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ABSTRACT

The Beam Energy Scan (BES) at the Relativistic Heavy Ion Collider (RHIC) aims at understanding

the QCD phase diagram by using the most versatile detector in the world, the STAR detector. In

the region where the chemical potential is finite, the transition from QGP matter to hadronic matter

is less understood. Many models suggest the transition to be a first order phase transition, which

requires the existence of a critical point. Fluctuations of conserved charge distributions have been

used as a proxy to locate the critical point. Net-protons and net-kaons were used as proxies of net-

baryon and net-strangeness, respectively. Results from net-proton C4/C2 showed a non-monotonic

behavior as a function of collision energy representing a signature of the presence of the critical

point. For the first Beam Energy Scan the results of net-lambda fluctuations were studied, but due

to the lack of statistics higher order fluctuations were not calculated. The recent results of net-

proton fluctuations at the lowest collision energy at RHIC motivated the study of the net-lambda

fluctuations at the same energy. This dissertation reports the cumulants and correlation functions of

the event-by-event lambda multiplicity distributions for the fixed-target physics run at
√
sNN = 3.0

GeV Au+Au collisions up to the fourth order. The results are presented as a function of centrality

and rapidity. The energy dependence is compared with previous results of net-lambda cumulant

ratios up to the third order. Centrality and rapidity dependence of cumulants and correlation

functions are compared with the transport model UrQMD and with Hadron Resonance Gas (HRG)

calculations. Results indicate weak centrality dependence of the cumulant and correlation function

ratios, except for more central collisions, where stronger deviations from the poissonian baseline

are observed with increasing order of the ratios. In general, the results disagree from the observed

behavior of net-proton cumulant ratios, implying relevance of the strangeness quantum number of

lambda particles over the baryon quantum number at this energy. Cumulant ratios as a function

of rapidity show suppression from the Poissonian baseline, implying the relevance of the local

conservation of the strange quantum number at low collision energies.
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1 Introduction

1.1 The Standard Model

The most successful model that describes elementary particles and their interactions from a theo-

retical point of view is the Standard Model of Particle Physics. The Standard Model of Particle

describes three of the four fundamental forces in the Universe (electromagnetic, weak and strong

) through a local SU(3)× SU(2)×U(1) gauge symmetry [1]. Its success relies on the experimen-

tal confirmation of the theoretical predictions, that started in 1969 at the SLAC accelerator at

Stanford, where experiments were performed verify the theoretical work of James Bjorken [2].

The Standard Model is composed of fermions and bosons. The former represent the matter-

generating elementary particles(leptons and quarks), while the latter correspond to the force carriers

that mediate the interactions between fermions. Fermions are divided into leptons and quarks.

There are six leptons(electron, muon, tau and their respective neutrinos) and there are six quarks

(up, down, strange, charm, top, bottom). These particles are arranged based on their masses,

charges and respective quantum numbers [3], which in the case of quarks and leptons are organized

in families. A schematic representation of the elementary particles in the Standard Model is showed

in Figure 1. Particles with spin = 1/2 that are in the same horizontal line have the same charge.

Same “families” or “generations” are shown in vertical lines for the corresponding groups of quarks

and leptons, that have identical properties except for their masses.

It is important to notice that all quarks have a baryon number of 1/3 and a quantum number

called “color” and an “anticolor” for the antiquark. Leptons, on the other hand, do not carry a

color charge. However, they have their own conserved quantum number called lepton number. All

leptons shown in Figure 1 have lepton number 1, antileptons have lepton number -1. All other

particles have lepton number 0. Additionally, every lepton family has its own quantum number:

electron number (electron and electron-neutrino), muon number (muon and muon-neutrino) and
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tau number (tau and tau-neutrino).
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Figure 1: Schematic representation of the classification of elementary particles in the Standard
Model, taken from [4].

The force carriers in the Standard Model are composed of gauge bosons (photon, gluon, Z boson

and W± boson), which have a spin quantum number of 1. These spin 1 particles have masses heavier

than the spin 1/2 particles (fermions). The gluon is the responsible for binding quarks into hadrons

and hadrons into atomic nuclei. Gluons have a quantum number called “color”, which indicates any

of the three colors (red, green, blue) and any of the anticolor charge. In total, there are 8 gluons

instead of 9, this is due to the “white” gluon formed by a total color of zero. The W± and Z are

the mediators of the weak nuclear force, the former are each other’s antiparticle, whereas the Z is

its own antiparticle. The electromagnetic force is mediated by the photon, which is the responsible

of interactions between electrically charged particles. The photon is its own antiparticle. The only

particle with spin 2 is the graviton, which does not posses mass and it has not been observed

directly. The graviton is its own antiparticle. Unlike the previously mentioned bosons, the massive

Higgs boson has a spin of 0 and is a scalar boson, which interacts with mass and facilitates the
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generation of elementary particles [5], [6].

Generally, the strength of an interaction is proportional to the magnitude of the associated

coupling constant, which are numerical coefficients that serve as parameters in an interaction. In

the case of the electromagnetic interaction, the associated coupling constant is given by αem =

e2/4π ≈ 1/137, where e is the coupling constant and α is the transition strength. In the case

of the weak interactions, the associated quantity is αw ≈ 1/40, which is about three times larger

than αem. For low energies, the effective coupling constant for weak interactions is lower than the

electromagnetic one due to the non-zero W±1 and Z masses. For the case of strong interactions,

where the interactions are between colored elementary particles and also their bound states (such as

protons and neutrons), the associated quantity is αs and it is of the order of 1 and becomes smaller

at higher energies this is due to the fact that gluons have color charge. The strong interaction is

described by the Quantum Chromodynamics theory, which is described in the next Section 1.2.

1.2 Quantum Chromodynamics: QCD

QCD is similar to QED in a sense that both describe interactions mediated by a spin 1 boson.

Theories of these types have a characteristic symmetry named gauge invariance. Gluons couple

to the color charges, which leads to the fact that the different quark flavors must have identical

strong interactions, because they exist in the same color states with the same possible values of color

charges [7]. Another property of the strong interactions is that forces between quarks must be long

range, this is due to the zero mass of gluons. On the other hand, the forces between hadrons are

not long range, this is due to the zero colour total charge in hadrons. The forces between hadrons

are residues of the forces between their quark constituents, which cancel when the hadrons are far

apart. Even though both QCD and QED describe interactions which are mediated by massless

spin 1 bosons, there is an important difference between them that affects the characteristics of

the resulting force. This difference is originated by the fact that the photon that couples to the

electromagnetic charge is itself neutral, while a gluon that couples to the color charge has a nonzero

value. Just as quarks that exist in three color states, gluons can exist in 8 color states [7]. The
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implication of this gluon property is that gluons can couple with other gluons due to their nonzero

color charge. This gluon-gluon interaction leads to the properties of the strong interactions, which

are color confinement and asymptotic freedom.

1.2.1 Color Confinement

Contrary to leptons and electroweak gauge bosons, quarks and gluons cannot be observed as free

particles. Instead, these particles bind to each other in order to compose a color neutral object,

named hadrons, which are subdivided into two categories; baryons and mesons. Baryons are com-

posed by three quarks states. In order to compose a color neutral object, each one of the three

quarks must possess exclusively a red, green or blue color charge. Mesons are composed by a

quark-antiquark pair, which requires for a quark to possess any of the three color charges, while the

antiquark should match the corresponding anticolor charge. This feature of QCD is known as color

confinement [8]. When separating the interacting quarks, the gluon field between them generates a

string like flux, keeping a constant force per unit distance between them. In this context, it is more

energetically favorable to create a pair of quark-antiquark rather than elongating the string-like

flux between the quarks as they are separated.

In principle, bound states of two or more gluons can exist if the overall color charge is zero.

These states are called glueballs. If they exist, it is expected that their electromagnetic interactions

would be weaker compared to charged hadrons. Unfortunately, due to the limited understanding

of confinement, precise theory calculations of the properties of glueballs are not possible [7].

1.2.2 Asymptotic Freedom

This property of QCD represents the weaker interaction that happens when distances between

quarks are short distances, less than 0.1 fm, meaning that the contribution of the quark-quark

scattering only relies on the lowest-order diagrams. As the distance between quarks increases,

the interaction gets stronger and many higher-order diagrams have to be considered. At short

interquark distances (|r| ≤ 0.1fm), the interaction is dominated by one gluon exchange and
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it was shown that the potential is given by a Coulomb-like potential, which is analogous to the

one-photon exchange in QED

V (r) = −4

3

αs

r
(r ≤ 0.1fm). (1)

Here, αs is the strong coupling constant, which represent the strength of the interaction. Due to

asymptotic freedom, it is expected that αs, decreases with decreasing r, but the variation of αs at

distances less than 0.1 fm is slight. At distances larger than 0.1 fm, the strength of the interaction

increases rapidly and the contribution of one-gluon exchange no longer dominates. The potential

in this region is given by:

V (r) ≈ λr (r ≥ 1fm), (2)

where the constant λ is of the order of 1 GeVfm−1. This potential is the representation of

the confining potential between a quark-antiquark pair, which cannot be neglected even when the

quark-antiquark pair is very far apart. Figure 2 shows an illustration of the total quark-antiquark

potential as a function of the charge separation distance.

Figure 2: Illustration of the total static quark potential as a function of the interquark separation.
Figure from [9].
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As discussed previously, at short distances the interaction gets weaker. These short distance

interactions are associated with large transfer of momentum |q| between particles, which is of the

order of 1/r, the distance at which the interaction occurs. One can think about the order of

the momentum exchange by considering the amplitude for scattering from a spherical symmetric

potential:

M(q) = 4π

∫ ∞

0
V (r)

sin(qr)

qr
r2dr, (3)

where one can observe that if r is small, the integrand is suppressed by the r2 factor; for large

r, the integrand is suppressed by the average of the oscillating sine factor. Therefore, the dominant

contribution comes from values of r of the order of 1/q . By considering a static spherical potential,

we assume that the energy of the particle is unchanged. Energy of particles are unchanged in

elastic scattering in the center of mass frame, in other reference frames or processes both energy

and momentum can be exchanged between particles. In these cases, one has to consider that the

strength of the interaction depends on Q2 ≡ |q2 − E2
q |, which is Lorentz-invariant. It can be

shown that the QCD coupling constant (αs) depends on Q2 by using the fundamental fermion

representation by the coupling-dependent function β(g) as [10]

β(g) = − g3

(4π)2

(
11

3
N − 2

3
nf

)
. (4)

The overall minus sign displays the asymptotic freedom of any non-abelian gauge theory of SU(N)

symmetry given by a small parameter nf . By letting αs =
g2

4π , the QCD coupling constant, αs at

a given momentum Q2 in terms of its value α at a different momentum scale Λ2 is:

αs(Q
2) = α

[
1 +

α

4π

(
11

3
N − 2

3
nf

)
log(Q2/Λ2)

]−1

(5)

where N = 3, for the QCD case. nf corresponds to the number of quark flavours (u,d,s,...).

Equation (5) asymptotically approaches zero at large values of momentum scale, as discussed
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previously.

1.2.3 Screening and Antiscreening

A connection between asymptotic freedom and gluon self-interactions can be discussed qualitatively

by using the example of screening in the context of QED. According to QED, when considering a

one-photon exchange contribution to electron scattering, the electron emits and reabsorbs virtual

photons always, independently of whether another electron is nearby. In the case that another

electron is nearby, the second electron can absorb the photon before being reabsorbed by the original

electron. Figure 3, show the corresponding processes, where the diagram on the left corresponds

to the simplest quantum fluctuation process.

Figure 3: Left: quantum fluctuation of an electron. Right: Photon exchange between two electrons.
Figure from [7].

Quantum fluctuations for electrons can also emit a photon that fluctuates into an electron-

positron pair before it is reabsorbed by the initial electron, therefore the initial electron can in-

directly reabsorb electron-positron pairs, as shown in Figure 4. These pairs produce polarization

effects similar to the ones shown of charges immersed in a dielectric medium, where the effect of

a positive charge inside the dielectric produces a screening effect that is perceived by a test

charge. This screening changes the effective charge of the system (positive charge and dielectric)

depending on the distance between the system and the test charge. A similar effect is observed

in QED, which is related to the electron-positron pair produced by quantum fluctuations. If a
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second electron is close by, it can absorb the second photon before it is reabsorbed by the initial

electron. The process is represented in the right diagram in Figure 4. This diagram contributes

to the electron-electron interaction and for distances r < 3.9× 10−13m the correction is of order α

smaller than the Coulomb potential [7], from the diagram on the right panel of Figure 3. But as r

decreases the effective potential increases, therefore the interaction strength increases at very short

distances.

Figure 4: Left: Quantum fluctuation involving the creation of a electron-positron pair. Right:
Associated exchange process involving electron-positron pair. Figure from [7].

Quantum fluctuations also exist in Quantum Chromodynamics(QCD), and also vary the inter-

action strength as a function of the distance. Similarly to the QED case, one can find that, due

to quantum fluctuations in a quark-quark scattering, two lowest-order vacuum polarization correc-

tions exist. These are shown in Figure 5, the diagram on the left leads to a screening correction,

meaning that the interaction would grow stronger with shorter distances. On the other hand, the

right diagram leads to an antiscreening effect, meaning that the interaction grows weaker at short

distances. The net contribution of both effects results in a bigger contribution from the antiscreen-

ing effect at low distances, therefore the interaction grows weaker at short distances, which is a

manifestation of asymptotic freedom.

Figure 6 shows the summary of measurements of αs, as a function of the energy scale Q, where

different perturbation orders in the calculations were used. The orders are shown in the legend
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Figure 5: Vacuum polarization corrections to gluon exchange in quark-quark scattering. Figure
from [7].

Figure 6: Measurements of αs as a function of Q. The degree of QCD perturbation theory used
in the calculation of αs is shown in brackets (NLO: next-to-leading order; NNLO: next-to-next-to-
leading order; NNLO+res.: NNLO matched to a resummed calculation; N3LO: next-to-NNLO).
Figure from [11]

in enclosed parenthesis. The value of αs decreases with increasing Q. In the high Q regime,

perturbative methods are valid. For low values of Q, the best approach is Lattice QCD.
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1.3 The Quark Gluon Plasma(QGP) and the QCD Phase Diagram

The properties of the strongly interacting matter are the focus of interest for this work, but most

fundamentally is important in the understanding of the early universe, which some microseconds

after the Big Bang was populated by strongly interacting matter made of quarks and gluons [12],

[13]. In lattice QCD calculations of thermodynamics, it was shown that matter in thermal equilib-

rium has an energy density of 12.7 GeV/fm3, which cannot be described as a collection of individual

hadrons. This strongly interacting matter is coupled so that a collective medium can be formed

and expands as a relativistic hydrodynamic fluid with low viscosity to entropy ratio η/S ≈ 1/4π

[14], [15], with a flow time that can be shorter than 1 fm/c in the rest frame of the fluid. This

form of matter was named quark-gluon plasma (QGP). Therefore, at high temperatures and/or

densities, the QCD matter can make a transition to a system of deconfined quarks and gluons, as

a consequence of the asymptotic freedom. This transition of phases in QCD matter can be studied

by varying the temperature and the baryochemical potential (µB), so that one can construct a

phase diagram of QCD matter. The baryochemical potential (µB) can be understood as the

net baryon density, meaning the total number of baryons minus the total number of antibaryons.

From the work of [16], [17] it is known that Lattice QCD calculations of the pressure and energy

density of hot QCD matter with the same amount of quarks and antiquarks predict that the tran-

sition is a continuous crossover, which agrees with cosmological observations [18]. In other words,

a crossover transition from QGP to hadronic matter is expected to be found at µB ≈ 0, however

the crossover transition is only observed for values very close to µB = 0. As the value of µB is

increased, the characteristics of the transition can change from smooth to discontinuous, also called

a first order phase transition. The first order transition line should begin at a critical point [19],

[20]. A sketch of the QCD phase diagram in the T − µB plane illustrating theoretical expectations

is shown in Figure 7.

Apart from the QGP and hadron gas regions separated by the crossover and first order transi-

tions, ordinary nuclear matter is shown for high values of µB and low values of T . By increasing
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Figure 7: Schematic of the QCD Phase Diagram as a function of temperature (T ) and baryochemical
potential (µB). Figure from [21].

