
Dielectric Problems and Electric Susceptability
Lecture 10

1 A Dielectric Filled Parallel Plate Capacitor

Suppose an infinite, parallel plate capacitor with a dielectric of dielectric constant ǫ inserted
between the plates. The field is perpendicular to the plates and to the dielectric surfaces.
Thus use Gauss’ Law to find the field between the plates in the dielectric. For a cylindrical
Gaussian surface surrounding an area of the plate surface;

∮

~D · d ~A = qfree

Note the field is only between the plates with a value obtained by superposition of the field
from both plates.

E = σfree/ǫ

The potential between the plates is therefore;

V =
∫

~E · d~l = σd/ǫ

where d is the plate separation. The capacitance is;

C = Q/V = (Area)ǫ/d

For a given value of V , the dielectric reduces the total field between the plates, so.the capac-
itor stores additional charge on the plates for the same applied voltage. This is developed
further in the sections below. However for the moment, you should consider how energy is
conserved if it is determined using the square of the field intensity.

2 A Dielectric Sphere in a Uniform Electric Field

In a previous lecture we considered a conducting sphere in a uniform electric field. The field
caused charge to move so that there was no ~E component parallel to the surface and no
field inside the conductor. In the case of a dielectric sphere with dielectric constant ǫ = ǫ0ǫr,
Figure 1, charge cannot move but polarization in the material occurs. Therefore we expect
to find a field within a polarized dielectric. There is no free charge in, or on, the sphere,
so apply Laplace’s equation (vanishing free charge density) with appropriate boundry con-
ditions.
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Figure 1: The geometry of a dielectric sphere placed in a uniform field

∇2V = ρ/ǫ

Solve this equation using separation of variables with the boundary conditions;

V = −E0 z = −E0 r cos(θ) as r → ∞;

In the above, E is finite as r = 0; and

E⊥ = (ǫ′/ǫ0) E ′
⊥, E‖ = E ′

‖ at r = a

In spherical coordinates the solution to Laplaces’s equation using separation of variables
with azmuthal symmetry has the form;

For r < a

V = κ
∑

Al r
l Pl(x)

For r > a

V = κ
∑

Bl r
−(l+1) Pl(x)

Then, x = cos(θ). Apply the boundry conditions to obtain the equation;

V = (κ)[A0 + A1 r cos(θ)] for r < a

V = (κ/r)[B0 + B1/r] cos(θ) − V0 rcos(θ) for r > a
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The solutions match the boundary conditions when r → ∞ and r → 0. All other cofficients,
Al ,Bl, must vanish. Then match the potential and field when r = a. Use ~E = − ǫ~∇V so
that;

ǫ ∂V
∂r in

= ǫ0
∂V
∂r out

By definition, ǫr = ǫ/ǫ0 which gives;

ǫr

∑

Al l a
l−1 Pl = −

∑

Bl (l + 1) a−(l+2) Pl − E0 cos(θ)

The requirement that tangential E is continous is equivalent to the continuity of the potential.

∑

Al a
l Pl =

∑

Bl a
−(l+1) Pl − E0 Pl

Equate the constants for each value of l.

A0 = B0/a and B0a
−2 = 0

A1a = B1a
−2 − E0a and −ǫrA1 = 2B1a

−3 + E0

A2a
2 = B2a

−3 and −ǫraA2 = −3B2a
−4

This means that ;

B0 = 0; A0 = 0

A1 = B1/a
3 − E0

All other values of Al and Bl are zero. Finally;

B1 =
(ǫr − 1)
(ǫr + 2)

a3E0

A1 = − 3
(ǫr + 2)

E0

The potential is then;

r < a

V = − 3 E0

(ǫr + 2)
r cos(θ)

r > a
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Figure 2: The geometry used to find the field at the center of the polarized sphere

V = −E0 rcos(θ) +
(ǫr − 1)
(ǫr + 2)

E0 (a/r)3 r cos(θ)

3 Polarization of the Dielectric Sphere in a Uniform

Electric Field

.
The field inside the dielectric sphere, as obtained in the last section, is;

~E = −~∇V

with Vin = − 3E0

(ǫr + 2)
r cos(θ). Thus ~E = 3E0

(ǫr + 2)
ẑ

The field is uniform and in the ẑ direction. The volume charge density is given by ρ =
−~∇ · ~P = 0, since the field within the sphere is constant. The Polarization is given by;

