
Dispersion Relations Review Wave Guides

Lecture 4

1 Dispersion relations

Dispersion relations were introduced into physics with the work of Kronig and Kramers in
the field of optics. Waves in materials may have an imaginary wave vector as we found in
the last lecture. An imaginary wave vector will produce an imaginary index of refraction
and this can be related to the absorption of the EM wave. We find that the imaginary part
is related to the real component due to the analytic properties of the optical functions and
the requirement of causality.

This concept can be generalized to a number of applications in physics, in particular
scattering where the total scattering cross section can be related to the forward scattering
amplitude by the optical theorem. We develop below dispersion relations for an EM wave
in a medium.

1.1 Mathematical basis

Suppose a function, f(z), analytic with a complex variable, z, in some region of space. If we
apply the Cauchy integral formula;

1
2πi

∮

C

dz
f(z)

z − z0
=

[

f(z0) z0 within the intergal space C
0 otherwise

]

If the point is on the contour, then;

1
πi P

∮

C

dz
f(z)

z − z0
= f(z0)

Now write for z = x + iy and put the pole on the x axis;

f(x0) = (1/πi) P
∞
∫

−∞

dx
f(x)

x − x0

Let;
f(x) = u(x) + i v(x)

Substitution gives;

u(x) + iv(x) = (1/π)
∞
∫

−∞

dx
v(x)

x − x0
− (i/π)

∞
∫

−∞

dx
u(x)

x − x0

This gives;
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u(x0) = (1/π) P
∞
∫

−∞

dx
v(x)

x − x0

v(x0) = (−1/π) P
∞
∫

−∞

dx
u(x)

x − x0

These are dispersion relations. If they have a symmetry such that f(−x) = f ∗(x) then
the crossing relations are obtained;

u(−x) = u(x) and v(−x) = −v(x)

These relations then allow the following forms for the integrals;

u(x0) = (2/π) P
∞
∫

0

dx
xv(x)

x2 − x2
0

v(x0) = (−2/π) P
∞
∫

0

dx
x0u(x)
x2 − x2

0

1.2 Examples

Consider a plane wave in a conducting medium. We have the dispersion relation;

k2 = µǫω2(1 + i(σ/ωǫ))

The index of refraction has the form n2 = (ck/ω)2 therefore;

n2 = 1 + i(σ/ǫω)

Now n2 does not approach 0 as ω → ∞ so it does not have appropriate properties to
directly use in a dispersion relation, however (n2 − 1) → 0 as ω → ∞, has a simple pole on
the Re ω axis, and is otherwise analytic. Therefore n2 − 1 is an appropriate function to use
in a dispersion relation. We also note that f(ω) = n2 − 1 = f ∗(−ω) so crossing symmetry
holds. The dispersion relations are then

Re[n2(ω0 − 1] = (2/π) P
∞
∫

0

dω
ω Im[n2(ω) − 1]

ω2 − ω2
0

Im[n2(ω0 − 1] = (−2/π) P
∞
∫

0

dω0
ω Im[n2(ω) − 1]

ω2 − ω2
0

The analytic properties of the function are a direct consequence of causality. Look at
the definition of electric susceptibility, χ. The polarization of a uniform, isotropic medium
is ~P = ǫ0χ~E Then the electric displacement is
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~D = ǫ0
~E + ~P = ǫ ~E

Substitute for the polarizarion to obtain ǫ/ǫ0 = 1 + χ. Now the polarization depends
on the past history of the fields so that

P (t) = ǫo

∞
∫

−∞

dt′ E(t′)G(t − t′)

Here G(t − t′) is the response function, and because of causality G(τ) = 0 when
τ = t − t′ < 0. We transform P = ǫ0χE to frequency space and because of the fal-
tung theorem

P̄ (ω) = ǫ0χ(ω)Ē(ω)

χ(ω) = (1/
√

2π)
∞
∫

−∞

dt G(t) eiωt

G(ω) = (1/
√

2π)
∞
∫

−∞

dω χ(ω) e−iωt

If G(t) is real then χ(ω) = χ∗(ω∗). Also χ must be analytic in the upper half of the
omplex ω plane in order for G(τ) to vanish when τ < 0 .

Finally consider the following problem.

The dispersion relation for waves in a plasma is given by;

0 = 1 + (ω2
p/k)

∞
∫

∞

∂f/∂v
ω − kv

dv

where ωp is the plasma frequency and

f =
√

m
2πkbT

exp(− mv2

2kbT
)

Landau showed that the integral is along the real v axis and passes under the pole. Show
that the integral has the form;

∞
∫

∞

∂f/∂v
ω − kv

dv = P

∞
∫

∞

∂f/∂v
ω − kv

dv − iπ
k

∂f
∂v

|v=w/k

Justify and indicate all contours over which you integrate.