µB at these low temperatures one can reach a transition into a gaseous phase of degenerated neu-

trons, relevant to neutron stars [22], [23]. The most powerful method used to study the QCD

phase diagram at µB = 0 is first-principle lattice QCD. Due to the limitations of the method at

µB ̸= 0, some extrapolation methods have been used, such as Taylor expansion method and the

extrapolation from imaginary µB. The critical point is the point at which the first order phase

transition line terminates. On the phase transition line, the two phases coexist and discontinuities

are expected in conserved quantities. The coexisting of the two phases disappears when the phases

become the same, this happens at the critical point, where, due to the increasing similarity of

the phases as the system approaches the critical point, large fluctuations in conserved quantum

numbers are expected. The search for the critical point is one of the most important objectives

both for theorists and experimentalists in the nuclear physics field. On the experimental physics

side, a way to study the QCD phase diagram is by using relativistic heavy ion colliders, which re-

produce the first microseconds after the Big Bang, from QGP to its transition to hadronic matter.

Experimentalists scan the QCD phase diagram by using the energy of the collision between the
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heavy ion beams, the scanning parameter used is the center-of-mass collision energy per nucleon

pair (
√
sNN ), which affects the values of both T and µB. In general, when

√
sNN is larger than 100

GeV, one expects to find that the colliding nuclei traverse one another creating a high temperature

and vanishing net-baryon density (µB ≈ 0). On the other hand, if the collision is not as energetic

as the previous case, the colliding nuclei stop one another, creating a high temperature medium

but with non-zero net baryon density (µB ̸= 0).

1.4 Freeze-out Parameters

In Relativistic Heavy Ion Collisions, the maximum energy density occurs just after the two Lorentz-

contracted nuclei collide. The system at the beginning is out of equilibrium and it possesses an

energy density which is far in excess of the typical energy density of a hadron (≈ 500 MeV fm−3);

this is at times 1 fm/c after the collision [24]. Therefore, the quarks and gluons created after the

collision cannot be described as hadrons, instead they form strongly interacting QCD matter, the

Quark Gluon Plasma. As the nuclei recede from each other and the QGP produced is expanding

and cooling, new QGP is being created from the receding disk. After all possible QGP is created,

the QGP expands in all directions and flows hydrodynamically until the systems cools down and

reaches the energy density of an individual hadron, at which the system hadronizes into interacting

hadrons and resonances. Hadrons and resonances interact inelastically until the system reaches a

temperature, known as the chemical freeze-out temperature (Tch). At this stage, the system

is in equilibrium and all inelastic collisions cease, resulting in an unchanged number of hadron

yields. The parameters that indicate this stage are called the chemical freeze-out parameters,

which correspond to Tch and µB. Hadrons can still interact elastically, until the system reaches

a threshold temperature called the kinetic freeze-out temperature (Tkin). At this point, the

transverse momentum (pT ) is fixed. The evolution of a heavy ion collision is represented in Figure 8.

12



Figure 8: Representation of a heavy ion collision between two ion beams. Figure from [25].

1.4.1 Susceptibilities of Conserved Charges

As mentioned earlier, after the chemical freeze-out, hadrons go through many processes before

reaching the detector but the signature of the transition from QGP to hadrons cannot be erased.

Therefore, by studying the distributions and fluctuations of final state hadrons, one can learn about

the properties of the medium and the transition. These observables are related to conservation of

quantum numbers in heavy-ion collisions, which are: Net-charge(∆Q), net-baryon number(∆B)

and net-strangeness(∆S). If considered globally, these quantum numbers are conserved and should

not fluctuate, but if they are considered in a reduced acceptance, fluctuations become relevant.

The connection between fluctuations of hadronic distributions and theory can be understood by

considering a system in thermal equilibrium in a Grand-Canonical Ensemble. One can use the

partition function with Hamiltonian H, conserved charges Qi and chemical potential µi for the

respective conserved charge i. In heavy ion collisions the values of µi are fixed for each collision

energy.

Z = tr

[
exp

(
−H −∑i µiQi

T

)]
. (6)

13



By taking derivatives of the natural logarithm of Eq. (6) with respect to the chemical potential

(µi) one can construct the mean and the variance of the conserved charge Qi as shown in Eq. (7)

and Eq. (8), which are the central moments of the conserved charge:

⟨Qi⟩ = T
∂

∂µi
= T

∂

∂µi
lnZ (7)

⟨(δQi)
2⟩ = T 2 ∂2

∂(µi)2
lnZ (8)

where δQi = Qi−⟨Qi⟩. One can also define the thermodynamic susceptibilities χi
n of conserved

charges, where n represents the order of the derivative. The thermodynamic susceptibilities measure

the response of the thermodynamic variable to an infinitesimal change in the chemical potential µi,

χi
n =

∂n(p/T 4)

∂(µi/T )n
. (9)

Where p is the pressure of the system calculated from the partition function (Z). One can also

have susceptibilities that measure the infinitesimal change due to two or more chemical potentials;

they characterize correlations between conserved charge Ql, Qm, etc.

χlmn
ijk =

∂i+j+k(p/T 4)

∂(µl/T )i∂(µm/T )j∂(µn/T )k
(10)

One can relate the previous susceptibilities with moments of probability functions, as shown in

the next subsection.

1.4.2 Connection Between Probability Functions and Susceptibilities

Consider a real-valued function F (x) that satisfies the following conditions:

1. F (x) is monotonically increasing or constant .

2. F (x) is continuous everywhere for positive values of x.
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3. F (−∞) = 0 and F (+∞) = 1

If F (x) satisfies these conditions, it is called a cumulative distribution function, which represents

the probability of the event X ≤ x, where X is a random variable,

Pr{X < x} = F (x). (11)

For a continuous F (x) one can write:

F (x) =

∫ x

−∞
f(t)dt, (12)

where f(t) is denoted as the probability distribution density, which can be used to calculate the

n− th statistical moments of F (x) about the origin:

µ′
n =

∫ ∞

−∞
xnf(x)dx. (13)

where the first moment is the mean (M):

M = µ′
1 =

∫ ∞

−∞
xf(x)dx. (14)

For higher order moments, central moments are rather used; this is done in order to provide

better information of the shape of the distribution:

µn =

∫ ∞

−∞
(x−M)nf(x)dx. (15)

Particularly, the variance is defined as:

σ2 =

∫ ∞

−∞
(x−M)2f(x)dx. (16)

The variance can be used to defined normalized moments, in particular, the normalized third central
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moment (S) provides information about how skewed the distribution is, meaning how asymmetric

the distribution is. A value of zero represents a symmetric distribution, a negative value corresponds

to a distribution skewed to the left and a positive value to a distribution skewed to the right,

S =
µ3

σ3
. (17)

The normalized fourth central moment can also be defined (κ). κ is named kurtosis and it

measures the heaviness of the tail of the distribution, compared to the normal distribution with

the same σ2.

κ =
µ4

σ4
− 3 (18)

Large values of κ represent heavy tails in the distribution while small values of κ correspond to

light-tailed distributions. For values of S = 0 and κ = 0, the distribution is defined as a Gaussian

distribution. An alternate quantity to the moments are the cumulants of the distribution Cn, which

are mostly used in this work. The cumulants of a random variable are defined using the cumulant

generating function, given by:

ln(Φ(t)) =
∞∑
n=0

Cn
tn

n!
(19)

where Φ(t) is the moment generating function defined as:

µ′
n =

dn

dtn
Φ(t)t=0. (20)

It can be shown that cumulants and moments are related as:

C1

C2
=

M

σ2

C3

C2
= Sσ2 C4

C2
= κσ2 (21)
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From a statistical physics perspective, an extensive quantity in a large system can be thought

of as a sum of the energies associated with a number of nearly independent regions. By looking

at Eq. (9), one can observe that in order to construct the different orders of the susceptibilities,

derivates of the pressure are calculated, therefore we can identify the pressure with the cumulant

generating function:

p = −T × ln(exp[−(E + µiQi)/T ]). (22)

One can relate the susceptibilities with the central moments and therefore with the cumulants.

χ2

χ1
=

σ2

M
=

C2

C1
(23)

χ3

χ2
= Sσ =

C3

C2
(24)

χ4

χ2
= κσ2 =

C4

C2
(25)

1.4.3 Experimental Observables

As mentioned previously, fluctuations of hadronic multiplicity distributions can probe the nature

of strongly interacting matter. Experimentally, one can measure in a heavy ion collisions the

event-by-event particle multiplicity distributions of conserved quantities. Unfortunately, the actual

measure of a conserved quantum number is not possible, instead proxies of those quantities are

used. Fluctuations in net-protons are used as a proxy of net-baryon quantum number, net-kaons

are used as a proxy for net-strangeness. Fluctuations of the mentioned proxies have been calculated

and studied as functions of
√
sNN from the STAR Collaboration, the results are shown in Figure 9,

where Skellam corresponds to the value of Sσ from a Skellam distribution, which is the difference

between two independent random variables.

It can be observed that the behavior of κσ2 for net-protons shows a non-monotonic energy

dependence for most central collisions. The non-monotonicity in net-baryon κσ2 is predicted to be
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Figure 9: Energy dependence of cumulant ratios (σ2/M , Sσ/Skellam and κσ2) of net-charge, net-
kaon and net-proton multiplicity distributions in Au+Au collisions at

√
sNN = 7.7 − 200 GeV

[26]–[29]
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a signature of the QCD critical point from the sigma model [30]–[32], which is due to the fact that

higher-order moments of conserved quantities are more sensitive to the correlation length (ξ). For

instance, ⟨(δN)3⟩ ∼ ξ4.5 and ⟨(δN)4⟩ − 3 ⟨(δN)2⟩ ∼ ξ7. Figure 10 shows the predicted value of the

quartic cumulant of net-proton multiplicity fluctuation [19] using a mapping to Ising model, with

the same universality class.

Figure 10: a) Density plot of the quartic cumulant using the Ising mapping. b) Sketch of the
energy dependence of the quartic cumulant. c) Possible scenario in which the critical contribution
to kurtosis is large and negative. Figure taken from [19].

Results from net-kaons, net-proton and net-charge were used to predict sequential hadronization

and compared with HRG model using particle yields were the freeze-out parameters were extracted

and compared. Figure 11, show the obtained freeze-out parameters (T and µB), the results show

that for both the Hadron Resonance Gas (HRG) model and thermal fits, the freeze-out parameters

follow different values for different particle species, specifically the difference is attributed to the

presence of strange quarks compared to hadrons with light-quark content, which indicates a quark

mass dependence in the process of hadronization.
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Figure 11: Temperature (T ) and baryochemical potential (µB) calculated at the chemical freeze-
out using HRG model calculations with cumulant of net-kaon, net-proton, net-charge multiplicity
distributions compared with thermal fits for measured particle yields [33].

1.5 Motivation

Net-proton and net-kaon fluctuations have been used as proxies of net-baryon and net-strangeness

to study the properties of the QCD phase boundary. However, as it was shown in Figure 11, the

dependence on the quark content of hadrons can change the values of the freeze-out parameters.

It was proposed from lattice QCD calculations compared with HRG model that the temperature

separation at µB = 0 is due to the flavor dependence of quarks in hadrons [34]. Figure 12 shows

the susceptibility ratios for strange and light quarks from LQCD and HRG.

The inital motivation of the lambda fluctuation analyses was to provide a new measurement of

the net-strangeness fluctuations, since only net-kaons do not provide the complete measurement of

net-strangeness in a heavy ion collision. Furthermore, studying the lambda particles in a context

of quark mass dependence can help to understand which of the conserved quantum numbers for

lambda (Strangeness and Baryon quantum number) play a prominent role at hadronization. For the

first Beam Energy Scan (BES) at the Relavitistic Heavy Ion Collider (RHIC), results of the event-

by-event lambda multiplicity distributions were obtained [35] and the cumulants were calculated as

a function of
√
sNN . The results were compared with the results for proton and kaon fluctuations
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Figure 12: χ4/χ2 as a function of T for light and strange quarks in the continuum limit. LQCD
data is compared to HRG calculations [34].

as shown in Figure 13. The results show that cumulant ratios of lambda show close values to the

ones of proton.

Figure 13: Comparison between cumulant ratios C2/C1 and C3/C2 as functions of
√
sNN between

net-lambda, net-proton, and net-kaon results [35].

As mentioned previously, the net-proton C4/C2 cumulant ratio as a function of
√
sNN is the

best proxy in the search of the critical point. The close behavior of cumulant ratios C2/C1 and

C3/C2 of net-lambda rises questions about the sensitivity of the C4/C2 of net-lambda close to the
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critical point. Unfortunately, due to the low statistics, the cumulant ratio C4/C2 could not be

calculated with precision. Therefore, with the increased statistics and extended range of
√
sNN

obtained for the second BES at RHIC, we were able to continue with the comparison with protons

up to C4/C2 and also study the behavior of lambda fluctuations at the lowest
√
sNN at RHIC.
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2 The STAR Experiment

2.1 The Relativistic Heavy-Ion Collider (RHIC)

RHIC is the first machine in the world capable of colliding heavy ions at close to the speed of

light. The collider was built at Brookhaven National Laboratory (BNL), located at Upton, NY, US

[36]. RHIC collides two beams of ions/protons head-on, the beams travel inside rings in opposite

directions at relativistic speed, the rings are cooled to temperatures of few Kelvin in order to use

superconducting magnets. These two rings, named “Blue” and “Yellow”, are nearly 2.5 miles of

circumference, making for a total of 5 miles of superconducting, supercooled rings. RHIC accelerates

heavy ions up to a top energy of 200 GeV per nucleon. After the collisions, a large number

of particles are created and are measured by detectors around the circumference. There are six

intersection points and four different detectors (STAR, PHENIX, BRAHMS and PHOBOS) located

at four of the intersection points. The data used for the present work was collected by the STAR

detector, which is located in the 6 o’clock position of the RHIC ring and is the only detector that

is still operating.

Figure 14 shows an aerial view of the RHIC facility at BNL. The yellow ring carries particles

in the counter-clockwise-direction, while the blue ring carries particles in the clockwise direction.

In order to accelerate beams around RHIC, the beams have to be fed by other accelerators

in order to gradually ramp up the ions to sufficient energies. The beam starts either from the

Electron Beam Ion Source (EBIS) as a source of heavy ions or from the Linear Accelerator (Linac)

as a source of protons, these are shown in purple and red respectively in Figure 14. Further on,

the beam is accelerated by the Booster Synchotron, shown in light blue, before passing into the

Alternating Gradient Synchotron (AGS), shown in green. In collider conditions, the ions are piped

in both beams of the RHIC ring. Specifically, for this work, only one beam of 3.85 GeV was required

(yellow beam) for the 2018 fixed-target run. At low energies
√
sNN < 7GeV/c, the beams become
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Figure 14: Overview of the Relativistic Heavy Ion Collider(RHIC) at Brookhaven National Labo-
ratory(BNL). Figure taken from [37]

diffuse and difficult to collide at high rates, which limits the lowest
√
sNN in the collider mode.

The fixed-target configuration extends the energy range to
√
sNN = 3.0 GeV, which is the energy

used in this work, which corresponds to a 3.85 GeV beam on a fixed-target.

2.2 The STAR Detector

The Solenoid Tracker at RHIC (STAR) is composed of many sub-detectors for specific purposes.

Some of the most important detectors are; the Time Projection Chamber (TPC), Time of Flight

(TOF), Event Plane Detector (EPD). The TPC can be used to track tracing of charged particles,

measure momentum and identify charged particles at low transverse momentum range. TOF iden-

tifies charged particles at high transverse momentum range, and EPD measures the event plane for

flow and polarization measurements. Schematic representations of the STAR detector are shown

in Figs. 15 and 16.

2.2.1 The Time Projection Chamber (TPC) Detector

The TPC is usually referred to as the “heart” of the STAR detector, it is the main tracking

detector at STAR, used to track charged particles. It has a large acceptance with pseudo-rapidity

of −1 < η < 1 and full azimuthal coverage (0 < ϕ < 2π). The identification capability of the
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Figure 15: Schematic diagram of the STAR Detector showing the sub-detectors. Figure taken from
[38].

Figure 16: Schematic representation of the STAR detector in the fixed target mode. Figure from
[39].
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Figure 17: A schematic of the TPC. Figure taken from [40].