~P = (ǫ − ǫ0) ~E

Thus the volume charge density vanishes, but there is a surface charge density given by;

σ = ~P · n̂ = P cos(θ)

where n̂ is the outward surface normal. The field inside the sphere is due to the surface
charge which forms a dipole field, Figure 2, in addition to the applied field. Calculate this
field at the center of the sphere 2. The field due to a small element as shown in the figure
is;

4



E E E E

P

y

z

+
+ + +

+

++

+

x

Figure 3: The geometry used to find the field at the center of the polarized sphere

dEz = −κ
P cos(θ)

r2 cos(θ) r2dΩ

Integrate over the solid angle dΩ;

Ez = −
~P

3ǫ0

Although this field was found at the center of the sphere, it is the same for all points in the
sphere, since the field inside the sphere is constant as obtained in the solution using separa-
tion of variables. Note this solution also shows the polarization field is directed opposite to
the applied field, Figure 7.

.

4 Connection between the Electric Susceptibility and

Atomic Polarizability

An applied field induces a polarization in a dielectric material. To better understand this
process consider the polarization at the center of a polarized spherical dielectric. Then com-
bine this polarization with the applied field to obtain for a Class A dielectric;

~D = ǫ0
~E + ~P = ǫ ~E

In this case the polarization is independent of surface effects. Assume the applied field is ~E0,
and ~E ′ is the field due to the polarized material. The total field inside the dielectric is the
superposition of these fields. Now the total field (applied plus induced) causes the polariza-

tion, so the effect is non-linear due to this self interaction. The field in the dielectric is, ~Etotal.
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Etotal = ~E0 + ~Epol

The field at the center of the dielectric sphere, as solved above is;

Ez = − P
3ǫ0

The dipole moment of the sphere is obtained from the atomic polarizability, α.

~p = α~Etotal = α(ǫ0
~Etotal +

~P
3 )

The polarization is the dipole moment per unit volume, ~P = N~p, where N is the number
density of dipoles. Now solve for the polarization.

~P = Nα
1 − N/(3)

ǫ0
~Etotal

The electric susceptibility χe is defined by;

χe = Nα
(1 − N/3)

The field inside the sphere as previously obtained is 3E0
ǫr + 2. The applied field is E0. Remove

the vector directions, as all fields are along the z axis.

P = 3Ein
ǫr + 2 − Ein = −3 ǫr − 1

ǫr + 2 ǫ0E0

The polarization is then;

~P = ǫ0χe
~Etotal = (ǫ − ǫ0) ~Etotal

which can be used to obtain, χe = (ǫr − 1)

Now suppose we replace the total field in the material, Ein, with applied field, ~E0. We the
obtain in first order, a polarization, P1 .

P1 = ǫ0χeE0 = (ǫr − 1)ǫ0E0

However, this does not equal the above value for the final polarization, ie P 6= P1. Thus
polarization acts to create new polarization (ie a non-linear effect). Iterate the above, first
order polarization, to obtain a first order electric field, E1 due to the polarization. This gives
the next order in the polarization iteration.
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E1 = P1
3ǫ0

= −
(ǫr − 1)

3 E0

This creates an incremental polarization, P2 ;

P2 = (ǫr − 1)ǫ0E1 =
(ǫr − 1)2

3 ǫ0Eo

and this creates an additional E field;

E2 = −(ǫr − 1
3 )2E0

Continuing the iterations;

~P = 3
∑

n

(−ǫr − 1
3 )nǫ0

~E0 =
3(ǫr − 1)
ǫr + 2 ǫ0

~E0

To summarize, we find the following solution in the interior of a dielectric sphere in a uniform
electric field.

