
Waves

1 1-D scalar wave equation

The 1-D, homogeneous, scalar wave equation. has the form;

∂2ψ
∂x2 = 1/V 2 ∂

2ψ
∂t2

This is a 1-D example of a hyperbolic 2nd order pde. In this equation, V is the phase velocity
of the wave. Representative solutions can be harmonic;

ψ = Aei[kx±ωt]

with ω/k = ±V , as can be demonstrated by substitution. However any function, F, of
the form, ψ = F (x − V t) is also a solution. As noted in the last lecture, we choose the
complex harmonic form as a convenient solution, and note that by a weighted inverse Fourier
transformation, any functional form can be represented as a superposition of the harmonic
solutions. For the harmonic form, ω is the (angular) frequency of oscillation (ω = 2πν),
and k is the wave number (k = 2π/λ). Here ν and λ are the frequency and wavelength,
respectively.

2 3-D scalar wave equation

Now extend the wave equation to 3 spatial dimensions. In this case the wave number be-
comes a vector, ~k, and we find the harmonic solution;

ψ = Aei[~k·~x−ωt]

The harmonic phase written in Cartesian coordinates, is required to be;

ω2/k2 = V 2 = ω2

k2
x + k2

y + k2
z

In spherical coordinates, the wave propagates outward from (or inward to) a point. The
wave equation still has the form;

∇2ψ = 1/V 2 ∂
2ψ
∂t2
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Figure 1: An infinitesmal element of a delay line

However in this case the Laplacian operator is (spherical coordinates);

∇2 = (1/r2) ∂
∂r

[r2 ∂
∂r

] + 1
r2 sin(θ)

∂
∂θ

[sin(θ) ∂
∂θ

] + 1
r2 sin2(θ)

∂2

∂φ2

We take the simple case when the solution is independent of angle;

(1/r2) ∂
∂r

[r2 ∂
∂r

]f(r, t) = (1/V 2)
∂2f(r, t)
∂t2

The solution to this equation is;

f(r, t) = G(r − V t)/r

As previously, any functional form of G[r − V t] will be a solution when that function is
divided by the radial distance, r.

3 Transmission line

As an example of the 1-D wave equation, consider a simple transmission line that conducts
a high frequency current signal, Figure 1, and look for a harmonic solution. The line is
divided into discrete elements where the n represents the nth element. The voltage across
the inductor in the nth element is VI = Vn+1 − Vn. The charge flowing in this circuit is Qn.
Use the fact that the voltage across the capacitor is its charge divided by the capacitance,
and the voltage across the inductor is the negative of the inductance times the time change
of the current flow;

−L∂In
∂t

= −Qn+1 −Qn

C +
Qn −Qn−1

C

The above is re-written as ;

L
∂2Q
∂t2

= (1/C)[
[Qn+1 −Qn]/∆x− [Qn −Qn−1]/∆x

∆x ∆x2

Then write the capaciatnce and inductance per unit length as c = C/∆x and l = L/∆x and
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allow the element length ∆x → 0. The wave equation results with V =
√

1/lc
Now for 2 thin parallel wires of diameter, a, separated by a distance s with a highly devel-
oped skin effect (surface current)

c = 2πǫ0/(ln[(s− a)/a/2])

l = µ0(ln[(s− a)/a/2])/(2π)

Thus V =
√

1/ǫ0µ0 and substitution for ǫ0 and µ0 gives V = c, the velocity of light in
vacuum. The current travels with light velocity down the wires. Thus we find that the
solution for the sources (charges) travels as a wave, but the sources produce fields, which
also describe the flow of energy.

4 Wave equation for the fields

Maxwell’s equations in a source free region of space are;

~∇ · ~E = 0

~∇ · ~B = 0

~∇ × ~E = −∂ ~B
∂t

~∇ × ~B = µ0ǫ0
∂ ~E
∂t

To separate these coupled equations, take the curl of Faraday’s law.