Solution
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The contour is shown in fig. 1

Im(v)

Re(v)/kω

Figure 1: The figure shows the contour of integration

f =
√

m
2πkbT

exp(− mv2

2kbT
)

∞
∫

−∞

dv
∂f/∂v
ω − kv

=

ω/k−ǫ
∫

−∞

dv
∂f/∂v
ω − kv

+

ω/k+ǫ
∫

ω/k−ǫ semi−circle

dv
∂f/∂v
ω − kv

+

∞
∫

ω/k+ǫ

dv
∂f/∂v
ω − kv

the principal value is then;

P

∞
∫

−∞

dv
∂f/∂v
ω − kv

=

ω/k−ǫ
∫

−∞

dv
∂f/∂v
ω − kv

+

∞
∫

ω/k+ǫ

dv
∂f/∂v
ω − kv

Therefore we only need to evaluate the integral over the semi-circle contour. Define v =
ω/k + ǫ eiφ. Then this integral becomes;

−
2π
∫

π

dφ
iǫ eiφ ∂f/∂v

ω − kv
= −(1/k)

0
∫

−π

dφ
iǫ eiφ∂f/∂v

ǫeiφ = −iπ
k

∂f
∂v

|v=ω/k

Note that if v = x + iy then v2 = x2 − y2 + 2ixy. The contour cannot be closed by a circle
whose radius goes to infinity, so you can’t directly use the residue theorem.
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2 The vector Laplacian

The vector Laplacian is defined by the expression;

∇2 ~A = ~∇(~∇ · ~A) − ~∇ × ~∇ × ~A;

This is obtained by defining;

Γ1 = (g11/g
1/2)

[

∂[(g33)
1/2 A3]

∂u2
− ∂[(g22)

1/2 A2]
∂u3

]

;

Γ2 = (g22/g
1/2)

[

∂[(g11)
1/2 A1]

∂u3
− ∂[(g33)

1/2 A3]
∂u1

]

;

Γ3 = (g33/g
1/2)

[

∂[(g22)
1/2 A2]

∂u1
− ∂[(g11)

1/2 A1]
∂u2

]

;

and;

γ = g−1/2

[

∂[(g/g11)
1/2 A1]

∂u1
+

∂[(g/g22)
1/2 A2]

∂u2
+

∂[(g/g33)
1/2 A3]

∂u3

]

;

Then;

∇2 ~A = â1

[

(1/g11)
1/2 ∂γ

∂u1
+ (g11/g)1/2

[

∂Γ2

∂U3
− ∂Γ3

∂u2

]]

+

â2

[

(1/g22)
1/2 ∂γ

∂u2
+ (g22/g)1/2

[

∂Γ3

∂U1
− ∂Γ1

∂u3

]]

+ (1)

â3

[

(1/g33)
1/2 ∂γ

∂u3

+ (g33/g)1/2

[

∂Γ1

∂U2

− ∂Γ2

∂u1

]]

. (2)

In the above equations gij are the metric forms for the coordinate system. The metric
defines the scale length on the coordinate axes, and for any general orthorgonal curvilinear
coordinate system, the length element ds is;

ds2 = dx2 + dy2 + dz2 = g11du2
1 + g22du2

2 + g33du2
3

For an orthorgonal system gij = 0 when i 6= j. Thus we have defined a system such that;

x = x(u1, u2, u3)
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Figure 2: The equations for ∇2 ~E in cylindrical coordinates

y = y(u1, u2, u3)

z = z(u1, u2, u3)

and ;

gii = ( ∂x
∂ui

)2 + (
∂y
∂ui

)2 + ∂z
∂ui

)2

We have defined the determinant for an orthorgonal system, g = g11g22g33 as;

g =

∣

∣

∣

∣

∣

∣

g11 g12 g13

g21 g22 g23

g31 g32 g33

∣

∣

∣

∣

∣

∣

An example of the vector Laplacian operating on the vector electric field in a cylindrical
coordinate system is shown in fig. 2. In these equations β = ω/c.

Note than only the z component has the same form as for the scalar Laplacian. This is
because the unit vector ẑ keeps the same direction throught space.

3 Cylindrical wave guide

We propose a hollow metal tube with perfectly conducting walls. We are to determine the
fields in the interior of the tube and the flow of energy down the tube. We note that for a
perfect condutor the electric field must be perpendicular to the surface, and the magnetic
field must be tangential to the surface. These are the boundry conditions and are derived
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from Maxwell’s equations.