~Ein = 3E0
ǫr + 2

From the definition of the electric displacement, ~D = ǫ0
~E + ~P , so that ~P is;

~P = ǫ0(ǫr − 1) ~E

For the dielectric sphere;

P = 3
(ǫr − 1)
ǫr + 2 ǫ0 E0

5 Energy in a Dielectric

Return to a parallel plate capacitor filled with a dielectric constant, ǫ, and plate separation,
d. The capacitance is ;

C = Q/V

V = Ed

C = Q/Ed

Use Gauss’s Law to get E;
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∮

~D · d ~A = Qfree

E = σ/ǫ

C = ǫ(Area)/d

Without the dielectric the capacitance is

C0 = ǫ0(Area)/d

Therefore;

C = ǫrC0 = ǫ0Et + P
Et

C0

In the above, Et is the total field in the capacitor. From this we obtain;

~D = ǫrǫ0
~Et = (ǫ0

~Et + ~P )

Then ~P points in opposition ot ~E

ǫr = (ǫ0 + P/Et) = ǫ0(1 + χe)

The above equation connects the permittivity (dielectric constant) to the susceptibility. The
energy of a parallel plate capacitor is obained by;

W = 1/2 CV 2 = 1/2 ǫrC0V
2

W = (ǫ/2)
∫

dτ E2

When one keeps the same voltage across the capacitor, there is an increase in energy
W = ǫrW0 in a dielectric filled capacitor. Look at this additional energy. The differen-
tial energy to polarize a dipole ~p in the direction of the applied field is ;

dW = ~F · d~x = q ~E · d~x = Edp

dW = E dp

Then use the dipole density, N , to obtain the potential energy per unit volume due to the
polarization, ~P = N~p.

∫

dW =
∫

dP E =
∫

dE ǫ0(ǫr − 1)E
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Figure 4: A parallel plate capacitor dipped into a dielectric liquid

W = (1/2)ǫ0(ǫr − 1)E2

This is to be added to the energy density of the vacuum field (ǫ0/2)E2 which gives the ex-
pected result (ǫ/2)E2. Thus the additional energy is stored in the polarization of the material.

6 Example of Energy in a Dielectric

Suppose a charged parallel plate capacitor is dipped into a dielectric liquid. The liquid is
pulled up into the capacitor. The final position of the liquid can be determined by minimiz-
ing the system energy. The geometry is shown in figure 4. In this problem the voltage is
disconnected from the capacitor so the charge remains constant, but the voltage changes as
the liquid fills the volume between the plates. On the other hand, if the voltage supply re-
mains connected to the capacitor, then the voltage remains constant, but the charge changes.
In this case the battery charging the plates continues to insert energy into the system and
so the energy in the capacitor is not constant.

From the figure, the system can be considered as 2 capacitors connected in parallel.
Assume the width of the capacitor plates is w. The capacitance values for each capacitor
are;

C1 =
ǫ0w(l − h)

d

C2 = ǫwh
h

So that the system capacitance is Ct = C1 + C2.

Ct = C0[1 + (h/l)(ǫr − 1)]
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Where we have used C0 = ǫ0lw
d

. Write the energy stored in the capacitor as a function of

h in terms of the stored charge, W = (1/2)Q2/C.

W =
Q2

2C0[1 + (h/l)(ǫr − 1)]

Since ǫr > 1 the energy decreases as h increases. The difference in the energy goes into
raising the liquid. The system energy is then;

WS = W + mg(h/2) = W + g(h/2)ρ(wdh)

In the above ρ is the mass density and the second term on the left represents the potential
energy of the raised liquid. The minimum in the energy is then found which provides the
equilibrium position.

∂WS
∂h

= 0

−
Q2l(ǫr − 1)

2C0[l + h(ǫr − 1)]2
+ 2ρwd(h/2) = 0

Solve for h to find the equilibrium position. This results in a cubic equation for h.

h3 + 2 l
(ǫr − 1)

h2 + l2

(ǫr − 1)2h −
2Q2l

4ρw2ǫ0(ǫr − 1)C0
= 0

There is one real root of the equation if q3 + r2 > 0 where;

q = −(1/3)[ l
ǫr − 1]2

r = (1/9)( l
(ǫr − 1)

)3 − (3/4)
2Q2l

ρw2gǫ0(ǫr − 1)

This will be the case in all physical situations. The solution is obtained as follows.

a2 = 2l
ǫr − 1

s1 = [r + (q3 + r2)1/2]1/3

s2 = [r + (q3 − r2)1/2]1/3

h = (s1 + s2 − a2/3
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Figure 5: The geometry of a problem with a point charge q placed at the center of a spherical
tank of water

