
Examples of radiation problems
Lecture 13

1 A center fed linear antenna

Because we removed the time dependence of Maxwell’s equations by assuming harmonic
source terms, the radiation problem can be determined by a static solution to the field equa-
tions. Consider radiation from a linear, center-fed antenna as shown in Figure 1. This
problem is more complicated than it first appears. The antenna is fed by a harmonic po-
tential which drives charge along the antenna wire. These currents depend on the voltage,
the impedance of the wire, and the radiation field as it acts back on the source. In general
this results in an integral equation. However, we know that the current must vanish at the
ends of the wire, the wire is thin so that radial currents can be neglected, and the actual
radiation field is rather insensitive to the actual current distribution. Therefore we can make
an approximation for the current using the form;

I(z, t) = I0 sin(kd/2 − k|z|) e−iωt

−d/2 ≤ z ≤ d/2
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Figure 1: The linear center fed antenna. Neglect the radial width of the antenna wire

Take the long wavelength approximation as in the last lecture. The electric multipoles are
given by the coefficient, aE(l,m). The first term is obtained by intergration the expression

above (−ic/kr)∂r
2ρ
∂r

by parts

aE(l,m) = k2

i
√

l(l + 1)

∫

d3xY ∗

lm(ρ ∂
∂r

[rjl(kr)] + (ik/c)(~r · ~J) jl(kr) − (ik)~∇ · (~r ×
~M)jl(kr))
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We will find below that the magnetic multipole vanishes, and there is no permanent magne-
tization so that ~M = 0. The current density has the form;

~J = r̂
I(r)
2πr2 [δ(θ − 0) − δ(θ − π)]

Also note that ~r × ~J = 0 (thin wire), and therefore aM = 0. The equation of continuity is

~∇ · ~J +
∂ρ
∂t

= 0. Thus;

ρ = (1/iω)dI
dr

[δ(θ − 0) − δ(θ − π)]/(2πr2)

Substituting into the expression for aE results in;

aE(l,m) =
d/2
∫

0

dr [(kr)jl(kr) I(r) − (1/k)( d
dr

[rjl(kr)])]
∫

dΩY ∗

lm[δ(θ− 0)− δ(θ− π)]

Integration over angles to obtain the total power radiated requires ;

2π[Yl0(0) − Yl0(π)] =
√

4π(2l + 1) l odd.

Substitute the harmonic form for the current, I(z), as assumed above and complete the
integration over the radial variable. The result is;

aE(l, 0) = I0
πd

[
4π(2l + 1)
l(l + 1)

]1/2 [(kd2 )2 jl(kd/2)] l odd

The radiated power is obtained by substitution into the power equation obtained in the last
lecture. Generally one takes only the leading, non-zero term in the multipole expansion, in
this case the dipole term, l = 1 is the leading term.

2 Spherical center fed antenna

The geometry of the problem is shown in Figure 2. We need to solve the static problem of a
conducting sphere with potential, V0 on its surface. Proceed by obtaining the solution for the
potential in spherical coordinates for ∇2V = 0. The solution using separation of variables is;

V = 1
4πǫ

∑

l

Al(1/r)
l+1 Pl(cos(θ))

We must match to the boundry condition for the potential at r = a, which for the per-
fectly conducting sphere is a constant value, V0. Use the orthorgonality of the Legendre
polynomials to find the expansion coefficients, Al . Thus, multiply by Pl and integrate over
dx = d cos(θ)
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Figure 2: The geometry of a spherical antenna. A potential ±V0 is applied to the surfaces.

Al = (4πǫ) (al+1)(2l+1)

2

1
∫

−1

dx V0 Pl(x)

Al = (4πǫ)
(al+1)

2 (−1
2 )(l−1)/2 (2l + 1)(l − 2)!!

2((l + 1)/2)!
V0 l odd

Then the first 2 non-zero terms are;

A1 = (4πǫ)a2(3/2)V0

A3 = −(4πǫ)a4(7/8)V0

In general the solution is;

V =
∑

l odd

[(a/r)l+1(−1/2)(l−1)/2 (2l + 1)(l − 2)!!
2((l + 1)/2)!

]
√

4π
2l + 1

V0 Y
0
l

It is always important to think about any result to dermine if there is some glaring mistake.
Clearly the solution must be independent of azmuthal angle by symmetry. It must be reflec-
tion symmetric about the (x, y) plane hence dependent only on odd l. We next obtain the
surface charge density, σ from;

σ = −ǫ∂φ
∂r

|r=a =

√
4π ǫ
2a

∑

l odd

(−1/2)(l−1)/2 (l + 1)(l − 2)!!
√

2l + 1
((l + 1)/2)!

V0 Y
0
l

In the long wavelength approximation evaluate, Qlm.

Qlm =
∫

dΩ al+2 σ Y ∗m
l

Ql0 =

√
4π ǫ
2

∑

l odd

al+1(−1/2)(l−1)/2 (l + 1)(l − 2)!!
√

2l + 1
((l + 1)/2)!

V0

The electric multipole coefficient is then;
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Figure 3: The geometry of spinning loop. The static charge per unit length on the loop is λ

aE = ckl+2

i(2l + 1)!!
( l + 1

l
)1/2

√
4π ǫ
2 al+1(−1/2)(l−1)/2 (l + 1)(l − 2)!!

√
2l + 1

((l + 1)/2)!

There are no currents in the r̂ direction. However, there is a surface current ~J = J(θ)θ̂

restricted by azmuthal symmetry. Note that since ~∇ · (~r× ~J) = 0 there is no m component.
Substitution for the lowest multipole gives electric dipole radiation.