TPC ranges from 100 MeV/c to 1 GeV/c in transverse momentum for protons and transverse

momentum of charged particles can be measured over a range of 100 MeV/c to 30 GeV/c. The

TPC is a cylinder with dimensions of 4 m of diameter and 4.2 m of length (from z = −210 cm to

z = 210 cm). The inner field cage is 50 cm from the center of the beam pipe and the outer field

cage is 200 cm from the center of the beam pipe. The central membrane (CM) is located at the

center of the TPC (z = 0) and operates at a voltage of 28 kV; a schematic representation of the

TPC is shown in Figure 17.

A strong magnetic field of about 0.5 T is produced inside the detector parallel to the beam

direction, the charged particles produced after the collision of the beams travel radially outwards

at high speed; due to the effect of the magnetic field and electric field, the charged particles create

helices. In order to gain information about the trajectory of the charged particles, the TPC is filled

with P10 gas (10% methane CH4 and 90% argon Ar) and a uniform electric field of |E| = 135

V/cm. The uniform electric field of the TPC is generated by the central membrane (CM), the

outer field cage, the inner field cage and the end caps. The collisions take place near the center

26



of the TPC. When the charged particles traverse the TPC, they will interact with the gas. The

secondary electrons released by the ionized gas atoms will drift to the readout end caps at the

bottom of the TPC under the uniform electric field, and the track of particles will be reconstructed

with high resolution. The drift velocity of the gas in the TPC is typically 5.45 cm/µs. The readout

system is based on Multi-Wire Proportional Chambers (MWPC) with readout pads. Consider that

the initial primary vertex is at the center of the TPC, the reconstruction of the track starts from

the outermost hit point and then is projected inward. The hit points in the pad rows are used to

reconstruct the track, which is known as the global track. The global tracks are used to fit the

primary interaction vertex by using at least ten hits. The primary vertex is found by considering

all of the tracks reconstructed in the TPC and then extrapolating them back to the origin. The

global average is the vertex position. For each global track, the closest distance to the primary

vertex is called the distance of closest approach (DCA). The global tracks refitted with DCA < 3

cm including the primary vertex are the primary tracks. The TPC is also used to measure the

particle energy loss(dE/dx) as it passes through the ionized gas as a function of momentum (p⃗).

The energy loss for a given particle momentum is well know, however due to finite resolution the

measured energy loss has non-zero thickness. The ionized energy loss (dE/dx) is calculated by

using the Bethe-Bloch equation, that gives the mean rate of energy loss for a charged particle,

shown in Eq. (26):

−⟨dE
dx

⟩ = 2πNar2emec
2ρ

Z

A

z2

β2

[
ln

(
2meγ

2v2Wmax

I

)
− 2β2

]
(26)

where 2πNar
2
emec

2 = 0.1535 MeVcm2/g and γ = 1/
√

1− (v/c)2.

me : electron mass.

I: mean excitation potential.

ρ: density of absorbing material.

re: classical electron radius.

Na: Avogadro’s number.
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Wmax: maximum energy transfer in a single collision.

z: charge of incident particle in units of e.

Z: atomic number of absorbing material.

A: atomic weight of absorbing material.

The energy transfer is parameterized using the momentum transfer due to the fact that it is

a measurable quantity. The identification of particles is achieved to first order by selecting tracks

with values dE/dx close to the predicted value. At large
√
sNN and large values of momenta,

|p⃗| > 1.5 − 2 GeV/c, the bands for different particles start to merge and particle identification

becomes difficult. In order to identify particles in the high momentum range, the Time of Flight

detector is used. Figure 18 shows the energy loss in the TPC as a function of particle charge and

momentum.

Figure 18: Energy loss in the TPC as a function of charge and momentum at
√
sNN = 3.0 GeV.

2.2.2 The Time of Flight (TOF) Detector

In order to have better momentum coverage in the particle identification, the TOF is used. TOF is

a cylindrical detector that wraps around the TPC, it basically measures the time at which particles

exit the TPC, it is composed of stacks of thin glass plates separated by less than a quarter of a

milimeter of gas, with high-voltage electrodes on the top and bottom of the stacks creating an
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electric field perpendicular to the plates. There are 120 trays mounted on the east and west sides

of the TPC (60 on each side), with pseudorapidity coverage −1 < η < 1 and full azimuthal angles.

Every TOF tray consists of 32 Multi-gap Resistive Plate Chamber (MRPC) modules. When the

charged particles pass through the MRPC module, they produce an avalanche of electrons; the

signal is the superposition of all avalanches in the gas gaps. The voltage drops created by these

avalanches are measured by pads outside the electrodes and the time is recorded. In order to

identify the particle, the mass is calculated by using Eq.(27) and Eq.(28).

β =
v

c
=

L

c∆t
(27)

m2 = p2(1/β2 − 1) (28)

where β = p/E and E =
√
p2 +m2, p is the momentum of the particles measured by the TPC

and ∆t is the difference between the start time measured by TOF and the stop time measured by

VPD. A schematic of the location of TOF with respect to the TPC is shown in Figure 19. Figure 20

shows the basic setup of the TOF detector.

Figure 19: Schematic of the location of TOF with respect to the TPC and VPD. Figure taken from
[41].

2.2.3 The Beam-beam Counter (BBC) and the Event Plane Detector (EPD)

The EPD and BBC are sets of forward/backward detectors. The BBC are scintillating tiles paired

with photo-multiplier tubes with rapidity coverage of 3.4 < |η| < 5.0. The EPD is a pair of disks

consisting of plastic scintillator tiles embedded with wavelength-shifting fibers. Charged particles
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Figure 20: Schematic of the TOF detector. Figure from [42]

passing through the scintillator produce photons that are absorbed by the wavelength-shifting fibers

and transmitted through clear fiber optics to Silicon Photomultipliers (SiPMs). These SiPMs are a

stack of high- voltage electrodes that produce electron avalanches whenever photons are absorbed.

Drops in potentials across the electrodes thus correspond to particles passing through a certain

region in η and ϕ. The EPD is a detector used primarily to measure the event plane for flow and

polarization measurements. It covers a pseudorapidity of 2.1 < |η| < 5.1. In this analysis, the

East BBC and EPD are used as the minimum bias trigger detector. Collisions are triggered and

recorded if they include a hit in the East BBC or EPD and a hit in the TOF detector. A schematic

of the EPD is shown in Figure 21.

2.2.4 The STAR Fixed-Target

The first test of the STAR fixed-target program was in 2015, with two data sets of Au+Au and

Al+Au at 210 cm from the center of the TPC. Test runs displayed the capacity of the STAR

detector to perform in a fixed-target configuration [44]. The success of the test runs motivated the

fixed-target program, the dedicated fixed-target run in 2018 of Au+Au collisions at
√
sNN = 3.0

GeV changed the location of the target to 200.7 cm, closer to the edge of the TPC. This change

showed an improvement of the acceptance at target rapidity. The fixed-target setup consists of

two long support rods and a half collar to hold the thin gold target. For the 2018 run, the target

thickness was reduced to 0.25 mm; Figure 22 shows a picture of the rods, holding collar and gold
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Figure 21: Schematic of the EPD. Figures shows the tiles in one ”wheel” of the EPD, it shows 372
tiles. Figure from [43].

foil.

Figure 22: Fixed target apparatus including support beams, holding collar and gold foil. Figure
from [39].

The RHIC setup for the 2018 run ran 12 bunches of 7× 109 ions. The data acquisition system

limited the data taking rate at 1 kHz. The beam was lowered 1.8 cm onto the target and in order

to achieve the 1 kHz rate only the edge of the beam was incident on the target. At high energy

collider mode, the acceptance is independent of
√
sNN . However, in a fixed-target geometry, as the

beam energy increases, midrapidity is closer to the beam line. Additionally, midrapidity is different

for each particle species.
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3 Definition of Important Terms in

Heavy Ion Collisions

3.1 Kinematic of Heavy Ion Collisions

Some of the most important kinematic variables used in this work are described in the following

subsections.

3.1.1 Rapidity and Pseudo-rapidity

Figure 8 shows the evolution of a heavy ion collision of two nuclei in the time (t) and position

(z), the latter corresponds to a position along the direction of the beam line. In the case of a

fixed-target experiment, only one beam is accelerated, which shows a Lorentz contracted nucleus

that approaches the target at the speed of light. In Figure 8, the collision happens at (t = 0, z = 0).

In the collision, a fireball is created and it expands in space-time until it creates particles which are

measured by the detectors. In relativistic mechanics, neither ∆t nor ∆z are invariant quantities.

Instead, the quantity ∆τ2 = ∆t2−∆z2 is an invariant quantity, it is known as the proper time (τ).

In heavy ion collisions, the accelerated particles have a finite mass, therefore they cannot travel

faster than the speed of light. Hence, the only accessible region is when τ2 = t2 − z2 > 0, which

corresponds to the “time-like” region. Therefore, particle production only happens in the time-like

region. In relativistic kinematics, the rapidity variable is defined as:

y =
1

2
ln

E + pzc

E − pzc
(29)

y =
1

2
ln

1 + pzc/E

1− pzc/E
= tanh−1

(pzc
E

)
(30)
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where pz is the momentum in the beam-line direction and E stands for energy of the particle. The

energy can be calculated by using the energy-momentum relationship of the particle with rest mass

M

E2 = c2p2z + c2p2y + c2p2x + c4M2. (31)

Rapidity is the relativistic analog of non-relativistic velocity. This can be observed in the non-

relativistic limit, which is when p << M , where p = |p⃗|

y =
1

2
ln

√
c2p2 + c4M2 +Mvzc√
c2p2 + c4M2 −Mvzc

≈ 1

2
ln
Mc2 +Mvzc

Mc2 −Mvzc

y =
1

2
[ln(1 + vz/c)− ln(1− vz/c)] ≈ vz/c. (32)

Consider that the beam-direction is chosen to be in the z-direction. Therefore the Lorentz boost

occurs only in the z-axis. The Lorentz transformed quantities are:

ct′ =γ(ct− βz) (33)

z′ =γ(z − βct) (34)

E′/c =γ(E/c− βpz) (35)

p′z =γ(pz − βE/c) (36)

where γ = 1/
√

1− (v/c)2 and β = v/c. The momentum and position in the x and y directions

remain unchanged. The values of rapidity when there is no contribution in the z-direction gives a

zero rapidity. On the other hand, when the particle moves exclusively in the z-direction, the value
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of rapidity approaches infinity. One can calculate the rapidity for the boosted frame.

y′ =
1

2
ln

(
E′ + p′zc

E′ − p′zc

)
(37)

=
1

2
ln

(
γE/c− βγpz + γpz − βγE/c

γE/c− βγpz − γpz + βγE/c

)
(38)

=
1

2
ln

(
γ(E/c+ pz)− βγ(E/c+ pz)

γ(E/c− pz) + βγ(E/c− pz)

)
(39)

=
1

2
ln

(
E/c+ pz
E/c− pz

γ − βγ

γ + βγ

)
(40)

=
1

2
ln

(
E + pzc

E − pzc

)
+ ln

(√
1− β

1 + β

)
(41)

y′ can be expressed in term of y as:

y′ = y + ln

(√
1− β

1 + β

)
. (42)

If two particles after the collision have rapidities y1 and y2 according to an observer, another observer

also measures the rapidities of the same two particles as y′1 and y′2. The difference between the

rapidities of the two particles is independent of the Lorentz boost along the z-direction.

y′1 − y′2 = y1 − ln

(√
1− β

1 + β

)
− (y2 − ln

(√
1− β

1 + β

)
) = y1 − y2. (43)

Therefore, ∆y is not affected by the Lorentz boost of the system along the z-axis. When the

system is highly relativistic, rapidity cannot be measured easily. Therefore, rapidity is approximated

in the high momentum regime and is called pseudo-rapidity(η)

y =
1

2
ln

(
E + cpz
E − cpz

)
(44)

=
1

2
ln

(√
c4M2 + c2p2 + pc cos θ√
c4M2 + c2p2 − pc cos θ

)
. (45)
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At very high energy, p >> m, the mass can be neglected:

y =
1

2
ln

(
cp+ cp cos θ

cp− cp cos θ

)
(46)

=− ln(tan θ/2) ≡ η (47)

θ corresponds to the angle made by the particle trajectory with the beam pipe. η only depends on

the angle, which is useful experimentally when the details of the particle (mass and momentum)

are not known.

3.2 Geometry in Heavy Ion Collisions

Two accelerated nuclei close to the speed of light contract along the direction of the motion. Due

to relativistic effects, the shape of the two nuclei just before the collision resembles the shape of two

“pancakes”. The impact parameter (b) is defined as the distance between the centroids of the two

colliding nuclei, a schematic representation of the overlap between two nuclei is shown in Figure 23.

The system size dependence and the number of colliding nucleons can be studied by either changing

the species of colliding ions or by changing the impact parameter between the colliding nuclei.

Figure 23: Schematic representation of a heavy ion collision and the relation with the impact
parameter and number of participants. Figure from [45].
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An event with small impact parameter (∼ 0 − 3 fm for Au+Au collisions) is referred to as

a central event, in which most of the colliding nucleons participate in the collision. Mid-central

collision are found between (∼ 3 − 6 fm), semi-peripheral(∼ 6 − 8 fm) and peripheral (≳ 10 fm).

Measuring the impact parameter directly, could give access to study observables as a function of

system size. Unfortunately, the impact parameter cannot be measured directly and therefore one

relies on models to estimate the initial geometry of the event. The most common model used to

determine the event centrality is the Glauber Monte Carlo (GMC) method. In this model, the

nucleus is described as a collection of uncorrelated nucleons. The Glauber Monte Carlo model

depends on two experimental inputs, the nuclear charge density and the nucleon-nucleon cross

section.

3.2.1 The Glauber Model

As mentioned before, the GM provides the initial conditions of the heavy-ion collision but it does

not provide the particle production after the collision. Due to that, the GM is paired with the neg-

ative binomial distribution (NBD). Two experimental inputs are necessary in the Glauber Monte

Carlo model, the nuclear charge density of the nucleus and the nucleon-nucleon cross section. The

nuclear charge density is described by a three parameter Fermi distribution and the nucleon-nucleon

cross section is obtained from p + p data. The Glauber Monte Carlo model uses a nucleon distri-

bution obtained from measurements of charge distribution of the nucleon with electron scattering

experiments. The charge distribution is then parameterized by using the three parameter Fermi

distribution (Wood-Saxon Distribution [46]). The calculation begins by placing the two gold (Au)

ions in a 3D space. The Au ions are populated with nucleons randomly selected from the Wood-

Saxon density, with Gold parameters, surface thickness a = 0.535 fm, nuclear radius R = 6.38 fm

and a spherical deformation ω = 0. After placing the 197 nucleons inside each nucleus, a random

impact parameter (b) is chosen. In order to simulate the initial conditions of the collisions, the 3D

space has to be projected on to a 2D system, to represent the “Pancake” like behavior of the ions

before the collision.
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3.3 Reference Multiplicity

The impact parameter (b) is directly correlated with the number of participants (NPart); the latter is

defined as the number of nucleons that participate in at least one inelastic nucleon-nucleon reaction.

These two quantities are used to define the centrality and it should be noted that although they

are physically different quantities, they are often used interchangeably to represent centrality. In

real experimental heavy ion collisions, measuring the number of participants NPart or b is a difficult

task, therefore a direct experimental measurement is used to define centrality. Both b and NPart

are monotonically related with the particle multiplicity after the collision at both forward rapidity

and midrapidity [47]. For low values of the impact parameter (b), it is expected to observe high

number of participants, which results in a small number of spectators and large particle multiplicity

at midrapidity. The uncorrected charged track multiplicity in a pseudorapidity window (reference

multiplicity) is often used as an observable to define centrality. The average value of a reference

multiplicity class should correspond to the average of NPart and b, this relation can be observed in

Figure 24, where it illustrates the event multiplicity within |η| < 1 distribution. The corresponding

values are determined by using a Glauber and particle production model.