~E × n̂ = 0 and ~B · n̂ = 0

In the above, n̂ is the normal to the surface. Also suppose there is no free charge or
curents within the tube, and we choose a time dependence such that;

~E(~r, t) = ~E(~r) e−iωt

~B(~r, t) = ~B(~r) e−iωt

Substitution in Maxwell’s equations gives;

~∇ × ~E = iω ~B and ~∇ · ~B = 0

~∇ × ~B = −iµǫω ~E and ~∇ · ~E = 0

These equations are combined to give (c = (1/
√

µǫ));

∇2 + (ω/c)2

(

~E
~B

)

= 0

Note here the use of the vector Laplacian. Because of the geometry we choose to let the
z axis be the unique direction along the axis of the tube. Thus write ∇2 = ∇2

z + ∇2
⊥

and
search for a wave solution in the ẑ direction.

~E(~r, t) = ~E(x, y)ei(kz−ωt)

~B(~r, t) = ~B(x, y)ei(kz−ωt)

Substitution yields;

∇2
⊥

+ ((ω/c)2 − k2
z)

(

~E
~B

)

= 0

Separate the fields into transverse and longitudinal components.

~E = ~E⊥ + ~Ez ẑ

~B = ~B⊥ + ~Bzẑ

Put all this back into the 4 Maxwell’s equations above and use the identities;
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ẑ × ~∇⊥ × ẑ = ~∇⊥

ẑ · (~∇⊥ × ẑ) = 0

ẑ × ẑ × ~E⊥ = −~E⊥

To obtain the following forms;

~E⊥ = − i
k2 − (w/c)2 [k ~∇⊥Ez − ω ẑ × ~∇⊥Bz]

~B⊥ = − i
k2 − (w/c)2 [k ~∇⊥Bz − ω/c2 ẑ × ~∇⊥Ez]

Therefore E⊥ and B⊥ are defined in terms of the z components. The divergence equa-
tions are not yet satisfied.

~∇⊥ · ~E⊥ = −∂Ez
∂z

~∇⊥ · ~B⊥ = −∂Bz
∂z

If we choose;

∂Ez
∂z

= ∂Bz
∂z

= 0

The we have a wave that is totally transverse to ẑ. This can only occur if

k = ω/c

So in this case the wave would propagate as it would in free space with the free space ve-
locity. Note that this is a 2-D electric potential problem since ~∇⊥× ~E⊥ = 0 and ~∇⊥ · ~E⊥ = 0.
To support this propagation mode there must be another conductor inside the tube, oth-
erwise the potential will be constant through out the interior. Therefore we cannot choose
BOTH Ez and Bz to vanish together. We thus consider the two cases, transverse magentic
modes (TM where Bz = 0) and transverse electric modes (TE where Ez = 0 )

4 TM modes

The TM mode has Bz = 0 and Ez 6= 0 except at the surface where Ez = 0. In this case we
have that;
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~E⊥ = −i k ~∇⊥ Ez

k2 − (ω/c)2

~B⊥ = −i ω ẑ × ~∇⊥ Ez

k2 − (ω/c)2

Here we have the wave as Ez → Eze
i(kzz−ωt)

The solution for Ez is obtained from the equation;

∇2
⊥
Ez + γ2Ez = 0

with γ2 = ((ω/c)2 − kz) and (ω/c)2 = k2 = γ2 + k2
z . Use cylindrical coordinates

(ρ, φ, φ) assuming a cylindrical boundry at ρ = a. The above pde has a solution of the
form, Ez ∼ Jν(γρ) e±iνφ This independent of z as we have extracted the Z dependence as
indicated above. Now we must have that Ez(ρ, φ)|ρ=a = 0. This will occur by a choice of
appropriate zeros of the Bessel function, αn/nu.

Jν(αnν/a ρ)|ρ=a = 0

The final solution can then written;

Ez = [
∑

n,ν

Anν Jν([αnν/a]ρ) eiνφ] ei(kzz−ωt)

The dispersion relation is

kz = [(ω/c)2 − (αnν/a)2]1/2

Then for kz to be real, (ω/c)2 ≥ (αnν/a)2 . Define a cut off frequency ωλ = cαnν
a which

placed in the dispersion relation yields;

kz =
√

(ω/c)2 − ω2
λ

When ω < ωλ kz is imaginary and the field decreases exponentially in z. For real k,
the wave propagates in the z direction. Modes of the cylindrical guide are shown in fig.
3. It is possible to design a guide to propagate one mode, although propagation of higher
frequencies would be allowed. Note that kz is less than the free space value. Thus the phase
velocity ω/kz > c.