~∇ × ~∇ × ~E = − ∂
∂t

~∇ × ~B

Then use the identity [~∇ × ~∇ × ~E = ~∇(~∇ · ~E −∇2 ~E)], Ampere’s law, and Gauss’ law to
write;

∇2 ~E = µ0ǫ0
∂2 ~E
∂t2

In the above, the Laplacian operator must operate on a vector, so we consider this equation
ONLY in Cartesian coordinates, where we can consider each component separately, ignoring
changes of the unit vector directions. Later we may apply a vector Laplacian operator, but
this can be quite complicated depending on the coordinate system. The above equation has
3 spatial coordinates and operates on 3 field variables. The same wave equation results when
separating Maxwell’s equations for the magnetic field, ~B. Suppose we then choose to remove
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the time dependence by using a representation of the form;

~E(~x, t) → ~E(~x)e−iωt

~B(~x, t) → ~B(~x)e−iωt

The solution to the wave equation takes the form;

~E = ~E0e
i[~k·~x−ωt]

with the same form for ~B. Then put these into Faraday’s law;

~k × ~E = −ω ~B

In the above ~k is in the direction of the wave motion, which means ~E and ~B are transverse
to the direction of the wave, and the magnitude of B is a factor of ω/k = c less than the
magnitude of E. The electromagnetic wave is transverse in free space.

5 Power flow

The Poynting vector calculates power flow in the fields. Suppose an electromagentic wave in
free space, moving in the ẑ direction with transverse fields Ex and By. The time averaged
Poynting vector is

〈~S〉 = 1/2Re( ~E × ~H∗) = (1/2µ0)Re( ~E × ~B∗)

Insertion of the fields shows that ~S points in the ẑ direction. Insertion of B = E/c gives;

〈S〉 = E2

2µ0c
= cǫE2

2

The time average energy density in the fields is;

〈W〉 = (1/4)[ǫ0E
2 + (1/µ0)B

2] = ǫ0E
2/2

The energy flowing through a 1m2 cross section in (x,y) is ǫ0E
2(ct/2) which has power flow

cǫ0E
2/2 as obtained from the Poynting vector. Now the momentum in the field can be ob-

tained from the relativistic relation E2 = (pc)2 + (mc2)2 with zero rest mass;

E = pc
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The time average momentum per unit time crossing the 1m2 area is;

〈P〉 = ǫE/2

As an example, sunlight crossing a 1 m2 area above the Earth’s atmosphere is 1.3-1.4 kW.
Attenuation occurs as the light pennetrates the atmosphere, and the surface of the earth is
not perpendicualr to the direction of the radiation, so the effective solar constant is smaller.
The solar constant contains all electromagnetic frequencies radiated by the sun.

6 Polarization

A linear polarized wave occurs when the electric vector lies along one direction perpendic-
ular to the direction of motion of the wave. A circularly polarized wave has electric field
projections along the two axes perpendicular to the direction of motion of the wave which
are out of time phase by π/2. Elliptical polarization occurs when the time phases of the
projections are not equal 0 or π/2. Examples;

Linear Polarization

Ex = E0 xe
i[kz−ωt]

Ey = E0 ye
i[kz−ωt]

Circular Polarization

Ex = E0e
i[kz−ωt]

Ey = E0e
i[kz−ωt]+π/2

Elliptic Polarization

Ex = E0e
i[kz−ωt]

Ey = E0e
i[kz−ωt]+π/2+φ

7 Transmission and reflection

We know that light (electromagnetic radiation) travels with a velocity lower than c when in

materials. This is easily seen as the speed of the wave is given by V 2 = 1
ǫµ . Insertion of the

values for the dielectric constant and magnetic permeability gives the square of the velocity,
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which in vacuum is c2. Most optical materials have µ = µ0 but ǫ > ǫ0. Other materials can
have differing values of µ. Therefore in a medium the velocity is V = 1/

√
ǫµ = c/n with

n the index of refraction, and for optical materials n = ǫ/ǫ0 > 1. This means that at an
interface between different materials, the electromagnetic wave divides so that some of the
wave is transmitted and some reflected. The reason for this can be understood in terms of
conservation of energy. Energy carried by the fields propagates with the velocity of the wave
as can be seen from the Poynting vector. For energy conservation, the power incident on an
interface must equal the power out of the interface, so that if the velocities of the energy
transfer differ across the interface, then some energy must be reflected in order to conserve
energy flow (power). This is true for all wave propagation across boundaries.

Below we specifically look at electromagnetic waves. Consider a plane wave incident on an
interface as shown in Figure 2. There is an incident wave, and both reflected and transmit-
ted (refracted) waves are given by the following equations.