The dataset used for the centrality determination is the same used in the lambda fluctuation

analysis. The data set contains 147 million of minimum bias events. The minimum bias events

are required to satisfy more than three hits in the Time of Flight (TOF) detector and a hit in

either trigger detector, the EPD or BBC detector. The events used in the centrality definition

require a z vertex location between 199.5 < vz < 202 cm with respect to the center of the TPC, as

shown in Figure 16 and a radial vertex location of vr < 1.5 cm from the center of the beam spot,

corresponding to vx,y = (0,−2) cm. The reference multiplicity used in the STAR detector is limited

to the particle production at midrapidity. In the collider mode at STAR, the reference multiplicity

used is the RefMult, which is defined as the total number of charged tracks in a pseudorapidity

window of |η| < 0.5 with specific detector cuts. Particle fluctuation analyses are susceptible to

artificial enhancements due to the inclusion of the same particle in the reference multiplicity. This
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Figure 24: Illustration example of the total final state charge particle multiplicity Nch distribution
with Glauber-calculated quantities (b, NPart). Figure from [47].

effect is labeled as the “auto-correlation” effect [48]. For the first Beam Energy Scan (BES), it

was shown that the RefMult is not a suitable reference multiplicity for the proton fluctuation

analysis, due to the inclusion of proton tracks in the reference multiplicity. In order to suppress

the auto-correlation effect, the reference multiplicity used for the protons analysis is the RefMult3

which excludes protons. Additionally, the pseudorapidity window for the reference multiplicity was

increased from |η < 0.5| to |η < 1.0| to offset the lowered particle multiplicity. Similarly, for the first

lambda fluctuations analysis, the reference multiplicity used is the RefMult3. This is done in order

to avoid autocorrelations from the proton daughter particle used for the lambda reconstruction.

Studies showed that the inclusion of pions (daughter particle of lambda) does not contribute to

autocorrelation effects [41].
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3.3.1 Track Selection in the Reference Multiplicity

In the fixed target mode, two new reference multiplicity were introduced: The FxtMult and the

FxtMult3, the first was used as a common reference multiplicities in many physics analyses and

the latter was the reference multiplicity used in the event-by-event proton analysis and the event-

by-event lambda analysis. Both of the reference multiplicities are uncorrected charged tracks in

the detector acceptance of −2 < η < 0, with the exclusion of primary protons in order to reduce

autocorrelation effects in the fluctuation analysis of protons and lambdas. Additional track quality

cuts were used in the references multiplicities to ensure that all tracks were originated from the

primary vertex:

• A track must be a primary track.

• The distance of closest approach (DCA) of a track to the primary vertex is less than 3 cm.

• A track must have a ratio between the number of fit points and possible fit points (nHitsF it/NHitsPoss)

greater than 0.52.

• The number of dE/dx points of a track is greater than 10.

• The track is reconstructed with a pseudorapidity between −2.0 and 0.0.

• In the FxtMult3, proton tracks are not considered. Therefore, the proton band dE/dx vs

rigidity is 3σ below the model prediction.

Figure 25 shows diagrams of the difference between the detector acceptance of the different ref-

erence multiplicities between the collider geometry (RefMult and RefMult3) and the fixed target

geometry (FxtMult and FxtMult3). The left panel shows the acceptance for the collider geom-

etry, where red and blue lines indicate the opening angle of RefMult (|η| < 0.5) and RefMult3

(|η| < 1) tracks, respectively. The right panel shows the acceptance for the fixed target geometry,

where green lines indicate the opening angle of FxtMult and FxtMult3 ( −2 < η < 0) tracks. The

yellow square indicates the position of the fixed target. The main difference between the reference
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multiplicity from collider geometry and fixed target geometry, is the larger opening angle at the

fixed target geometry, which increases the particle yield at these lower energies, where particle

production is reduced.

Figure 25: Comparison between reference multiplicities in the collider mode (left panel) and the
fixed target mode (right panel).

3.4 Centrality Bin Determination

The Centrality Bin determination was determined by the UC Davis Nuclear Group [39]. This section

briefly describes the procedure. In order to determine the centrality bins used in the fluctuation

analysis using the multiplicity distribution from the reference multiplicity, the Glauber Model (GB)

and a Negative Binomial Distribution (NBD) are used. The geometric model used in heavy ion

physics is the Glauber Monte-Carlo, which provides an estimate of the number of binary collisions

(Ncoll), participant nucleons (NPart) and impact parameter of the initial collisions (b).

3.4.1 Inelastic Cross Section σNN
inel

The inelastic cross section is used as a criterion for a nucleon-nucleon interaction. In the Glauber

Monte Carlo, a collision occurs if two nucleons are within
√

σNN/π in the transverse plane. At high

center of mass energies (
√
sNN ) the input cross section of the Glauber Monte Carlo is dominated
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Figure 26: Ncoll and NPart distributions calculated from Glauber Monte Carlo events for different
centralities. Figure from [39].

by inelastic scattering while elastic scattering is negligible. At low center of mass energies, the

elastic scattering is no longer negligible and is comparable to the inelastic contribution. The elastic

contribution comes from elastically-scattered protons, which for our purposes in the FxtMult3

are excluded. Therefore, elastically-scattered protons and the elastic cross section are ignored.

The inelastic nucleon-nucleon cross section used for the
√
sNN = 3.0 GeV dataset is σpp

inel =

(27.28±0.76±0.3) mb taken from the PDG summary tables [49]. Figure 26 shows the distributions of

NPart and Ncoll produced from the Glauber Monte Carlo model, using the Wood-Saxon distribution

and the inelastic cross section mentioned above.

3.4.2 Particle Production Model

As mentioned before, the Glauber Monte Carlo model outputs NPart, Ncoll and b, which cannot be

related to the reference multiplicity FxtMult3 directly. Therefore, in order to generate the final

state particle multiplicity, a particle production model is required. The model assumes that the

particle multiplicity is composed by two processes, the “hard” and the “soft” processes. Therefore,

the total collision energy produced is Etot ∝ Ehard + Esoft. Where Ehard is proportional to Ncoll

while Esoft is proportional to Npart, which gives Etot ∝
√
sNN (xNcoll + (x − 1)NPart/2), x being
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the scaling between the hard and soft particle production. With the assumption that the particle

production is proportional to the energy, Etot can be converted to the total number of produced

particles Nch

Nch = npp

(
xNcoll + (1− x)

Npart

2

)
(48)

where npp is the particle multiplicity of a p+p collision at the same energy per nucleon of the system

under study, for this analysis
√
sNN = 3.0 GeV. This method relies on the assumption that there

is an equivalence between the nucleon-nucleon and p + p collisions, and also that there is a clear

distinction between hard and soft collisions. This method is known as the two component model

[50]. The two component model converts the NPart and Ncoll obtained from Glauber model to a

total multiplicity which can be related to the reference multiplicity. It requires two parameters;

the hardness parameter x and the event-by-event p + p multiplicity npp. From previous work,

it was shown that p + p multiplicity distributions are well simulated using a negative binomial

distribution (NBD) [51]. A negative binomial distribution (NBD) describes the number of successes

(n) from identical Bernoulli trials before a number of failures occur (k). The number of successes

are represented by the number of generated particles npp and the k-parameter is related to the

particle dispersion D2 = ⟨n2
pp⟩ − ⟨npp⟩2 by

D2

⟨npp⟩2
=

1

⟨n⟩ +
1

k
. (49)

Therefore, the NBD for particle production is given by

NBDnpp,k(npp, ⟨npp⟩ , k) =
((

npp + k − 1

k − 1

))[ ⟨npp⟩ /k
1 + ⟨npp⟩ /k

]npp 1

[1 + ⟨npp⟩ /k]npp
. (50)

The hardness parameter used for the two component model is x = 0.06. The Glauber Model +

NBD model provides a method to relate the total particle production to a centrality class. However,

detector effects such as acceptance or efficiency are not considered. To account for both effects,

the UrQMD(Ultrarelativistic Quantum Molecular Dynamics), which is discussed in Section 8, was
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used to simulate events and to estimate the acceptance limitations and the STAR embedding, which

is discussed in Section 6.1.1. Efficiency curves were used to estimate the efficiency effects. The

centrality classes were determined by applying the Glauber+NBD fit to the reference multiplicity

FxtMult3, as shown in Figure 27. At high multiplicities, there is a disagreement between data

and the model fit. This is due to double collisions in the data (pile up). Below 80, the pile up

contamination is insignificant to the centrality determination ( ≈ 0.5% background effect) which

does not affect the fitting procedure. The cuts for the corresponding centrality classes are shown in

red dotted lines, while the black dashed line is the upper pile up cut at FxtMult3 = 80. The lowest

centrality bin for this analysis is 50− 60% which corresponds to the range 4 ≤ FxtMult3 < 6.

Figure 27: Glauber Model+NBD fit on the FxtMult3 histogram. The lowest cut is at Nch = 4,
the upper cut is at Nch = 80. Figure from [39].

Table 1 shows the centrality classes with the corresponding ⟨NPart⟩, ⟨Ncoll⟩ and ⟨b⟩.
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Table 1: FxtMult3 centrality class

% Central Nch Cut ⟨NPart⟩ ⟨Ncoll⟩ ⟨b⟩ (fm)

0− 5 48 326± 11 679± 24 2.5± 0.3

5− 10 38 282± 8 562± 23 3.9± 0.2

10− 20 26 219± 8 409± 17 5.5± 0.3

20− 30 16 157± 7 259± 16 7.2± 0.3

30− 40 10 107± 5 157± 9 8.6± 0.2

40− 50 6 70± 5 92± 6 9.7± 0.2

50− 60 4 47± 5 56± 7 10.6± 0.4
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4 Event Selection and Lambda Recon-

struction

The lambda fluctuation analysis uses the data set collected from the fixed-target runs at RHIC. The

full data-set was collected from May 31st to June 4th of 2018 and the total number of triggered

events were 320 million at
√
sNN = 3.0 GeV. The number of used events for the analysis was

reduced due to the removal of poor-quality data and also the sensitivity of the analysis, which

required the removal of periods of data taken with unusual events. This chapter covers briefly the

data collection and storage, the event selection and the lambda reconstruction procedure.

4.1 Data Collection and Run Selection

During the running of the experiment, the raw data from each sub-detector is recorded in a data

acquisition file (“DAQ” file). In order to use the data for physics analysis purposes, the “DAQ”

files were parsed and calibrated to extract detector measurements. The output is saved in two file

formats used for physics analyses: The MuDST and picoDST, which are stored in the Brookhaven

national Laboratory Scientific Data and Computing Center (SDCC). These files store event infor-

mation in a data tree, which is useful for event-based analysis. The commonly used event and track

information is stored in picoDST files, which are the ones used for this analysis. To reduce the data

sizes using just information necessary to a particular analysis, analyzers designed the femtoDST,

which can be used for analysis performed on a personal computer. To give a idea of the file sizes, the

total picoDST and femtoDST for the
√
sNN = 3.0 GeV are ∼ 4.0 TB and ∼ 40 GB, respectively.

As mentioned before, due to the sensitivity of the fluctuation analysis, runs with fluctuations

outside certain variable values were removed. Tracks and event variables were averaged over a run

in order to identify poor quality runs. The studied variables were ⟨FxtMult⟩, ⟨Vr⟩, ⟨Vz⟩, ⟨η⟩, ⟨ϕ⟩,

⟨DCA⟩ and ⟨pT ⟩. Figure 28 shows an example of the run-averaged ⟨pT ⟩. Runs outside 3 root mean
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squared (RMS) of the run-averaged variable are removed, the run-average is calculated again. This

process is repeated until all data points outside the 3 RMS are removed. After all cuts. the analysis

includes 72 high quality runs.

Figure 28: ⟨pT ⟩ averaged over the run as a function of the run index. Plot from Guannan Xie.

4.2 Event Selection

The minimum-bias Au+Au collisions taken in 2018 in fixed target mode required triggered events

that had at least one hit in either EPD or the East BBC and three or more hits in the TOF detector.

These triggers were labeled as “bbce tofmult1” and “epde tofmult1”. The eastward beam (with

nucleon energy of 3.85 GeV) was steered down (shifted in the y = −2 cm direction in the STAR

geometry) to hit a 1 mm-thick gold foil (fixed-target) placed at 200.7 cm from the center of the

TPC. In order to remove potential collisions with the target-support material and events with

incorrect timing information, all events require a z vertex location of 199.5 < vz < 202 cm, a radial

vertex cut of vr < 1.5 cm from the center of the beam spot, meaning vx,y = (0,−2) cm. Figure 29

and Figure 30 show the event distribution for the z-component and the transverse component,

respectively.

The vx − vy 2D distribution, before and after all cuts are shown in Figure 31.
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Figure 29: vz distribution peaked at vz = 200.7 cm. Cut is applied 199.5 < vz < 202 .

4.3 Track Selection

Certain track-level cuts were implemented in order to ensure that tracks contain the correct dE/dx

and momentum information. The location of an event vertex is determined by projecting global

track helices to the beam line and then searching for the intersection of tracks. The vertex candidate

is generated by searching for multiple tracks that intersect within the beam line. The primary

vertex is defined by sorting the vertex candidates. If the distance of closest approach (DCA) of the

track to the primary vertex is below 3.0 cm, the global track is labelled as a primary track. For

this analysis, a cut of DCA < 3.0 cm is used in order to lower the background contribution from

beam-pipe collisions and contribution of secondary decays, the latter especially for the FxtMult3

definition.

The charged particle helices are fitted by using the spatial points from the TPC in order to

generate tracks. The fits are performed using a Kalman filter procedure. The number of spatial

points used to fit each helix is known as NHitsF it, the helix fitting procedure requires at least

five spatial points. In general, the greater the number of NHitsF it the better the momentum
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Figure 30: vr distribution before and after cut. A cut on vT about the beam spot ⟨vx,y⟩ (0,−2) cm
is applied vT = 1.5 cm

resolution of the track. Therefore, in order to increase the track quality, a minimum number of

NHitsF it is used. For the lambda analysis a minimum of at least 15 fit points (NHitsF it > 15)

is required. A decrease of NHitsF it to 12 and 10 is used for systematic studies.

In order to ensure that, during the reconstruction of charged particles, a single charged particle

is identified, the value NHitsPoss is used. NHitsPoss allows to identify duplicate, or split, tracks

from the possible NHitsF it. In the central region of the TPC, the maximum number of spatial

points is the number of pad rows. By requiring all tracks to have NHitsF it/NHitsPoss > 0.52,

duplicated tracks are eliminated.
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Figure 31: (a) vx − vy distribution before cuts. (b)vx − vy after all cuts.

4.4 Lambda Reconstruction

The reconstruction of the primary lambda particle (Λ) is done using the secondary protons (p) and

pions (π−). The identification of the daughter particles (p and π−) was done using the ionization-

energy loss in the TPC gas as explained in Section 2.2.1. In order to obtain high quality tracks, the

cuts discussed in Section 4.3 were imposed. Since lambda particles are neutral particles, the direct

identification is not possible due to the lack of deflection in the presence of the external magnetic

field. Therefore, the extraction of the lambda yields was done by reconstructing the decay vertex

of the particle. The lambda baryon decays weakly in the decay channel, λ → p+π−, the branching

ratio is (63.9 ± 0.5)% [52]. The reconstruction of the lambda particle is done via the calculation

of the lambda invariant mass (Mp,π−) using the properties of the identified daughter particles by

considering the conservation of the 4-momentum. Consider pΛ, pp and pπ− ; the 4-momentum of

lambda, proton and pion, respectively. The 4-momentum of a particle is given by p = (E, p⃗), where

p⃗ is the momentum of the particle; and the speed of light c = 1 convention is used.

pλ = pp + pπ− (51)
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Using the invariance of the quantity pµpµ = E2 − p⃗2:

−M2
p,π− = (pp + pπ−)2

−M2
p,π− = M2

p +M2
π + 2(EpEπ2 − p⃗p · p⃗pi−). (52)

The calculated invariant mass uses all identified proton and pion pairs, independently of whether

they come from a primary lambda decay or not. Protons and pions that do not come from a

lambda decay reconstruct into a mass different from the lambda rest mass (MΛ = 1115.683± 0.006

MeV/c2) [52]. The net-lambda fluctuation analysis is an event-by-event fluctuation measurement.

Therefore, the counting of lambda particles should be done on an event-by-event basis. The lambda

particle yield in all the events can be done by integrating the peak above the background. Most

of the background can be eliminated by applying a mass cut that considers the invariant mass of

the lambda baryon. The mass cut used for this analysis is 1112.7 < M inv
p,π− < 1118.7 MeV/c2.

Notice that, even after imposing the mass cut window, the invariant mass distribution inside the

window still contains contribution from the background. In order to reduce the contamination from

the background below the signal, certain cuts associated with the decay geometry were optimized

to extract the signal with high purity. The appearance of the unobserved lambda decay into

two observed charged daughter particles gives rise to the terminology V 0 to describe the decay

topology. The standard method used to reconstruct lambda particles in the BESI [35], used several

geometrical measurements associated with the V 0 decay as seen in Figure 32. This method relies

on so-called distances of closest approach (DCA), which uses the distance between the V 0 to the

primary vertex (PV), the distance between proton to PV, pion to PV, and proton to pion. The

topological cuts are optimized to reduce the combinatorial background and obtain good statistics

in the lambda signal.