7 Point Charge placed at the center of a Spherical

Tank of Water

.
The geometry of the problem is shown in figure 5. Use Gauss’ law to get the electric displace-
ment in the water. The electric displacement (and electric field) is radial and independent
of angle. Thus assume a small spherical shell centered on the charge. Because the field is
radial, the electric displacement, D′ equals the electric diaplacement in the water, D. This
means;

∮

~D · d ~A = Qfree = q

Thus because of symmetry;

~D = 1
4π

q
r2 r̂

and ~D = ǫ ~E. Then the polarization is,

~P = ǫ0(ǫr − 1) ~E = ǫ0(ǫr − 1) 1
4πǫ

q
r2 r̂

The volume charge density is ;

ρ = −~∇ · ~P = − 1
r2

∂
∂r

[r2Pr] = 0

Thus there is no volume charge density. The surface charge density at r = a is;

σ = ~P · r̂ = ǫ0(ǫr − 1) ~E = ǫ0(ǫr − 1) 1
4πǫ

q
a2
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Inside there is an induced charge symmetrically placed about q at a finite radius so that the
total induced charge sums to zero. Outside the water tank the field is the same as the field
from a point charge q in the vacuum.

8 Dipole placed at the center of a Spherical Tank of

Water

This problem is similar to the problem in the last section, but the point charge is replaced
by a dipole aligned along the ẑ axis. The field of the dipole in vacuum is;

~Ed = κ
p
r3 [2 cos(θ)r̂ + sin(θ) θ̂]

Put this dipole inside a small spherical volume of radius, b, in the center of the tank. This
keeps the solution appropriately bounded as r → 0. Thus the boundry conditions at r = b
are;

ǫEr(water) = ǫ0Er(vacuum)

E‖(water) = E‖(vacuum)

Therefore inside the water;

~E(water) =
κp
r3 [2(ǫ0/epsilon) cos(θ) r̂ + sin(θ) θ̂]

Solve for the potential in the water using separation of variables. The solution has the forms;

r > a

V =
∑

Al r
−(l+1) Pl(x)

b < r < a

V =
∑

[Bl r
−(l+1) + Cl r

l]Pl(x)

Now match the boundary conditions at r = b.

ǫ[2B1/b
3 − C1]cos(θ) = 2ǫ0κp/b3 cos(θ)

(1/b)[B1/b
2 + C1b]sin(θ) = κp/b3 sin(θ)
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All other coefficients vanish. Solve for B1 and C1.

B1 =
κp
3ǫr

[ǫr + 2]

C1 =
2κp
3ǫrb

3 [ǫr − 1]

This gives the potential;

V =
κp
3ǫr

[ǫr + 2
r3 +

2(ǫr − 1)
b3 r]cos(θ)

From this one gets the field;

~E =
κp
3ǫr

[ [ǫr + 2
r2 +

2(ǫr − 1)r
b3

] cos(θ) r̂ +

[ǫr + 2
r3 +

2(ǫr − 1)
b3 ] sin(θ) θ̂]

The polarization is ~P = ǫ0(ǫr − 1) ~E. So that the volume charge density is;

ρ = −~∇ · (ǫ0(ǫr − 1) ~E)

ρ =
ǫ0(ǫr − 1) κp

3ǫrr
2 [[

2(ǫr + 2)
r2 −

2(ǫr − 1)
b3 ] cos(θ) +

[ǫr + 2
r3 +

2(ǫr − 1)
b3 ]cos(θ)]

ρ =
ǫ0(ǫr − 1) κp

3ǫrr
2 [3(ǫr + 2) + 6(ǫr − 1)(r/b)3] cos(θ)

The surface charge density is;

r = b

σ = −(ǫ − ǫ0)
8κp
3ǫrb

3 cos(θ)

r = a

σ = −(ǫ − ǫ0)
4κp
3ǫra

3 [ǫr(1 − ǫr(a/b)3) + 2(a/b)3] cos(θ)

Matching the boundry conditions at r = a must now be carefully done. As the field does
not → 0 as r → ∞ but has a dipole form, with the potential given by;

V =
2κp(ǫr − 1)

b3 r cos(θ)
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Figure 6: The geometry used to find the capacitance of a parallel palte capacitor filled with
2 dielectrics

This potential should be subtracted from the dipole potential. There still remains a problem
in defining a dipole as a point.