Vp = ω/kz = c
√

1 − (ω/ωλ)2
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Figure 3: The modes in wave guides of various geometries
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θ kz

k’

k’ γ

γ

Figure 4: The vector addition for the wave vectors

5 Analysis of group and phase velocities

Choose the lowest mode of excitation. The E field is;

Ez = E0 J0([α1,0/a]ρ) ei(kz−ωt)

Now consider a large diameter tube;

limx→∞ J0(x) →
√

2/πx cos(x − π/4) =
√

2/πx[e
i(x−π/4) − e−i(x−π/4)

2 ]

In this mode x = γρ and;

limx→∞ Ez = E0 eikzz
√

2π
√

γρ
[ei(γρ−π/4−ωt) − e−i(γρ−π/4+ωt)]

This is the form of a superposition of an outgoing and incoming wave. Define the wave
vector as k′ as is shown in fig. 4. We also have γ2 = (ω/c)2 − k2

z

~k′ = ±γρ̂ + kz ẑ

Note that tan(θ) = γ/kz. At the cutoff frequency kz = 0 so the wave propagates per-
pendicular to the ẑ direction. The phase velocity is ;

ω/k′ = ω
(γ2 + kz)

1/2 = c

The velocity of the wave projected onto the ẑ axis is;

Vz = Vp cos(θ) = kzc/k
′ = ∂ω

∂kz
= Vg

The traveling wave moves moves at the velocity of a wave in free space. Energy travels
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θ
k’

kz
γ

wave front

Walls

Walls

position of constant phase

Vp

Figure 5: The vector diagram of the wave velocities showing the wave front of an outgoing
wave

down the tube with velocity Vg, fig. 5. Vg = c cos(θ), and Vp = c/cos(θ)

6 TE modes

For the TE mode we choose Ez = 0 and Bz 6= 0. In this case ;

~B⊥ = ikz
~∇⊥Bz

k2
z − (ω/c)2

~E⊥ = iωẑ × ~∇⊥Bz

k2
z − (ω/c)2

The equation for the z component is;

~∇2
⊥
Bz + γ2Bz = 0

Where γ2 = (ω/c)2 − k2
z . The boundry condition is ~B⊥ · ρ̂ = 0 and since ~∇⊥ =

ρ̂ ∂
∂ρ

+ φ̂(1/r) ∂
∂φ

we force ρ̂ · ~∇⊥Bz = 0 which results in the derivative of the Bessel func-

tion set to zero.;

J ′

ν(γa) = 0

Then use the notation that βnν are zeros of the derivative of the Bessel function. By
substitution the solution is;

Bz =
∑

n/nu

Bnν Jν([βnν/a]ρ) eiνφ

The modes are obtained as for the TM case. The lowest mode ;
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Bz = B01 J0([β01/a]ρ)

Eφ = iω
k2(ω/c)2

∂
∂ρ

[B01 J0([β01/a]ρ)]

7 TEM mode

For the case when both Ez and Bx equal zero, the fields are completely transverse, and we
cannot obtain a representation for these fields in terms of the components in the Z direction.
As previously separate out the Z dependence.

~E = ~E(x, y) ei(kzz−ωt)

~B = ~B(x, y) ei(kzz−ωt)

Upon substitution into the separated form of Maxwell’s equations

[∇2
⊥

+ γ2]

(

~E
~B

)

= 0

Also γ = (ω/c)2 − k2
z

Note that;

~∇⊥ × (~∇⊥ × ~E) = ~∇⊥(~∇⊥ · ~E⊥) −∇2
⊥

~E⊥ = 0

The term (~∇⊥ · ~E⊥) = 0 so γ = 0 and ∇2
⊥

~E⊥ = 0. Then for the 2-D potential
~E⊥ = −~∇⊥V where V is a scalar potential. This potential must satisfy the equation;

∇2
⊥
V = 0

Then we solve this scalar equation by separation of variables.

V =
∑

ν

Cν ρν eiνφ +
∑

ν

Dν ρ−ν eiνφ

The constants Cν and Dν are determined by the boundry contitions on the cylindrical
walls. Suppose ν = 0 then

V = C + D ln(ρ)

The fields become;
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~E⊥ = −~∇φ

~E⊥ = −(D/ρ)ρ̂

~B⊥ = (1/ω)~k × ~E⊥

The boundry conditions are that Eφ and Bρ vanish at the walls. When ν 6= 0 (V = 0
for ρ = a, b);

V =
∑

ν

Cν [(
ρ
a)ν − (

ρ
a)−ν ] eiνφ

The potential vanishes when ρ = a. Then

~E⊥ =
∑

ν

Cν ν[(
ρ
a)ν−1 + (

ρ
a)−ν−1] eiνφ ρ̂ +

∑

ν

Cν iν[(
ρ
a)ν−1 − (

ρ
a)−ν−1] eiνφ φ̂

But we must choose the value of Eφ = 0 when ρ = b. The only choice is to set ν = 0.
There are also possible TE and TM modes.
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