For the lambda fluctuation analysis at
√
sNN = 3.0 GeV, the standard method was not used.

The procedure to reconstruct lambda baryons was by using a machine-learning-based algorithm

which achieves overall better purity, called KFParticle [53], [54]. The Kalman filter (KF) method,
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Figure 32: Cross section of V 0 decay topology in x-y plane.

is a recursive method used for the analysis of linear discrete dynamic systems described by a vector

of parameters, called state vector. The state vector of the particle includes eight parameters: three

coordinates of the particle (x, y, z), three components of its momentum (px, py, pz), the energy of

the particle (E) and when the production point of the particle is known, the time between the

production and decay points measured in a distance normalized by the momentum (s = l/p).

r⃗ = (x, y, z, px, py, pz, E, s). (53)

By using the state vector, the KFParticle can determine the decay vertex, momentum and energy

of a reconstructed particle. The covariance matrix is estimated together with the state vector,

which allows to obtain parameters and also their accuracy by calculating the value of the χ2. Some

of the most important χ2 criterion are:

• χ2
prim: Defines the probability that the track intersects the primary vertex within the errors

under the assumptions that parameters of tracks are Gaussian distributed and χ2
prim is dis-

tributed according to the χ2-distribution with the number of degrees of freedom (NDF) equal

to 2. NDF is equal to 2 since only two coordinates of a track (out of three) are independent,

since the tracking systems provide measurements with one coordinate fixed.
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• χ2
topo : χ2 criterion of the lambda candidate with a production point constraint set to the

primary vertex; this criterion characterizes whether the particle is produced in the primary

vertex region.

• χ2
NDF : criterion calculated by the KFParticle in the lambda candidate fit, that characterizes

whether trajectories of daughter particles (p and π−) intersect within their errors.

Within the KFParticle framework, one cuts on probabilities (parameters normalized on the error)

rather than absolute values of topological variables as done in the standard method. The default

cuts used in the KFParticle for the lambda reconstruction is shown in table 5.

Figure 33 shows V 0 topological structures used by the KFParticle; certain cuts are applied in

order to significantly reduce the combinatorial background. The cuts were optimized by considering

reducing the combinatorial background and increasing the reconstruction efficiency.

Figure 33: V0 decay topology for strange particle decay used in the KFParticle method. P+ refers
to a positively charged particle (e.g., proton) and P− refers to a negative charged particle (e.g.,
π−).
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4.5 Purity of the V 0 Samples:

Various topological structures in the KFParticle were used in order to obtain the most probable V 0

candidate in the sample. The purity of the resulting V 0 was calculated for different variations of

topological cut structures. In order to calculate the purity of the sample, one needs the extraction of

the yield from the signal and the yield from the background under the signal region. This was done

by counting the entries of the signal and background areas of the invariant mass distribution. A

second-degree polynomial fit was applied to the background as shown by the green line in Figure 34.

By using the background fit function, the area below the signal was estimated. The yield of the

signal region was estimated by adding to the second-order polynomial fit two summed Gaussian

distributions, which was found to work quite well to fit the data. The fit is shown by the red line

in Figure 34. The area between the two summed Gaussian distribution fit and the second-order

polynomial corresponds to the yield of the signal region.

By using the information from the signal and background yield, two quantities were calculated

to quantify the level of the lambda reconstruction. The first is the signal to background ratio shown

in Eq. (54) and the second is the purity shown in Eq. (55)

S

B
=

Signal

Background
(54)

Purity =
Signal

Signal +Background
× 100%. (55)

Many topological cuts were studied but for our purposes only five cut-set variations were used

in this analysis as shown in Figure 35 and included in the systematic uncertainties. Table 2 shows

the cut variations used in the analysis with the corresponding information about the background,

signal, S/B and purity.

As seen in Table 2, the purity of the sample depends strongly on the topological cuts used.

The most strict topological cut used (cut set 3) shows purity of about 93.75%, but it can also

be observed that, by increasing the purity, a portion of the signal is also lost at the same time.
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Figure 34: Signal and background in the lambda invariant mass distribution using proton (p) and
pion (π−) pairs from

√
sNN = 3.0 GeV Au+Au collisions. The green line shows the second-order

polynomial fit to the background, the red line corresponds to the two summed Gaussian distribution
fit on the background+signal.

Therefore, in order to address the loss in the signal, the maximum purity of the sample used for

this analysis is cut set 3. All other track-cut sets used in this analysis are listed in Table 4. The

high purity of the sample can be also observed as a function of centrality for cut set 3 in Table 3

The pion lower-bound pT cut is applied due to the low tracking efficiency. The proton lower-

bound pT cut is applied to avoid spallation protons. The lower-bound pT cut of lambda is applied

because of low efficiency reconstruction (see Figure 41)
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Figure 35: Invariant mass distributions for 6 cut set variations from Table 2.

4.6 Analysis Acceptance

The kinematic acceptance used in an event-by-event fluctuations of particle distributions has

to be chosen carefully. If the acceptance window is too small, the correlations are expected

to vanish. On the other hand, if the window covers a large fraction of the lambda distribu-

tion, the fluctuation is suppressed as the baryon number cannot fluctuate in the 4π yield due

to baryon number conservation. For this analysis, the chosen nominal rapidity window is within

−0.5 < y < 0, which represents approximately half the measurable acceptance of −0.9 < y < 0.1.

The lambda candidates are required to have a transverse momentum within 0.5 < pT (GeV/c) < 2.0.

The transverse momentum (pT ) and rapidity (y) of the reconstructed V 0 in the signal region

1.1127 < Minv(p, π
−)(GeV/c2) < 1.1187 at

√
sNN = 3.0 GeV is shown in Figure 36. The red

dashed line corresponds to the cut of 0.5 < pT (GeV/c) < 2.0 and −0.5 < y < 0 used in the analysis

for a fixed acceptance. To study the effect of the selected kinematic acceptance, the rapidity was
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Table 2: Purity of the V 0 candidates for different topological cut selections at
√
sNN = 3.0 GeV,

for centrality 0− 60%

Parameter Cut Set 1 Cut Set 2 Cut Set 3 Cut Set 4 Cut Set 5 Cut Set 6

χ2
prim 10 12 15 5 7 5

χ2
topo 5 5 5 7 10 20

χ2
NDF 5 5 5 5 6 7

Background 66.05 49.74 33.83 156.52 108.67 720.74

Signal 611.71 565.24 507.49 734.06 682.62 910.33

S/B 9.26 11.36 15.00 4.68 6.28 1.26

Purity 90.25 % 91.91 % 93.75 % 82.42 % 86.26 % 55.81 %

Table 3: Purity of the V 0 candidates for different centralities using cut set 3.

centrality B S S/B Purity

60-50 0.493 5.053 10.241 91.1 %

50-40 1.217 15.886 13.057 92.9 %

40-30 2.241 36.701 16.375 94.2 %

30-20 5.071 90.254 17.800 94.7 %

20-10 8.430 138.818 16.466 94.3 %

10-5 8.034 118.232 14.717 93.6 %

5-0 8.326 102.565 12.319 92.5 %

varied. These results are presented in Section 9.3. The rapidity dependence (ymin < y < 0 ), ymin

is varied from −0.2 to −0.9 with a transverse momentum range of 0.5 < pT (GeV/c) < 2.0.

4.7 Net-lambda Distribution

After the lambda reconstruction was performed and by using the centrality definition the event-

by-event multiplicity distribution of net-lambda particles is performed. It should be noted that,

compared to the previous net-lambda analysis [35], at
√
sNN = 3.0 GeV the antilambda to lambda

ratio is of the order of 10−7, therefore the amount of antilambda is negligible and the results in the

lambda and net-lambda fluctuations are equivalent. The event-by-event multiplicity distribution of

net-lambda is shown in Figure 37 for three different centralities; 0−5%, 20−30% and 50−60%. It

can be observed that the distributions are dominated by events without a lambda candidate. For

most central collisions (0− 5%) an enhancement of lambda candidates is observed compared with

more peripheral collisions (50− 60%), which leads to an increase in the width of the distribution.
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Table 4: Track cuts used for the lambda reconstruction

Particle Cut parameter Cut boundary

Proton Tranverse momentum pT (GeV/c) > 0.4
nHitsPoss ≥ 5
nHitsF it ≥ 15

nHitsF it/nHitsPoss ≥ 0.52
PID nσ < 3.0

Pion Tranverse momentum pT (GeV/c) > 0.15
nHitsPoss ≥ 5
nHitsF it ≥ 15

nHitsF it/nHitsPoss ≥ 0.52
PID nσ < 3.0

Lambda Tranverse momentum 0.5 < pT (GeV/c) < 2.0
Rapidity −0.5 < y < 0

Max. Lambda DCA to PV (cm) 1.0

Figure 36: pT and y of the lambda reconstruction. The red dashed line corresponds to the nominal
cut boundary used in this analysis.
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Figure 37: Event-by-event lambda multiplicity distribution for
√
sNN = 3.0 GeV for three different

centralities. Results are not corrected for reconstruction efficiency.
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5 Cumulants and Correlation Func-

tions

5.1 Moments and Cumulants

The present analysis is based on the counting of net-lambda on an event-by-event basis, as shown

in Figure 37. By obtaining the multiplicity distribution of net-lambda, one can obtain the moments

and cumulants of the distribution. As described briefly in Section 1.4.3, cumulants and moments

of a probability distribution describe the shape of the distribution. Moments can be constructed

by using the moment-generating function. Let N be a random variable of a normalized probability

distribution P (N). The moment generating function is given by:

MN (t) =
∑
N

etNP (N) = ⟨etN ⟩ . (56)

By using the series expansion of etN , one can express MN (t) as:

MN (t) = 1 + t ⟨N⟩+ t2
⟨N2⟩
2!

+ t3
⟨N⟩3
3!

+ ...+ tn
⟨Nn⟩
n!

+ ... (57)

where the mth raw moment µ′
m is computed by taking the mth derivative of MN (t) and evaluate

it at t = 0:

µ′
m = M

(m)
N (0) =

dmMN

dtm

∣∣∣
t=0

. (58)

For a probability distribution P (N), in which N is an entry in the data sample, the raw moments

are

µ′
m = ⟨Nm⟩ =

∑
N

NmP (N). (59)
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The central moments of a distribution are given by

µm ≡ ⟨(δN)m⟩ =
∑
N

(δN)mP (n) (60)

where ⟨N⟩ is the first moment and δN = N − ⟨N⟩ is the deviation from the mean value. Likewise,

cumulants can be computed from a cumulant-generating function which is the natural logarithm

of the moment generating function:

KN (θ) = ln ⟨eθN ⟩ . (61)

Cumulants can be written in terms of the moments as

C1 = ⟨N⟩

C2 = ⟨(δN)2⟩ = µ2

C3 = ⟨(δN)3⟩ = µ3

C4 = ⟨(δN)4⟩ − 3 ⟨(δN)2⟩2 = µ4 − 3µ2
2. (62)

The explicit relation between the moments and cumulants is given by :

M(Mean) = C1

σ2(Variance) = C2

S(Skewness) =
C3

C
3/2
2

κ(Kurtosis) =
C4

C2
2

(63)

Moments and cumulants are often interchangeable. In the case of a Poisson distribution, all cu-

mulants are equal (C1 = C2 = ... = Ci = ⟨N⟩). Therefore, all cumulant ratios equate to one for a
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poissonian distribution.

5.2 Factorial Moments and Correlation Functions

In addition to moments and cumulants, in this analysis factorial moments and cumulants were used

in the calculation of the efficiency correction (see Section 6) of cumulants and also as a measure of

multiparticle correlations. The rth factorial moment is define as:

⟨N r⟩f = ⟨N(N − 1)(N2)...(N − r + 1)⟩ (64)

similarly, the factorial cumulant is defined as

⟨N r⟩fc = ⟨N(N − 1)(N − 2)...(N − r + 1)⟩c . (65)

Like the moments and cumulants, the factorial moments and cumulants can be obtained by using

a generating function given by:

⟨N r⟩f =
dmMf (s)

dsm

∣∣∣
s=1

, ⟨N r⟩fc =
dmKf (s)

dsm

∣∣∣
s=1

(66)

where Kf (s) = K(ln)s and Mf (s) = M(lns). Factorial cumulants can describe the multi-

particle correlation functions κn. First, let us introduce the correlation function using the two

particle density ρ(p1, p2) for particles with momenta p1 and p2

ρ2(p1, p2) = ρ(p1)ρ(p2) + κ2(p1, p2) (67)

where ρ(p1) is the one particle density, and κ(p1, p2) represents the two particle correlation function.

In general, the two particle density depends on the particle momentum of both particles. For

simplicity, let us restrict to correlations in rapidity, with the following notation
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ρ2(y1, y2) =

∫
dpt,1dϕ1dpt,2dϕ2ρ2(p1, p2) (68)

κ2(y1, y2) =

∫
dpt,1dϕ1dpt,2dϕ2κ2(p1, p2) (69)

κ2 =

∫
dy1dy2κ2(y1, y2) (70)

and similarly for higher order particle densities and correlation functions. Integrating ρ2(p1, p2)

from Eq. (67) over the momenta, we obtain

⟨N2⟩fc = ⟨N(N − 1)⟩ =
∫

dp1dp2ρ2(p1, p2) = ⟨N⟩2 + κ2 (71)

where N in this case corresponds to the number of lambdas and κ2 is the integrated two-particle

correlation function. Notice that, in the absence of correlations, κ2(p1, p2) = 0, giving ⟨N2⟩−⟨N⟩2 =

⟨N⟩. This can be done for higher order particle densities as well, where the following relationships

are obtained

⟨N3⟩f = ⟨N⟩3 + 3 ⟨N⟩κ2 + κ3 (72)

⟨N4⟩f = ⟨N⟩4 + 6 ⟨N⟩2 κ2 + 4 ⟨N⟩κ3 + 3κ22κ4 (73)

By using Eq. (65), the correlation functions are expressed in terms of cumulants as

κ1 = C1 (74)

κ2 = −C1 + C2 (75)

κ3 = 2C1 − 2C2 + C3 (76)

κ4 = −6C1 + 11C2 − 6C3 + C4 (77)
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6 Detector Performance Corrections

In real experiments,the measured event-by-event lambda multiplicity distribution does not represent

the true multiplicity distribution. The measurements are subject to efficiency and background

effects and therefore not allowing the measurement to obtain the true multiplicity distribution

P (N). Certain corrections have to be applied to obtain the true multiplicity distribution (P (N))

from the measured multiplicity distribution(P̃ (n)). This section covers the efficiency correction

techniques and the method to estimate the values of efficiencies of the Time Projection Chamber

(TPC) detector.