3 Spinning loop of charge

The geometry of the problem is shown in Figure 3. The charge per unit length of the loop
is λ. While the time distribution is harmonic, it requires a more careful analysis. The static
charge density is given by;

ρ = 2λ
a sin(θ)

δ(φ− φ0) δ(r − a)

Check the above equation for the charge density by integration over the spherical volume.

Q =
∫

d3x ρ = 2λ
a

∫

δ(r − a) r2 dr
∫ sin(θ)
sin(θ)

dθ
∫

dφ δ(φ− φ0)

Q = 2πaλ

Now let φ = ωt. The current density is ~J = ρ~v = ωa sin(θ) ρ φ̂

Then assume a Fourier series expansion in time. The period is T = π/ω with φ = ωt.

ρ(r, t) = ρ0 + Re[
∑

n

ρn e
−inωt]

Thus;
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ρn = (1/T )
∫

dt 2λ
a sin(θ)

δ(φ− φ0) δ(r − a) cos(nωt)

ρn =
λδ(r − a)
πa sin(θ)

cos(nφ)

Choose only the time independent term, ρn, above and substitute into Qlm to get the electric
moment. The time independent form is to be multiplied by e−imωt

Qlm =
∫

d3x rlρn Y
∗,m
l

Qlm = (−1)m

√

(2l + 1)(l −m)!
4π(l +m)!

(2al+1λ)
∫

dx
Pm

l (x)√
1 − x2

δmn

Then

π
∫

0

dθ P−m
l (θ) =

2−mπΓ((m+ 1)/2)γ((1 −m)/2)
Γ((1 + l)/2)Γ((1 − l)/2)Γ((l +m+ 1)/2)Γ((m− l + 1)/2)

1 ±m > 0

Then for the magnetic multipoles with ~M = 0;

~r × ~J = −ωρa2 sin(θ) θ̂

~∇ · (~r × ~J) = −λωcos(θ)
π sin(θ)

δ(r − a) δ(nφ)

Mlm = − 1
l + 1

∫

d3x rl ~∇ · (~r × ~J) Y ∗m
l

Mlm = (−1)m

√

(2l + 1)(l −m)!
4π(l +m)!

(2al+2λ)
∫

dx
Pm

l (x)√
1 − x2

[δm,n + δm,−n]

4 Atomic transition probability

Here we are to find the angular pattern of the radiation and rate of radiated energy of a
atomic transition in atomic hydrogen. The hydrogen wave function has the form;

ψlmn =
√

(α)3([2l + 1]/(8π~))([l−m]!/[l +m]!)([n− l − 1]!/([n+ 1]!)3)×
(αr)l eimφ Pm

l e−αr L2l+1
n−l+1(αr)

In the above;
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α = 2Mη2/(~2n)

Ll
k(br) is the Laguerre polynomial

M is the reduced mass of the hydrogen atom

η2 = e/(4πǫ)

E = −Mη4/(2n2
~

2) n = l + 1, l + 2, · · ·

We need the transition densities, so as an example choose the transition, 012 → 001

ρ = ψ001ψ012 e
−i(E2−E1)t/~

~J = ~/M Im[ψ001
~∇ψ012] e

−i(E2−E1)t/~

The wave function is written as;

ψ = Amln (αr)le−αrL2l+1
n−l+1(αr)Y

m
l

In the long wavelength limit;

Qlm =
∫

d3x rlρ Y ∗m
l

Qlm = A001A012

∫

dΩY 0
0 Y

0
1 Y

∗m
1

∫

dr rl+2(αr)e−2αrL1
2(αr)L

3
2(αr)

Q10 = A001A012α/(4π)
∫

dr r4 e−2αr L1
2L

3
2

For the magnetic multipole, use ~J from the above and substitute into;

Mlm = −(1/(l + 1))
∫

d3x rl ~∇ · (~r × ~J/c) Y ∗m
l

Manipulation of the operations and integration shows that the magnetic multipole vanishes.

5 Angular momentum

EM radiation not only contains power (energy), but contains angular momentum. The
asymptotic behavior of the magnetic field for the electric multipole has the form;

~H ∝ −(k/l) ~LYlm/r
l+1
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The electric field obtained from this field is;

~E ∝ −(i/l) z ~∇ × ~L(Ylm/r
l+1)

Apply the identity, i(~∇× ~L) = ~r∇2 − ~∇(1+r ∂
∂r

) and extract the largest value of ~E as r → 0;

~E ∝ −z ~∇(Ylm/r
l+1)

The above is just the static electric multipole field. In the near-field the magnetic field is
smaller than the electric field by a factor of kr. However in the far-field the electric to
magnetic field is proportional to z.
The time averaged energy density in the EM wave has the form;

E = (ǫ/4)[ ~E · ~E∗ + z2 ~H · ~H∗]

The angular momentum is obtained from the angular momentum density;

~L = (1/(2c2))Re[~r × ( ~E × ~H∗)]

The above reduces to;

~L = (µ/2ω)Re[ ~H∗(~L · ~H)]

The angular momentum in a spherical shell between r and r + dr is

dLz
dr

= dsµ

2ωk2 Re
∑

mm′

a∗E(l,m′)a∗E(l,m)|2
∫

dΩY ∗

lmYlm

The explicit values are somewhat detailed and are reproduced in the text for the various
angular momentum components. Only the ẑ component has a relatively simple form. For
a multipole of a single m value the angular momentum components along x̂ and ŷ vanish.
This obviously is expected from our prior knowledge of the quantization of a photon with
eigenvalues of (l,m) where only the angular momentum component along ẑ can be precisely
known.
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