sinh(knb)]
a
∫

c

ρdρ V (ρ) G(αnρ/a)

Here;

H =
a
∫

c

ρdρ G2(αnρ/a)

Finally consider the problem with the cylindrical wall held at potential V = f(z) and
the endcaps grounded. This geometry is shown in figure 6. The boundry conditions are;

z = 0, b V = 0

ρ = a V = f(z)

In this case we cannot use the hyperbolic function in z to match the boundry conditions.
However if we let k → ik then the hyperbolic function becomes harmonic at the expense of
making the argument of the Bessel function complex. Note here that the problem is 2-D
so we expect only one eigenfunction and this now occurs for the z coordinate. Then the
radial ode with complex Bessel function solutions cannot be eigenfunctions. The eigenvalue
of k = nπ/b is determined by the harmonic form;

sin(nπz/b) n integral

The solution has the form;

V =
∞
∑

n=1

Ansin(nπz/b) J0(inπρ/b)

In this case we use the orthogonality of the harmonic functions rather than the Bessel func-
tions. The value of the coefficients are;
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Figure 6: The geometry for the problem where a potential is placed on the cylindrical surface
and the end caps grounded

An = 2
b J0(inπa/b)

b
∫

0

dz f(z) sin(nπz/b)

4 Numerical Solutions

Separation of variables provides an analytic solution when the boundaries of the potential
surfaces are the same as those obtained by taking each variable of the separation geometry
as constant. Of Laplace’s equation also must serarate into separate equations each involving
only one of these variables. While analytic solutions provide insight into more realistic
problems, they are not always useful in obtaining detailed information which is needed
for detailed design and engineering work. Thus we require techniques to obtain accurate
numerical solution of Laplace’s (and Poisson’s) equation.

First consider a result of Gauss’ theorem. Integrate Laplace’s equation over a volume
where we want to obtain the potential inside this volume.

∫

dτ ∇2V =
∫

~∇V · d~σ = 0

In the above ~σ is the surface which encloses the volume τ . In the case of a spherical
surface, d~σ = R2dΩ r̂ which we substitute in the above to write;

R2 d
dR

∫

dΩ V = 0

This equation means that
∫

dω V is a constant. Now in Cartesian coordinates we di-
vide space into a grid with cells of the dimensions (δx, δy, δz). From the above analysis we
know that the potential at the center of the cell will approximately be the average of the
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potential over the enclosing surface. In Cartesian coordinates this means that the potential
at a point is approximately the average of the sum of the potentials over its nearest neighbors.

Vl,m,n = 1/6[Vl−1,m,n + Vl+1,m,n + Vl,m−1,n +

Vl,m+1,n + Vl,m−1,n + Vl,m,n−1 + Vl,m,n+1]

One begins by taking the exact potential values on the surface and assigning initial
values to the potential at all the grid points. The initial values can be any guesses. The
average values at each point are then obtained, keeping the correct potential on the surface.
The process is iterated to convergence. The thechnique is called the relaxation method. It
is stable by iteration and converges rapidly to the potential within a volume. This technique
(finite element analysis) is generally applied to any process which is described by Laplace’s
equation, and this includes a number of physical processes in addition to electrostatics.

If charge is present, we must have a solution to Poisson’s equation. For a sphere of
radius, r, the potential at the center relative to the surface is;

∆V = ρr2/(6ǫ0)

This would be included in the equation above when computing the average. As an ex-
ample, Figure 7 shows a numerical valuation of a potential at the center of a set of grounded
metal boundaries and wires which are held at constant potential.
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Figure 7: An 3-D numerical example showing contour lines of constant potential of a geom-
etry having grounded metal boundaries and wires held at potential
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