6.0.1 Constant Efficiency Correction

For the lambda fluctuation analysis in the fixed target
√
sNN = 3.0 GeV mode, the “track-by-track”

efficiency correction was used [55], [56]. Let us start with the description of the simple efficiency

correction, the constant efficiency correction. The technique applied for efficiency correction for the

STAR detector assumes a binomial detector response, such that a detected track has an independent

probability compared with adjacent detected tracks. Tests have been performed using non-binomial

detector corrections [57] in order to compare it with the binomial correction. The effect was minimal

and is diminished at lower collision energies [58]. In order to extract the true net-lambda multiplicity

distribution P (N), from the measured net-lambda distribution P̃ (n), one can define

P̃ (n) =
∑
N

P (N)Bp,N (n) (78)

Where Bp,N (n) is the binomial efficiency

Bp,N (n) =
N !

n!(N − n)!
pn(1− p)N−n. (79)
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The probability of detection is given by p, which is basically the efficiency of the detector. The mea-

sured number of net-lambdas is given by n. The efficiency correction can be written in terms of the

factorial cumulants. The cumulant generating function of the net-lambda probability distribution

is given by

K(θ) = ln
∑
N

eNθP (N) = ln ⟨eNθ⟩ (80)

where the mth order cumulant is defined as

⟨Nm⟩c =
∂m

∂θm
K(θ)|θ=0 (81)

Likewise, the factorial cumulants are defined by changing eNθ → sN , which gives the cumulant

generating function for factorial cumulants

Kf (s) = ln ⟨sN ⟩ . (82)

With Eq. (82), one can evaluate the factorial cumulants

⟨Nm⟩fc =
∂m

∂sm
K(s)

∣∣∣
s=1

. (83)

For the case of the measured factorial cumulants, the generating function is given by

K̃(s) = ln
∑
n

P̃ (n)sn = ln
∑
N

P (N)eκ̃p,N (s) (84)

= ln
∑
N

P (N)(q − p+ ps)N (85)

= Kf (1 + p(s− 1)) (86)

where

κ̃p,N (s) = ln
∑
n

snBp,N (n) = N ln(1− p+ ps) (87)
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Like in Eq. (83), one can evaluate the factorial cumulant for the measured probability distribution

P̃ (n) and relate it with the true factorial cumulant

∂m

∂sm
K̃(s)|s=1 = pm

∂m

∂sm
K(s)|s=1 (88)

which is simplified to

⟨nm⟩fc = pm ⟨Nm⟩fc (89)

Therefore, by using factorial cumulants, the relation between measured and true distribution be-

comes trivial. With the use of the true factorial cumulants, one can convert it back to cumulants

or moments. By using Eq. (89), one can construct the true cumulants of P (N) in four steps:

1. Calculate the cumulants of P̃ (n).

2. Convert cumulants of P̃ (n) into factorial cumulants.

3. Calculate the factorial cumulants of P (N) using factorial cumulants of P̃ (n) from Eq. (89).

4. Convert factorial cumulants of P (N) into cumulants.

By following the procedure above, the cumulants of P (N) are calculated:

⟨N⟩c = ⟨N⟩fc =
1

p
⟨n⟩fc =

1

p
⟨n⟩c (90)

⟨N2⟩c =
1

p2
⟨n2⟩c +

(
1

p
− 1

p2

)
⟨n⟩c (91)

⟨N3⟩c =
1

p3
⟨n3⟩c +

(
−3

p
+

3

p2

)
⟨n2⟩c +

(
1

p3
− 3

p2
+

1

p

)
⟨n⟩c (92)

⟨N4⟩c =
1

p4
⟨n4⟩c +

(
− 6

p4
+

6

p3

)
⟨n3⟩c +

(
11

p4
− 18

p3
+

7

p2

)
⟨n2⟩c +

(
6

p4
+

12

p3
− 7

p2
+

1

p

)
⟨n⟩c .

(93)

This method is effective but limited to the requirement of a constant efficiency, whereas in the

STAR detector the efficiencies vary with pT . Therefore, let us consider the multivariate efficiency

bin correction.
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Figure 38: pT dependence of reconstruction efficiency for 0 − 5% central and 5 − 10% central 200
GeV Au+Au collisions. Black vertical lines are the boundaries for three acceptance regions used in
the corrections. Red horizontal line shows the equivalent pT -averaged efficiency. Figure from [41].

6.0.2 Multivariate Efficiency Bin Correction

Consider now M discrete acceptance bins in which Ni number of particles enter the ith accep-

tance bin. Therefore the distribution P (N) corresponds to a multivariate distribution P (N) =

P (N1, N2, ..., NM ). For the net-lambda analysis in the first beam energy scan (BES) at RHIC [35],

a similar technique was used, with three discrete efficiency bins, one bin at low pT , one at mid-values

of pT and one at high pT , this can be seen in Figure 38. In the multivariate case, one can extract

the true multiplicity distribution from the measured multiplicity distribution by assuming that the

efficiency is now a product of binomial distributions. The measured probability distribution P̃ (n)

is given by

P̃ (n) =
∑
N

P (N)

M∏
i=1

Bpi,Ni(ni) (94)
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where one can define the linear combination of particles and antiparticles of interest in the ith

efficiency bin as

Q(a) =
M∑
i=1

aiNi (95)

where a = 1 and a = −1 for particle and anti-particle, respectively. The corresponding cumulant

generating function is defined in the multivariate case as

K(θ) = ln

[∑
N

eθ1N1+...+θMNMP (N)

]
(96)

and the mth order cumulant of Qa is

⟨Qm
(a)⟩c = ∂m

(a)K(θ)|θ=0 (97)

with

∂(a) =
M∑
i=1

ai
∂

∂θi
. (98)

In the case of the factorial cumulant, the generating function of the P (N) is defined as

Kf (s) = ln

[∑
N

P (N)
M∏
i=1

sNi
i

]
(99)

and the factorial cumulants are defined as

⟨Q(a)⟩fc = ∂̄m
(a)Kf (s)|s=1 (100)

with

∂̄(a) =

M∑
i=1

ai
∂

∂si
. (101)
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With si = eθi , a similar relation between cumulants and factorial cumulants is derived

⟨Q(a)⟩ = ∂(a)K =
M∑
i=1

ai
∂

∂θi
K =

M∑
i=1

ai
∂si
∂θi

∂

∂si
Kf = ∂̄(a)Kf = ⟨Q(a)⟩fc . (102)

The factorial cumulant generating function of the product of binomial distributions can be

written as

K̃f (s) = ln
∑
N

P (N)
M∏
i=1

(1 + pi(si − 1))Ni = Kf (s
′) (103)

where s′i = 1 + pi(si − 1). Finally, one obtains the version of Eq. (89), which relates the

multivariate cumulants to the multivariate factorial cumulants

∂̄(a)Kf = ∂̄(a/p)K̃f . (104)

Therefore, one can calculate the cumulants of the true distribution P (N) with cumulants of the

measured distribution P̃ (n) as follows

1. Calculate the cumulants of P̃ (n)

2. Convert the cumulants of P̃ (n) into factorial cumulants.

3. Convert the factorial cumulants of P̃ (n) into factorial cumulants of P (N) with the efficiency

of the pi efficiency bin.

4. Convert the factorial cumulants of P (N) into cumulants.

The cumulants expressed as measured cumulants up to the third order are shown below

68



⟨Q(a)⟩c = ⟨Q(a)⟩fc = ⟨qa/p⟩fc = ⟨q(a/p)⟩c (105)

⟨Q2
(a)⟩c = ⟨Q2

(a)⟩fc + ⟨Q(a2)⟩fc = ⟨q2(a/p)⟩fc + ⟨q(a2/p)⟩fc

= ⟨q2(a/p)⟩c − ⟨q(a2/p2)⟩c + ⟨q(a2/p)⟩c (106)

⟨Q3
(a)⟩c = ⟨Q3

(a)⟩fc + 3 ⟨Q(a)Q(a2)⟩fc + ⟨Q(a3)⟩fc

= ⟨q3(a/p)⟩fc + 3 ⟨q(a/p)q(a2/p)⟩fc + ⟨q(a3/p)⟩fc

= ⟨q3(a/p)⟩c − 3 ⟨q(a/p)q(a2/p2)⟩c + 2 ⟨q(a3/p3)⟩c + 3
(
⟨q(a/p)q(a2/p)⟩c − ⟨q(a3/p2)⟩c

)
⟨q(a3/p)⟩c

(107)

where, q(a) is defined as

q(ar/ps) =
M∑
i=1

ari
psi

ni. (108)

where pi is the efficiency on the ith acceptance bin and ni is the number of measured particles in

the ith acceptance bin. Although the multivariate efficiency correction method is an improvement

over the constant efficiency method, it can still fail to characterize efficiency distributions that vary

drastically [56]. Figure 39 shows a toy simulation testing the multivariate efficiency bin correction.

To model a detector with different levels of effectiveness, 50 separate binomial distributions were

created and applied to simulated events. By using the multivariate efficiency technique, the cumu-

lants are calculated for different M averaged efficiency bins (x-axis). The simulation shows that a

minimum 50 efficiency bins (M = 50) is necessary to accurately reproduce the true cumulants. The

multivariate efficiency method works well for high number of bins but it requires the number of

net-particles in each bin M . An improved method was proposed, where the number of net-particle

in the bin is not required. This method is discussed in the following section.
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Figure 39: Toy simulation to test the multivariate efficiency bin correction. Figure from [56].

6.0.3 “Track-by-track” Efficiency Correction Method

In the multivariate case, the efficiency bins are assumed to have a finite bin size and each bin is

weighted by the number of net-particles n. In the ”track-by-track” correction, the bin size is made

to be infinitesimal (M → ∞) and the number of net-particles in each bin ends up to be either

ni = 0 or ni = 1. Therefore, the sum in Eq. (108) is simplified, as the sum only considers efficiency

bins in which a particle is measured and n = 1. The efficiency corrected raw moment is given by

q(ar/ps) =
O∑
i=1

ari
psi

(109)

where O is the total measured number of particle/anti-particle yield and pi is the efficiency at

a given rapidity and momentum. The procedure to calculate the cumulants using the “track-by-

track” method is the same as the one described for the multivariate method. The advantage of the

“track-by-track” method is that it does not require the particle spectra to properly weigh the finite

efficiency bins, since the method assumes at maximum one particle per infinitesimal bin and the

efficiency is calculated directly from embedding efficiency curves which are shown in Figure 42.
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6.1 TPC Efficiency

6.1.1 Embedding

In order to calculate the TPC efficiency in the STAR detector, the collaboration relies on detector

simulations. The STAR detector is modeled using a detector framework capable of simulating

the passage of particles through matter, GEANT3. The simulated tracks are passed through the

GEANT3STAR model, which generates TPC pad positional and dE/dx data. The simulated

event is embedded into real event data and both the simulated and real detector event hits are

reconstructed to generate the TPC tracks. This process of simulating tracks and embed them into

real data is called “embedding”. By using the embedded reconstructed data, one can calculate

the fraction of simulated tracks that were able to be reproduced. For the case of the lambda

embedding data, the simulated tracks were generated using a uniform pT : [0, 3] GeV/c and η :

[−2, 0] distribution, 2.5 millions of events were used, in which 5% of the reference multiplicity were

Monte Carlo tracks per event. Lambda particles were reconstructed using the same track quality,

topological and purity of the particle identification parameters as used in data. This is done in order

to account for the loss in efficiency when tight cuts are used, Section 7.2 present a discussion of the

cuts used in the analysis. The respective rapidity (y) in the lambda center of mass was calculated,

which ranges from y : [−1, 1] corresponding to a pseudo-rapidity of η : [−2, 0] in the detector. The

generated and reconstructed lambda particles are shown in Figure 40, which is shown as a function

of pT and ylambda which is the rapidity in the lambda reference frame. Additionally, the multiplicity

of the real events is varied to study the efficiency as a function of centrality. Figure 40 shows the

generated and reconstructed tracks in the mentioned region, the efficiency is calculated by taking

the ratio between the reconstructed and the generated lambdas (Eff = Rec/Gen) in a particular

bin.
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Figure 40: Left panel: Generated lambda tracks for 0− 5% centrality. Right panel: Reconstructed
tracks for 0− 5% centrality

6.2 Lambda TPC Efficiency for Au + Au collisions at
√
sNN = 3.0

GeV

In order to apply the “track-by-track” efficiency correction on the cumulants, the embedding sample

has to be finely binned in the transverse momentum and rapidity. The single track efficiency

correction was applied in the proton fluctuation analysis at STAR [59] where a fine binning was

used, due to the high number of proton tracks produced in an event. In the case of lambda particles

at
√
sNN = 3.0 GeV, the amount of produced lambdas in an event can be 100 times less than in the

case of protons, therefore the binning used for this analysis is half of the number of bins used in the

proton analysis. This is done in order to obtain values of efficiencies per bin with small statistical

uncertainties. The efficiency at a given transverse momentum and rapidity bin is calculated by

dividing the number of reconstructed lambdas from the Monte Carlo tracks by the total simulated

Monte Carlo lambdas as it can be observed in the 2D efficiency map in Figure 41. The number of

bins in pT were 30 and 20 in y.

6.2.1 Rapidity Slice Fitting Procedure

The 2D efficiency plot as a function of rapidity and transverse momentum is shown in Figure 41

for most central collisions. To reduce statistical fluctuations, the 2D histogram is divided into
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Figure 41: 2D efficiency map for lambda particles.

20 rapidity slices and then projected on to a 1D histogram for each particular slice, which is the

efficiency as a function of transverse momentum. Then, each 1D histogram is parameterized by an

exponential + 2nd order polynomial function. Figure 42 shows the

f(x) = p1e
−p2/x + p3x+ p4x

2. (110)

The first term of the fitting function, the exponential p1e
−p2x, is motivated by the fast increase

of the efficiencies with increasing pT , as seen in Figure 42. The last two terms p3x and p4x
2, are

motivated to capture the small increase at pT > 2.0 GeV. As it can be observed in Figure 42, the

fits does not to describe the data accurately at values of pT ≳ 2.5 GeV, but for this analysis the

maximum value of pT considered is at pT = 2.0 GeV. The reason of rejecting higher pT bins is

due to the fact that in data there is no contribution of lambda tracks above pT = 2.0 GeV, which

means that the efficiency correcting method cannot correct the measured multiplicity if there are

no lambda tracks.

For the previous analyses of lambda fluctuations for the BES-I, a sizeable anti-correlation be-

tween the total particle multiplicity and the detector efficiency was found. This anti-correlation
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Figure 42: Plot of rapidity slices of TPC detector efficiency with exponential + 2nd order polynomial
fits. Label on top of each sub-panel represents the rapidity slice in the ylambda.

effect is due to the high track densities, the TPC gas volume saturates leading to gas occupancy

effects causing the efficiency to decrease considerably. The number of track multiplicities increases

with the center of mass energy
√
sNN , therefore the occupancy effects observed in the efficiency

scales with energy. At the lowest center of mass energy achieved
√
sNN = 3.0 GeV, the occu-

pancy effects diminish considerably in the case of protons, where the efficiency varies less than 5%

from highest to lowest centrality (0-5 % to 50-60 % ) as it can be observed in Figure 43. These

deviations are considered in studies of the systematic uncertainties, taking into account a ±5%

systematic variation in the bin-by-bin efficiency. In the case of lambda, Figure 44 shows the TPC

detector efficiency in an integrated rapidity from −0.9 < y < 0, for three centralities, 0 − 5%,

30− 40% and 50− 60%. As can be observed for values pT > 1.5 GeV, the efficiencies start showing

sizable deviations for different centralities. In order to consider this deviation, an efficiency average

for the centrality 0 − 60% is used and a variation of ±10% in the efficiency value in a particular
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efficiency bin is included in the systematic studies.

Figure 43: Comparison of proton TPC efficiency as a function of pT for three centrality classes,
integrated from −0.9 < y < 0.1. Figure from [39].

6.3 Methodology of the Efficiency Correction Applied to Cumu-

lants

By using the “track-by-track” efficiency correction discussed in Section 6.0.3 and by using the

efficiency curves from Section 6.2.1, the efficiency-corrected cumulants are calculated following the

procedure

1. Events from the
√
sNN = 3.0 GeV are looped.

2. By using a kinematic acceptance window the lambda candidates are considered in each event.

3. By selecting a mass window corresponding to the lambda signal in each event a lambda

“track” is considered.

4. The collection of lambda “tracks” is considered to calculate q(ar/ps) =
∑M

i=1(a
r
i /p

s
i )ni, in
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Figure 44: Comparison of lambda TPC efficiency as a function of pT for three centrality classes,
integrated from −0.9 < y < 0.

which a = ±1 for lambda/anti-lambda and p which corresponds to the track efficiency at a

given y and pT .

5. Average the event-by-event q(ar/ps) and calculate the cumulants with the procedure from

Section 6.0.2.

The corrected results using the “track-by-track” efficiency correction method are shown in

Figure 45 and Figure 46, along with the uncorrected cumulants and cumulant ratios.

As shown in Figure 45, the single cumulants increased in magnitude by a large factor after the

efficiency correction was applied. However, for the cumulant ratios there is little change with the

exception of C4/C2, where deviations from the uncorrected case start to be noticeable due to the

sensitivity in high order cumulants and the higher order correcting terms that are applied with

increasing order of the cumulant, see Figure 46.
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Figure 45: Comparison between efficiency corrected and uncorrected cumulants: C1, C2, C3 and
C4 as a function of average number of participant nucleons ⟨NPart⟩. Results were corrected for
CBWE. Only statistical errors are presented.

6.4 Volume Fluctuation Effects

As discussed in Section 3.4, centrality cannot be measured directly. It is determined by comparing

the produced charged particle multiplicity to Glauber model simulations. The effects of centrality

bin determination are potentially the centrality bin-width effect (CBWE). Results of fluctuations

of multiplicity distributions are often presented using wide centrality bins. Variations in the finite

centrality bin width can cause effects on the results. In order to eliminate the effects of the finite

centrality bin width, the observable is weighted by the number of events within the centrality bin

as shown in Eq. (111).