Incident

~EI = ~E0 I e
i[~k·~x−ωt]

Refracted

~ET = ~E0 T e
i[~k′′

·~x−ω′′t]

Reflected

~ER = ~E0 R e
i[~k′·~x−ω′t]

The wave must satisfy a continuity requirement at all times. For any time and value of ~x
this requires ω = ω′′ = ω′. Since the reflected and incident wave are in the same medium,
~k = ~k′ . Also we must have that the phase factors are equal at z = 0 (the amplitude of the
transmitted wave cannot depend on position). Apply these relations to the phase when t = 0.

(~k · ~x)z=0 = (~k′′ · ~x)z=0 = (~k′ · ~x)z=0

The above relations represent conservation of momentum and require that all 3 vectors lie
in the same plane. From the Figure 2;
k sin(θI) = k′′ sin(θR) = k′ sin(θT )

Since ~k = ~k′′ and k = ω n/c, where n is the index of refraction, n =
√

ǫ/ǫ0, Snell’s law
results.

θI = θR
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Figure 2: Reflection and refraction at an interface. In this figure ~E is perpendicular to the
plane of incidence

nI sin(θI) = nT sin(θT )

Now let ~EI be perpendicular to the plane of incidence as shown in Figure 2. The boundary
conditions at a dielectric interface require that;

The tangenial component of E is continuous;

E0I + E0R = E0T

The tangential component of H is continuous;

−(B0I/µI) cos(θI + (B0R/µI) cos(θI) =

−(B0T /µT ) cos(θT )

The solution is found using B =
√
ǫµE;

E0T
E0I

=
2
√

ǫI/µI cos(θI)
√

ǫI/µI cos(θI) +
√

ǫT/µT cos(θT )

E0R
E0I

=

√

ǫI/µI cos(θI) −
√

ǫT /µT cos(θT )
√

ǫI/µI cos(θI) +
√

ǫT /µT cos(θT )

The figure when ~EI lies in the plane of incidence is similar to Figure 2 but with E and B

7



Figure 3: Reflection and refraction amplitude and energy coefficients for glass, n− 1.5 as a
function of angle

interchanged and E rotated by 180◦ so that ~S points along the propagation direction. The
boundary conditions in this case are used to produce the following set of coupled equations.

The tangenial component of E is continuous;

E0I cos(θI) + E0R cos(θI) = E0T cos(θT )

The tangential component of H is continuous and B =
√
ǫµE;

√

ǫI/µIE0I −
√

ǫI/µIE0R =
√

ǫT /µT

The solution is;

E0T
E0I

=
2
√

ǫI/µI cos(θI)
√

ǫI/µI cos(θT ) +
√

ǫT /µT cos(θI)

E0R
E0I

=

√

ǫI/µI cos(θT ) −
√

ǫT /µT cos(θI)
√

ǫI/µI cos(θT ) +
√

ǫT/µT cos(θI)

These solutions are ploted in Figure 3 for glass with n = 1.5. The figure shows that the
amplitude of the reflected wave vanishes at an angle of 56.3◦. Thus all reflected light is po-
larized with the E vector perpendicular to the plane of incidence. Assuming µI = µT = µ0

which holds for almost all optical materials, this results in;

sin(2θI) − sin(2θT )
sin(2θT ) + (µI/µT ) sin(2θI)

= 0
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The solution occurs when θI + θT = π/2 or when tan(θI) = nT/nI . In this case the trans-
mitted E vector is parallel to the reflected propagation direction. Also from Snell’s law;

sin(θT ) = (nI/nT ) sin(θI)

For values of nI > nT sin(θT ) > 1, which of course is not possible, and there is no trans-
mitted radiation through the boundary. The critical angle θC occurs when θC is complex as
obtained in the relation above when sin(θT > 1.

cos(θT ) = [1 − sin2(θT )]1/2 = i[sin2(θT ) − 1]1/2

The refracted wave amplitude is multiplied by the exponential ;

ei~k·~r = eik[x sin(θT )+z cos(θT )] = eik x(nI/nT )sin(θI) e−k z[(nI/nT )2 sin2(θI )−1]1/2

The refracted wave propagates parallel to the surface but attenuates into the medium. Thus,
there is no energy flow through the boundary. This is obvious from ~S = Re( ~E × ~H) = 0

obtained by substitution of the above values into the expression for ~S.