9 Examples

9.1 Parallel plate capacior filled with 2 dielectric materials

A parallel plate capacitor is filled with 2 dielectric materials of dielectric constants ǫ1, and
ǫ2 as shown in figure 6. The plates have area, A, and are separated by a distance, d. The
thickness of dielectric, ǫ2 is a. Find the capacitance.

Place a potential, V0, between the plates. By symmetry, the potential is assumed to be
dependent only on z as the plate lengths are >> d. Thus the electric field is perpendicular
to the plates. The solution to Laplace’s equation, ∇2V = 0, must have the form;

V = Az + B

In the above A and B are constants which are used to satisfy the boundary conditions. Thus
we expect;

V2 = A2z + B2 for 0 < z < d − a)

V1 = A1z + B1 for d − a < z < d

Then when Z = 0

V2 = B2 = 0

and when z = d
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V = A1d + B1 = V0

Solving for the constants we obtain for the potentials;

V1 = [V0 − B1
d

]z + B1

V2 = A2z

The fields are;

E1 = −∂V1
∂z

= −[V0 − B1
d

]

E1 = −∂V2
∂z

= −A2

The remaining constants, A2 and B1, are determimed at the dielectric boundary, z = a,
where;

D1 = ǫ1E1 = D2 = ǫ2E2

A2 = (ǫ1/ǫ2)[
V0 − B1

d
]

We also require;
0
∫

d

d~l · ~E = V0. Then solve the 2 above equations for the constants.

B1 =
V0a(ǫ1 − ǫ2)

[ǫ1a + ǫ2(d − a)]

A2 = ǫ1V0

[ǫ1a + ǫ2(d − a)]

This yields the potentials;

V1 =
V0[ǫ2z + (ǫ1 − ǫ2)a]
[ǫ1a + ǫ2(d − a)]

V2 = ǫ1V0

[ǫ1a + ǫ2(d − a)]
z

The fields are;

E2 = ǫ1

[ǫ1a + ǫ2(d − a)]
V0z

E1 = ǫ2

[ǫ1a + ǫ2(d − a)]
V0z

These solutons should be checked for the limiting cases when a = 0, a = d, and ǫ1 = ǫ2
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Now the charges on the plates are obtained from Gauss’ law,
∫

~D · d ~A = Qfree.

Bottom Plate;

σF = ǫ2E2 = ǫ1ǫ2

ǫ1a + ǫ2(d − a)
V0

Top Plate;

σF = ǫ1E1 = ǫ1ǫ2

ǫ1a + ǫ2(d − a)
V0

So the free charge on the top and bottom plates are equal as they should be. Then using
the free charge, the capacitance per unit area is;

C/A = σF /V0 = ǫ1E1 = ǫ1ǫ2

ǫ1a + ǫ2(d − a)
V0

9.2 The field of a polarized sphere

Suppose a sphere of radius, R, composed of polarized material. The polarization has only
and angular dependence given by;

~P = P0 cos(θ) r̂

There is a surface charge density;

σ = ~P · r̂ = P0 cos(θ)

The volume charge density is;

ρ = −~∇ · ~P = −
2P0 cos(θ)

r

We are to find the potential outside the sphere, figure 7. The volume contribution to the
potential has the form;

.
V = κ

∫

dΩ′ r′ 2
ρ

|~r ′ − ~r|

Substitute for the volume charge density and use the addition theorem to expand 1
|~r ′ − ~r|

1
|~r ′ − ~r|

=
∑

l,m

4π
2l + 1

(r′ l/r(l+1)) Y ∗m
l (θ′, φ′) Y m

l (θ, φ).
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Figure 7: Geometry to obtain the potential of a polarized sphere

Note, cos(θ) =
√

4π/3Y 0
l . In the following use the orthogonality of the spherical harmonics.

V = 8πκ(P0/r)
∑ 1

2l + 1
[
∫

dΩ′ cos(θ′, φ′) Y ∗m
l (θ′, φ′)][

∫

dr′ (r′ l+2/rl)] Y m
l

V = 8πκ(P0R
3

3r3 ) cos(θ)

The integral for the surface proceeds in a similar way.

V = −κ
∫

R2 dΩ′P0 cos(θ)
|~r′ − ~r||

V = −4πκ
P0R

3cos(θ)
3r3

The potential is the sum of the potentials from the volume and surface charge densities.
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