X =

∑
i niXi∑
i ni

(111)

where ni and Xi are the number of events and the observable in the i− th multiplicity bin, where

i spans the multiplicity bin in a centrality class.
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(a) C2/C1 (b) C3/C2

(c) C4/C2

Figure 46: Comparison efficiency corrected and uncorrected cumulant ratios as a function of
⟨NPart⟩. Results were corrected for CBWE. Only statistical errors are presented.
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7 Estimation of Uncertainties:

7.1 Statistical Uncertainty Estimation

For the BES-I, the data for the lowest center of mass energies used were taken in the collider mode,

which suffered from low statistics and only around three and seven million of events were used

for the
√
sNN = 7.7 GeV and

√
sNN = 11 GeV, respectively. Due to the low statistics, analyzers

considered different methods to calculate statistical uncertainties. Three different methods were

proposed: the Delta theorem, sub-sample and the Bootstrap method. For the lamba fluctuation

analysis at
√
sNN = 3.0 GeV, the Bootstrap method was implemented due to its simplicity. The

Delta theorem was also used for the statistical uncertainties of transport models that are compared

with data. Therefore in this section, we only describe the Delta theorem [60] and the Bootstrap

method [61].

7.1.1 Delta Theorem

The Delta theorem allows to approximate an uncertainty by transforming a distribution with a

known uncertainty. The delta theorem allows to calculate an analytical expression for the uncer-

tainties of the cumulants and the cumulant ratios [60]. In order to state the Delta theorem, let us

consider the central limit theorem (CLT).

Central Limit Theorem: Let X1, ..., Xn be a random sample of size n, where n is a sequence

of identically distributed random variables from a distribution with µ < ∞ and σ2 < ∞. As

n → ∞, the difference between sample average ⟨X⟩ = (X1 + ...+Xn)/n and µ when multiplied by

√
n approximates to a normal distribution with ⟨X⟩ = 0 and variance σ2

√
n(⟨X⟩ − µ)

d−→ N(0, σ2). (112)
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From the CLT, the Delta theorem states: If there is a sequence of random variables Xn that satisfies

Eq. (112), then

√
n(g(⟨X⟩)− g(θ))

d−→ N(0, σ2 · g′(θ)2) (113)

for any function g, where g′(θ) exists and is non-zero valued. It is know from [60] that, if the central

moments µ2k = ⟨(X − µ)2k⟩ < ∞, then the random vector
√
n(µ̃2 − µ2, ..., µ̃k − µk) converges

in distributions to (k − 1)-variate normal with mean vector (0, ..., 0) and the covariance matrix

[
∑

ij ](k−1)×(k−1), where

∑
ij

= µi+j − µiµj − iµi−1µj+1 − jµi+1µj−1 + ijµi−1µj−1µ2. (114)

With Eq. (114) and the Delta theorem, the limiting distribution central moments transformed by a

function g can be calculated. For example, using Eq. (114), the limiting distribution of the sample

variance is

σ̂
d−→ N(σ2,

µ4 − σ4

n
). (115)

To calculate the limit distribution of the standard deviation σ̂, one can define the function g(x) =

√
x. Applying the Delta theorem, the limit distribution is

σ̂
d−→ N(σ,

µ4 − σ4

4σ2n
). (116)

Multivariate Delta Theorem: In order to calculate the statistical uncertainties for the cu-

mulants and cumulant ratios, it is required to use the multivariate case of the Delta theorem.

Consider X = {X1, ..., Xn} is normally distributed as N(µ, σ/n), where Σ is a covariance matrix.

Let g(x) = (g1(x1), ..., gm(xk)), where x = (x1, ..., xk), a vector-valued function. Each component

function gi(x) is real valued and has a non-differentiable gi(µ), at x = µ. With the use of the
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Jacobian determinant

D =

[
∂gi
∂xj

∣∣∣
x=µ

]
(117)

the approximate statistic can be calculated as

g(X)
d−→ N(g(µ),

DΣD′

n
) (118)

To calculate the standard error on cumulants or cumulant ratios, one can define a random sample

moments vector as

T̂ =


û2

û3

û4

 d−→ N



u2

u3

u4

 ,
Σ

n

 (119)

where Σ is defined in Eq. (114). With Eq. (118), the sample error of the transformed random

vector can be calculated. The calculated variances of the cumulant ratios C3/C2 and C4/C2 are

Var(C3/C2) =(9− 6µ4 + µ2
3(6 + µ4)− 2µ3µ5 + µ6)σ

2/n (120)

Var(C4/C2) =(−9 + 6µ2
4 + µ3

4 + 8µ2
3(5 + µ4)− 8µ3µ5 + µ4(9− 2µ6)− 6µ6 + µ8)σ

4/n (121)

7.1.2 Bootstrap Method

In the bootstrap method [62], the variance of the sample distributions is used to estimate the

statistical uncertainty. B number of statistical samples are generated and each sample size is

equivalent to the data set. The samples are generated by randomly selecting events. Consider a

sample X, where the measurement is ê, the procedure for the error calculation is the following:

1. Given a parent sample size N , create B number of independent bootstrap samples X1, ..., XB,

each sample containing n data points randomly drawn with replacement from the parent

sample.
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2. The estimator(measurement) of each bootstrap sample is calculated, êb = ê(Xb) for b =

1, ..., B.

3. The sample variance of the estimator is given by

Var(ê) = 1
B−1

∑B
b=1(êb − ¯̂e)2, where ¯̂e = 1

B

∑B
b=1(êb).

Studies have shown [62] that the number of boostraps that show agreement between the Delta

theorem and boostrap method is when B > 1000. Both methods agree at 1% level if the number of

bootstraps is increased significantly (B > 10000). For the lambda fluctuation analysis at
√
sNN =

3.0 GeV, the Bootstrap method is the selected uncertainty estimator technique. The reason of

choosing the Bootstrap method instead of the Delta theorem is the naturally propagation through

the cumulant corrections and most importantly is that the Delta theorem requires to calculate

the µ2n of the nth highest moment. This is problematic as background and efficiency corrections

become more difficult at higher orders. After tests of different values of bootstrap samples it was

observed that increasing the number of bootstraps for values greater than B = 50 did not change

the magnitude of the uncertainties, therefore B = 50 number of bootstraps was used in order to

reduce the computational demand in the calculation.

7.2 Estimation of Systematic Uncertainties:

The systematic uncertainty of the cumulants and correlation functions of net-lambda fluctuation

at
√
sNN = 3.0 GeV is subdivided into four categories: uncertainty associated with the efficiency

corrections, particle identification, track quality and reconstruction of V 0. Detector imperfections

are addressed to some level in the efficiency corrections using the procedure explained in Section 6.

The uncertainty associated with the selection process used for the identification of charged particles

is studied by varying the nσ for each charged particle, which uses the ionization energy loss to

identify charge particles in the TPC, as seen in Figure 18. The purity of the samples depends on the

particle identification (PID) cuts. Different topological cuts were used for the reconstruction of V 0s,

varying the cuts change the signal and the background of the V 0s, the different cuts and properties
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are shown in Section 4.5. The different cuts affected the purity of the sample and the reconstruction

efficiency as a well. Therefore, variations of the topological cuts were included as a source for

systematic uncertainty estimation. Additionally, the uncertainties in the reconstruction efficiency

were included as a source for systematic uncertainties. The sources and variations are listed in

table 5. The root mean square (RMS) value for each cut variation for cumulants and correlation

functions as a function of centrality is shown in Figure 48 and Figure 50, respectively. RMS for

each cut variation for cumulants and correlation functions as functions of rapidity window (∆y)

are shown in Figure 52 and Figure 54, respectively. The calculation of the systematic uncertainty

was done by using Equations (122) and (123) by considering the contribution from all potential

sources mentioned above. The results are corrected for reconstruction efficiency for each cut-set

variation. Then, the point by point difference between the results from each cut selection and the

default value is calculated. The RMS for each cut is calculated using Eq. (122), where N stands for

the number of different cuts used in a certain cut variation, Xi, corresponds to the results from a

particular cut set, and Y corresponds to the default result. The systematic uncertainty is calculated

from Eq. (123), where j stands for the number of sources used in the error estimation,

RMS =

√√√√ 1

N

N∑
i=1

(Xi − Y )2 (122)

SysError =

√∑
j

RMS2
j . (123)

The main source of systematic uncertainty is the selection criteria used in the identification of

protons and pions (nσ). It has a relative contribution of 48.2% to the systematic uncertainty in

C3/C2 for 0−5% central collisions. The second largest contribution comes from the topological cut

variations. The contribution of the variation in efficiencies on the systematic error was relatively

small, as seen in Table 5.
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7.2.1 Systematic Variations as a Function of ⟨NPart⟩

Figure 47 and Figure 49 show the comparison of the cumulant ratios and factorial cumulant ratios

for different sources as a function of ⟨NPart⟩. It can be observed in Figure 48 that for most

central collisions the main source of systematic uncertainty is due to the particle identification

(nσ), similarly the topological variations contribute considerably to the source of uncertainty in

most central and most peripheral collision. The reason of the contribution for most peripheral

collisions in the case of the topological variations is due to the decrease of lambda tracks and the

effects of the tight topological cuts. The effect of the track quality and efficiency variations are small

for most centralities. In general, systematic uncertainties for all sources increase with increasing

order of the cumulant ratio. Figure 50 shows that the effect of topological variations is stronger in

most central collisions and in most peripheral collisions. It can be observed that the quality of the

tracks contributes considerably in most central collisions but the least in most peripheral collisions,

this is due to the fact that more tracks are produced in most central collisions which represents

difficulties to recognize good tracks from broken tracks. Variations in efficiencies contribute the

least to the systematic uncertainty.

Table 5: Sources of the systematic uncertainty, their variations and the contribution for the sys-
tematic error. Relative contributions are calculated in the most central collisions(0−5%) of C3/C2

Source Variation Contribution

Topological cuts χ2
prim > 15, χ2

topo < 5, χ2
NDF < 5 (standard)

χ2
prim > 10, χ2

topo < 5, χ2
NDF < 5

χ2
prim > 12, χ2

topo < 5, χ2
NDF < 5 42.5%

χ2
prim > 5, χ2

topo < 7, χ2
NDF < 5

χ2
prim > 7, χ2

topo < 10, χ2
NDF < 6

nσ(π) and nσ(p) < 3.0 & 3.0 (default)
< 2.5 & 2.5 48.2%
< 2.0 & 2.0

nHitsFit > 15 (default)
> 12 6.1%
> 10

Efficiency(lambda) ε (default)
ε× (1 + 10%) 3.2%
ε× (1− 10%)
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Figure 47: Effect of cut parameter variations and efficiency variation on the efficiency corrected
net-lambda cumulant ratios as a function of centrality at

√
sNN = 3.0 GeV Au+Au collisions.

Figure 48: RMS values of cumulant ratios as a function of centrality at
√
sNN = 3.0 GeV Au+Au

collisions.
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Figure 49: Effect of cut parameter variations and efficiency variation on the efficiency corrected
net-lambda correlation function ratios as a function of centrality at

√
sNN = 3.0 GeV Au+Au

collisions.

7.2.2 Systematic Variations as a Function of ∆y

Figures 51 and 53 show the comparison of the cumulant ratios and correlation function ratios for

different sources as a function of ∆y for most central collisions (0 − 5%). It can be observed in

Figure 52 that the topological variations dominate the systematic uncertainties in all centralities,

the effect is stronger with higher order of the cumulant ratio and with increasing ∆y, the reason of

the contribution is due to the low efficiencies at higher ∆y. The similar effect can be observed in the

efficiency variations, where the contribution to systematic uncertainties increases with increasing

rapidity window. The contribution of the quality of the tracks shows a constant behavior with

increasing . In the case of nσ, it can be observed that there is an increasing contribution to

systematic uncertainties in the region between ∆y = 0.4 to ∆y = 0.8, which corresponds to the

central region of the TPC where most of the charge particles are detected, therefore the quality of

the charged particle identification becomes more difficult. Figure 54 show the contribution of the
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Figure 50: RMS values of correlation function ratios as a function of centrality at
√
sNN = 3.0

GeV Au+Au collisions.

sources for the correlation functions, similarly to what was observed for the cumulant ratios the

contribution of the topological variations is dominant for all values of ∆y.
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Figure 51: Effect of cut parameter variations and efficiency variation on the efficiency corrected net-
lambda cumulant ratios as a function of rapidity window at

√
sNN = 3.0 GeV Au+Au collisions.

Figure 52: RMS values of cumulant ratios as a function of rapidity window at
√
sNN = 3.0 GeV

Au+Au collisions.
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Figure 53: Effect of cut parameter variations and efficiency variation on the efficiency corrected net-
lambda correlation function ratios as a function of rapidity window at

√
sNN = 3.0 GeV Au+Au

collisions.

Figure 54: RMS values of correlation function ratios as a function of rapidity window at
√
sNN = 3.0

GeV Au+Au collisions.
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8 Baseline and Model Comparison

The results of the net-lambda fluctuation at
√
sNN = 3.0 GeV need to be studied and compared

with different baselines. These baselines can provide the underlying physics interpretation of the

measured data.

8.1 Poisson Baseline

In the abscence of particle correlations, the measured particles behave as a gas of free particles

that obey a Poission statistics. In a net-particle multiplicity distribution, the proper baseline that

was used was the difference of two independet Poission distributions which is called a Skellam

distribution. The probability mass function for a Skellam distribution is given by

P (N) =

(
µ1

µ2

)
(N/2)IN (2

√
µ1µ2)e

−(µ1+µ2) (124)

where µ1 and µ2 are the means of the particle and anti-particle distributions. IN corresponds to

the modified Bessel functions of the first kind. The baseline for the cumulants of a net-particle

distribution is given by

C2n = µ1 + µ2, n = 1, 2, 3, ... (125)

C2n−1 = µ1 − µ2, n = 1, 2, 3, ... (126)

As mentioned previously for the net-lambda fluctuation analysis at
√
sNN = 3.0 GeV, the

production of antilambdas is negligible. Therefore, for this analysis the corresponding baseline for

the cumulants is given by

C2n = µlambda, n = 1, 2, 3, ... (127)
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C2n−1 = µlambda, n = 1, 2, 3, ... (128)

Thus, all cumulant ratios equate to one in the poissonian limit (e.g. C2/C1 = C3/C2 = C4/C2 = 1).

8.2 UrQMD Transport Model

All results from the net-lambda fluctuation, at
√
sNN = 3.0 GeV were compared to UrQMD.

UrQMD is a microscopic transport model which is tuned to reproduce particle observables. This

microscopic transport model describes phenomenologically the interactions between hadrons at

collision energies of
√
sNN < 5 GeV [63] in terms of interactions between known hadrons and

their resonances. The microscopic theory is based on the covariant propagation of hadrons on

classical trajectories in combination with stochastic binary scatterings, color string formation and

resonance decay. The model represents the Monte Carlo solution of a set of coupled partial integro-

differential equations for the time evolution of phase space densities of different particle species. It is

important to emphasize that the model does not produce a system in equilibrium and therefore does

not contain any critical phenomena. The model additionally guarantees that quantum numbers

are conserved globally event-by-event on the Cooper-Frye hypersurface [64]. For this analysis,

80 million of events were used using UrQMD 3.4 in Au+Au collisions at
√
sNN = 3.0 GeV in

cascade mode. The net-lambda single cumulants and cumulant ratios were calculated as functions

of collisions centrality and rapidity.

8.3 Hadron Resonance Gas Model

Thermal-statistical models, such as the hadron resonance model, have been used as a good descrip-

tion of many experimental hadron yield data from heavy-ion collisions for a broad range of collision

energies [65], [66]. Thermal-statistical models assume emission of particles from a thermally and

chemically equilibrated source created in these reactions. By fitting the observed yields of stable

hadrons, one is allowed to determine thermal parameters that correspond to the chemical freeze-out
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stage of the collisions. The results from the net-lambda fluctuation analysis at
√
sNN = 3.0 GeV

were compared with the Thermal-FIST package [67], which allowed to study the results within the

different extensions of the HRG model.