8 Normal incidence and impedance

Suppose a wave is incident normally to the boundary. We define a quantity called the
impedance of the medium by Z =

√

µ/ǫ. In general terms, the impedance presented to any
wave is obtained by considering the transmitted power. Recall that;

Power = Force× Velocity

In terms of Ohm’s law, Power = VI and Z (or for charge flow R) equals V/I. Thus we iden-
tify an impedance by Z = Force/Velocity. For the EM wave, power is obtained from the

Poynting vector, ~S = ~E × ~H so we take Z = E/H =
√

iωµ/(iωǫ). The expression for Z
and also be obained from Faraday’s law. Units are in ohms as expected.

Take θI = 0 and solve the coupled equations for the tangential and perpendicular compo-
nents of the E field. This leads to the coupled equations;

E0I + E0R = E0T

√
ǫIµI [E0I − E0R] =

√

ǫT/µT Et
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These equations are solved to give;

E0T
E0I

= 2ZT
ZI + ZT

E0R
E0I

= ZT − ZI
ZI + ZT

Note if ZI = ZT then there is no reflection and the amplitude of the incident wave is com-
pletely transmitted. Look at the Poynting vector of the plane wave, ~S = ~E × ~H. Use
B =

√
µǫE = µH to obtain; S =

√

ǫ/µE2. Note that energy of the reflected wave moves
opposite to the incident wave in front of the boundary while the transmitted wave moves in
the same direction as the incident wave behind the boundary. Then SI − SR = ST . Check
by using the relations below to demonstrate energy conservation.

[E0T
E0I

]2 =
4Z2

T

(ZT + ZI)
2

[E0R
E0I

]2 =
(ZT − ZI)

2

(ZT + ZI)
2

The impedance of free space is Z0 =
√

µ0/ǫ0 = 377 Ω. It is of interest to ask whether on
can terminate free space so that a wave is reflected.

9 Waves in a conductor

When the EM wave travels in a conductor, the E field causes a current to flow. Consider
the Maxwell equations;

~∇ × ~E = −∂ ~B
∂t

~∇ × ~H = σ ~E + ǫ∂
~E
∂t

As previously, uncouple these two equations to obtain;

∇2 ~E − µǫσ∂
~E
∂t

− µǫ∂
2 ~E
∂t

= 0

Choose a solution of harmonic form;

~E = E0 e
i[kz−ωt] x̂

Substitution gives the dispersion relation;
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−k2 + iµσω + µǫω2 = 0

The solution is

k2 = µǫω2[1 + iσ/(ǫω)]

The wave vector, ~k, is complex indicating that the amplitude will attenuate, and also that
the phase velocity depends on the frequency. Thus the wave disperses as the frequency
components of the wave travel with different velocities. The above equation is called the
dispersion relation. The wave takes the form;

~E = ~E0 e
i[αz−ωt] e−βz

where k = α + iβ. We then identify;

α = ω
√
µǫ





√

1 + (σ/(ǫω))2 + 1

2





1/2

β = ω
√
µǫ





√

1 + (σ/(ǫω))2 − 1

2





1/2

When the conductivity is large σ/ǫω ≫ 1 and

β ≈ [µσω/2]1/2

The amplitude of a wave after traveling a distance δ = [ 2
ωµσ ]1/2 in a conducting material

will be reduced in value by e−1. This distance is the skin depth. For copper µ = µ0 and
σ = 5.8 × 107

Table 1: The skin depth as a function of frequency for copper
ω (Hz) 60 106 3 × 1010

δ (m) 9 × 10−3 6.6 × 10−5 3.8 × 10−7
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10 Reflection at a conducting surface

Consider a plane, linear polarized wave incident on a conducing medium. As previously,
define the wave amplitudes by;

Incident

~EI = ~E0 I e
i[~k·~x−ωt]

Refracted

~ET = ~E0 T e
i[~k′·~x−ωt]

Reflected

~ER = ~E0 R e
i[~k·~x−ωt]

In this case, k′ is complex as was obtained in the last section, k′ = α + iβ. Assume normal
incidence to reduce the complexity of the solution. We apply the boundary conditions at
the surface.

Tangential E continuous

E0I + E0R = E0T

Tangential H continuous

√

ǫI/µI(E0I − E0R) = k′
ωµT

E0T

Now set E0I to be real, but both E0T and E0R cannot both be real as k′ is complex. The
solution is

E0R
E0I

=
1 − (k′/(ωµT ))

√

µI/ǫI
1 + (k′/(ωµT ))

√

µI/ǫI
E0T
E0I

= 2
1 + (k′/(ωµT ))

√

µI/ǫI

Since k′ is complex there will be phase differences not present in the dielectric case. For a
good conductor σ/ωǫ≫ 1 and

E0T
E0I

= (1 − i)δ
√

ǫT /µT
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δ = [2/(µTσω)]1/2

E0R
E0I

→ −1

11 Phase velocity and group velocity

We choose a 1-D wave packet of Gaussian form, composed of a superposition of frequencies.

F (x, t = 0) = 1
σ
√

2π
e−x2/2σ2

Apply a Fourier transformation to obtain;

F = 1√
2π

∞
∫

−∞

dx f(x, 0) e−ikx

F = e−σ2k2/2/
√

2π

Use this for the inverse transform;

f(x, t) = 1
2π

∞
∫

−∞

dk ei(kx−ωt) eσ2k2/2

Now ω is a function of k. Expand ω(k) in a power series;

ω(k) = ω0 + dω
dk

k + d2ω
dk2 k

2/2 + · · ·

Keep terms to 2rd order and define α = dω
dk

= Vg and β2 = d2ω
dk2 . We use ω(k)−ω(k0) → ω

and k − k0 → k. The inverse transformation then is;

f(x, t) = 1
2π

∞
∫

−∞

dk exp[−σ2k2/2 + ik(x− αt) − iβ2k2t/2]

Integrated the result is;

f(x, t) = 1√
2π(σ2 + iβ2t)1/2

e(x−αt)2/(2(σ2+iβ2t))

The wave propagates with velocity Vg = α = dω
dk

. This is the group velocity representing
the velocity of the superimposed envelope of all the frequency components of the wave. The
phase velocity is Vp = ω/k.In the above example, there is also a dispersion illustrated by
the increase in the Gausian width as a function of time. The pulse remains Gaussian but
spreads in width as it travels in x. This is due to the fact that the frequency is not a linear
function of the wave vector.
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12 Index of refraction

The phase velocity of an EM wave in a medium is Vp =
√

1/ǫµ where almost always µ = µ0.
In this section we develop a simple model to evaluate the index of refraction. We assume
that the E field in a medium takes the form;

〈E〉 = E0 + Ep = (1 − Nα
3ǫ0

)E0

In the above Ep = −~P/ǫ0 is the induced dipole field with P the polarization in the material
due to the E0 vector of the EM wave acting on the electrons in the material. The number of
dipoles per unit volume is N , and α is the atomic polarizability (Clausius-Mossotti equation).

The force applied to an electron in the material is F = eE0. These electrons are bound
to molecules, and we assume that the binding force as the electron is moved away from
equilibrum is linear (small displacements). Thus we have an equation of the form;

Force = md
2x
dt

= qE0 − ax − mΓdx
dt

where x is the displacement, xa the restoring force, qE0 the driving force, and a resistive

(dissipative) force mΓdx
dt

. Collecting terms we obtain;

md
2x
dt

= qE0 − ax − mΓdx
dt

Then assume that the driving term is harmonic with a time dependence, E0 → E0 cos(ωt)

The solution of the above equation is therefore,

x = Acos(ωt) + B sin(ωt)

A = (qE0/m)
ω2

0 − ω2

(ω2
0 − ω2)2 + Γ2ω2

B = (qE0/m) Γω
(ω2

0 − ω2)2 + Γ2ω2

ω2
0 = a/(ǫm)

Then ;

D = ǫE = ǫ0E + P
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P = ǫ0(ǫr − 1)E0

The induced dipole is assumed to be −ex (atoms do not move) and N is the number of
atoms per unit volume so that, P = −Nex. Collecting terms;

ǫr = 1 + NqA/E0 + (NqB/E0) tan(ωt)

If we neglect Γ then;

ǫr = n2 = 1 + (Nq2/m) 1
ω2

0 − ω2

In glass the resonant frequencies are in the ultraviolet so that ω0 > ω. As ω → ω0 n
increases so blue light has a larger index than red light. The other component represents
absorption of the EM wave and induces an imaginary component in the index of refraction.

We can obtain the dispersion relation from n2 = 1/
√
ǫr = (c/Vp)

2 = c2k2/ω2. Using the
above

ω2 = c2k2 − (nq2)/(mǫ0)
ω2

ω2
0 − ω2

The phase velocity is;

V 2
p = (ω/k)2 = c2

1 +Nq2/(ǫ0m(ω2
0 − ω2))

The group velocity can also be found from dω
dk

.
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