8.3.1 Ideal HRG

In the simplest setup of the HRG model, the thermodynamics of the hadronic phase is described by

an ideal gas of point-like hadrons. Interacting hadronic matter in the ground state is approximated

by a non-interacting resonance gas. In the grand canonical ensemble (GCE) of the ideal HRG model

there are no correlations between different hadronic species. Therefore, the pressure is written as

p(T, µ) =
∑
i

pidi (T, µi) (129)

where the sum is over all hadron species included in the model and the pressures pi(T, µi) is given

by the ideal Fermi or Bose gas at the corresponding temperature and chemical potential.

pidi (T, µi) =
di
6π2

∫ ∞

0

k4dk√
k2 +m2

i

exp

√
k2 +m2

i − µi

T

+ ηi

−1

(130)

where di and mi are the spin degeneracy and mass of hadron species i, respectively. ηi, equals to +1

for fermions and −1 for bosons, 0 for the Boltzmann approximation. Within the GCE formulation,

all conserved charges, such as baryon number B, electric charge Q and strangeness S, are conserved

on average. The susceptibilities of conserved charges can be calculated as

χBSQ
lmn =

∂l+m+np/T 4

∂(µB/T )l∂(µS/T )m∂(µQ/T )n
(131)

where l, m and n stand for the different orders in the susceptibility.
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8.3.2 Quantum Van der Waals HRG

Interactions between hadrons can be assigned explicitly within the HRG model. The presence of

both, short-range repulsive and intermediate/long range attractive interactions can be treated in

the framework of the Quantum Van der Waals (QvdW) equations [68]. The HRG-QvdW model is

defined by using the following pressure function

p(T, µ) =
∑
i

pidi (T, µ
∗
i )−

∑
i,j

aijninj (132)

where pidi corresponds to the pressure in the ideal HRG and ni corresponds to the particle number

densities, which satisfy the system of linear equations

∑
j

[δij + b̃jin
id
i (T, µ

∗
i )]nj = nid

i (T, µ
∗
i ). (133)

The shifted chemical potentials, µ∗
i , satisfy the system of transcendental equations

µ∗
i +

∑
j

b̃ijp
∗
j −

∑
j

(aij + aji)nj = µi. (134)

Therefore, in order to calculate the pressure p(T, µ), first one needs to solve numerically the system

of equations for µ∗
i and then use these results in Eq. (132). The parameters b̃ij and aij correspond to

the repulsive and attractive part between hadrons of the QvdW equation, respectively. The HRG-

QvdW model allows the inclusion into the HRG model of the basic features of nuclear matter, in

particular, the nuclear liquid-gas phase transition. At
√
sNN = 3.0 GeV, the values used for the

repulsive and attractive parameters are b = 3.42 fm3 and a = 329 MeVfm3, which are obtained by

fixing a and b in order to reproduce properties of nuclear matter in its ground state [68].
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8.3.3 Strangeness Canonical Ensemble HRG

The canonical ensemble assummes exact conservation of the corresponding conserved charges in the

system. At intermediate heavy-ion collision energies, such as
√
sNN = 3.0 GeV, the abundances

of hadrons carrying strangeness are significantly smaller than the produced light flavored hadrons.

Therefore, in this case it is sufficient to implement the canonical treatment of strangeness only,

while preserving the grand canonical treatment of the baryon number. Within Thermal-FIST, the

canonical treatment of strangeness is archived in the strangeness-canonical ensemble (SCE).
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9 Results and Discussion

In this section, the net-lambda fluctuation measurements are presented as a function of central-

ity, rapidity window and a comparison with the previous net-lambda measurements [35] is done

as a function of collision energy. The cumulant and factorial cumulant results are calculated ac-

cordingly to the procedures described in Section 3 and Section 4 and 6 of this dissertation. The

net-lambda cumulants and correlation functions were corrected for reconstruction efficiency using

the “track-by-track” efficiency correction as described in Section 6.0.3. The statistical uncertain-

ties and systematic uncertainties were calculated and are presented using a vertical error-bar and

a shaded error bar, respectively. The results are presented for different centralities, where the cen-

trality bin-width correction is used to reduce the bin-width effect. The results are compared as a

function of centrality and rapidity with the poissonian baseline and predictions from the UrQMD

model. Cumulant ratios as a function of rapidity window are compared with thermal model pre-

dictions (HRG) for different cases.

9.1 Single Cumulants and Correlation Functions as a Function of

Centrality

As it was discussed in Section 3, the collision centrality is used as a measure of the degree of

overlap between the two colliding nuclei. The quantity used to represent the collision centrality is

the average number of participating nucleons (⟨NPart⟩). Figure 55 shows the centrality dependence

of the first four single cumulants. As it can be observed, the single cumulants show increasing

behavior with increasing ⟨NPart⟩. It can be observed that C1, that represents the mean number of

lambdas at
√
sNN = 3.0 GeV , shows low production of strange particles at this energy and increases

for most central collisions, as expected. The transport model UrQMD has better agreement with

data for most peripheral collisions and starts to deviate from data for most central collisions. The

deviation increases with increasing order of the cumulant. The deviation of the single cumulants
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from UrQMD was also observed for higher energies [35], impliying that UrQMD might over-predict

strange baryon production at low
√
sNN . The relative deviation of the transport model for the

higher moments is consistent when propagating the initial over-prediction in the produced particle

mean (C1) to C2, C3, C4. Figure 56 shows the centrality dependence of the correlation function.

It can be observed that UrQMD agrees better for factorial cumulants greater than K1. This again

might indicate that UrQMD over-predicts the lambda yield.

Figure 55: Single cumulants as functions of centrality.

9.2 Cumulant Ratios and Correlation Function Ratios as a Func-

tion of Centrality

Figure 57 shows the cumulant ratios as a function of centrality. It can be observed that the

cumulant ratios are consistent with the Poissonian baseline at all centralities and for all orders of

the ratios. This is also true for the UrQMD calculations. A slight depletion for central collisions,
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Figure 56: Correlation functions as functions of centrality.

away from the baseline, can be observed for the higher moment ratios, which becomes statistically

significant for C4/C2 at the highest centralities. As described in Section 1, the reason for using

cumulant ratios is due to the easy comparison of fluctuation measurements with theory due to the

volume independence of the observable. Therefore, as observed in Figure 57, the ratios show weak

dependence on the collision centrality, as it is expected. The UrQMD cumulant ratios show better

agreement with data as a function of centrality. Deviations from UrQMD start to be noticeable with

increasing order of the cumulant ratio. Regarding the statistical uncertainties, it can be observed

that they dominate in most peripheral collisions, mainly due to the low lambda production at

√
sNN = 3.0 GeV and the high contribution of systematics for most peripheral collisions is mainly

due to the sensitivity of the V 0 reconstruction to topological cuts (see Figure 48 ) in a centrality

with low lambda multiplicity. Overall, systematic uncertainties dominate for most peripheral and

most central collisions, in the latter due to increased background in the particle identification and
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the sensitivity of the topological cuts at low
√
sNN . Figure 58 shows the correlation function ratios

as a function of centrality. As mentioned in Section 5.2, the correlation function ratios represent a

genuine measure of multi-particle correlations [69]. K2/K1, K3/K1 and K4/K1 indicate two, three

and four lambda particle correlations. As it can be observed, the ratios behave independently of the

centrality. This indicates that the correlation function ratios depend very weakly on the number of

produced lambdas, since lambda production increases with increasing participating nucleons. One

scenario proposed for the aforementioned behavior, is that the sources of correlation are correlated

themselves or that the sources correlate with increasing number of particles [69]. In any case,

centrality independence of the correlation functions indicates that an increasing number of lambda

particles are correlated [69] . In summary, the centrality dependence of both the cumulant ratios

and factorial cumulant ratios show small correlation for mid-central and peripheral collisions. At

the same time, higher order cumulant ratios (C4/C2 and C3/C2) show weak suppression from the

poissonian baseline for most central collisions.

9.3 Cumulant Ratios and Correlation Function Ratios as a Func-

tion of ∆y

In light of the deviation of C4/C2 away from the Poissonian baseline in central collisions, it was

decided to measure the ratios and correlation functions also as a function of rapidity for the most

central collisions (0−5%). The study of cumulant and correlation functions as a function of rapidity

was done by asymmetrically increasing the rapidity window (∆y), where the studied window is

ymin < y < 0. The rapidity cut ymin is varied from −0.9 to −0.2. Figure 59 show, the rapidity

dependence of lambda cumulant ratios within ymin < y < 0 and 0.5 < pT (GeV/c) < 2.0 for

the most central (0 − 5%) centrality class. It can be observed that all cumulant ratios approach

unity as the rapidity window (∆y) is decreased. The C2/C1 ratios shows a largely independence of

∆y. The cumulant ratio C3/C2 and C4/C2 show suppression from unity with increasing ∆y. The

values of the UrQMD cumulant ratios show similar decreasing trends with increasing ∆y but not
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(a) C2/C1 (b) C3/C2

(c) C4/C2

Figure 57: Cumulant ratios as functions of centrality.

as strong as shown in data. Qualitatively, there are two different acceptance regimes in the system:

when ∆y ≫ ∆ycorr and ∆y ≪ ∆ycorr, where ∆y is the width of the acceptance in rapidity and

∆ycorr is the range of the lambda correlation in rapidity. When ∆y << ∆ycorr, it is expected that

∆y ∼ ⟨N⟩ → 0 and the cumulant ratios approach to Poisson limit. This is shown in Figure 59.

Similarly, as ∆y → 0, it is expected that the correlation functions become rapidity independent

and approach 0; this is also observed in Figure 60. In the large rapidity window ∆y >> ∆ycorr,

cumulants are expected to grow linearly as ∆y increases. Figure 61 shows the linear-like behavior

for the cumulants: C4 seems to deviate from a linear behavior for high values of ∆y. Therefore, as

the cumulants grow linearly, the cumulant ratios will plateau, which indicates a saturation of the

physical correlations. The saturation is observed in cumulant ratios C3/C2 and C4/C2 for values

greater than ∆y = 0.6 . It is important to mention that, if the cumulant ratios continue to increase,
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(a) K2/K1 (b) K3/K1

(c) K4/K1

Figure 58: Correlation function ratios as functions of centrality.

this could indicate uncorrelated effects in the measurement, such as volume fluctuations [69]. The

deviation of the cumulant ratios C3/C2 and C4/C2 from the poissonian limit does not imply a

priori the presence of any three or four particle correlations, since two-particle correlation functions

might also play a role in the contribution to the linear combination of multi-particle correlation

functions to construct the cumulant ratios [69]. Other non-equilibrium effects might enter into play

when studying the acceptance dependence of the cumulant ratios, such as hadronic rescattering in

the expansion of the system [70].

In the case of the rapidity dependence of the correlation functions, it can be observed from

Figure 60 that the ratio K2/K1 shows values close to zero and shows agreement within error

bars with the transport model UrQMD. K3/K1 shows suppression from the poissonian baseline

(K3/K1 = 0) and deviates from UrQMD as ∆y increases. K4/K1 shows small suppression from
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the poissonian baseline (K4/K1 = 0) at ∆y = 0.3. For all other rapidity windows it remains

poissonian within error bars. UrQMD shows poissonian-like behavior for all correlation functions.

(a) C2/C1 (b) C3/C2

(c) C4/C2

Figure 59: Cumulant ratios as functions of rapidity window.

9.4 Comparison with Thermal Model Predictions

Figures 61 and 62 show the comparisons between lambda single cumulants and cumulant ratios

as functions of ∆y with results from the HRG model for most central collisions (0 − 5%). The

magenta and green bands show the HRG prediction for lambda cumulants and cumulant ratios at

the freeze-out temperatures (Tf ) and chemical potential (µf ) extracted from preliminary particle

yields from the STAR collaboration at
√
sNN = 3.0 GeV. Table 6 shows the parameters obtained

from the fit of the particle yields in the GCE and SCE for both ideal and QvdW case. The magenta
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(a) K2/K1 (b) K3/K1

(c) K4/K1

Figure 60: Correlation functions as functions of ∆y.

band shows the prediction in the case of the grand canonical ensemble with quantum Van der Waals

interactions (QvdW GCE), where the charges (Q, B, S) are conserved on average. Similarly the

green band shows the prediction in the case of the strangeness canonical ensemble (SCE), where

the strangeness charge is conserved exact while preserving the grand canonical treatment of baryon

number. The blue band corresponds to the interacting case of the canonical ensemble (QvdW

SCE). As it can be observed in Figure 61, the trend of the data is described by the two versions

of HRG but it fails to completely agree with the data. The GCE version deviates from the data in

all orders of the cumulants. For the SCE ensemble, it can be observed that the results show less

deviation from data when the order of the cumulant increases, implying a higher sensitivity of the

local strangeness conservation in higher order cumulants.

Figure 62 shows the cumulant ratios compared with the thermal model. It can be observed
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Table 6: Parameters obtained from Thermal FIST [67] using preliminary particle yields at
√
sNN =

3.0 GeV

Parameters Ideal GCE QvdW GCE Ideal SCE QvdW SCE

T (MeV) 57.7± 0.9 57.7± 0.9 64.3± 0.6 64.3± 0.6

µB(MeV) 703.8± 4.6 701.9± 4.3 714.7± 5.3 711.5± 5.1

r(fm) 21.9± 1.1 21.9± 1.1 16.9± 0.8 16.9± 0.7

rcorr(fm) – – 10± 0.6 9.9± 0.6

µQ (MeV) −10.69 −10.64 −12.94 −12.94

µS (MeV) 97.51 97.5 – –

χ2/NDF 8.6 8.6 11.9 11.8

that the cumulant ratios for the QvdW GCE case remain poissonian (C2/C1 = C3/C2 = C4/C2 =

1) for all values of ∆y. It has to be noted that, in the ideal GCE case, the cumulant ratios

remain poissonian. On the other hand, the cumulant ratios in the SCE case show suppression with

increasing ∆y; the suppression is stronger with increasing order of the cumulant ratio. The SCE

ensemble describes qualitatively the trend observed in the data, except for the C4/C2 case, where

for the value at ∆y = 0.5 the model describes the data. It has to be noted that the values of the

cumulants and cumulant ratios from SCE here obtained from the extracted parameters obtained

from the particle yields at
√
sNN = 3.0 GeV. Some of these parameters are the volume of the

system (V ) and the strangeness canonical correlation volume (Vc), which assumes two spheres

with radii r and rc, respectively. rc defines a region of the particle production phase space inside

which the production of strangeness is canonically conserved. It is important to point out that the

QvdW and the Ideal model do not show major differences. The extracted values used to obtain

the cumulants from the thermal model are r = (16.9 ± 0.8) fm and rc = (10.0 ± 0.6) fm. The

sensitivity of the cumulants is highly dependent on the value of rc . If the value of rc is increased

while maintaining fixed r, the cumulant ratios show stronger suppression than the one observed

in Figure 62. On the other hand, if rc decreases while maintaining a fixed r, the cumulant ratios

show weak suppression and show values close to 1.0. Recently, the STAR collaboration reported

the measurements of strange hadrons K−, ϕ and Ξ− yields and their ratios in Au+Au collisions at

√
sNN = 3.0 GeV [71]. The 4π yields were compared to thermal model predictions with the grand
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canonical ensemble and the canonical ensemble for strangeness. It was observed that the ratios

were reproduced using the canonical ensemble of strangeness with correlation lengths of rc ∼ 2.7

fm and rc ∼ 4.2 fm for the ϕ/K− and ϕ/Ξ− , respectively. This indicates that the event-by-event

strangeness conservation is crucial at these energies [72] and more importantly it implies that the

value of rc dependents on the strangeness quantum number S. This suggest that the value of rc

needs to be studied for the case of lambda particles, which seems to have higher value than the

one obtained from the particle yields at
√
sNN = 3.0 GeV. Since higher order cumulant ratios are

significantly more sensitive to any quantum number correlation volume than the simple yield ratios,

it is likely that the combination of strangeness and baryon number in the case of lambda particles

requires a larger volume that is only fully mapped out when studying the event-by-event kurtosis

over variance ratio of the particle distribution. Thus, these first results indicate that further studies

of the fluctuations of multi-strange baryons might be needed.

9.5 Beam-energy Dependence of Net-lambda Cumulant ratios,

C2/C1 and C3/C2

Figure 63 shows the beam-energy dependence of the net-lambda cumulant ratios, where the values

of the lowest center of mass energy achieved in STAR (
√
sNN = 3.0 GeV) was included to the

already published results [35]. Where a) shows C2/C1 and b) C3/C2 for most central collisions.

Due to low statistics during the first beam energy scan at RHIC, higher order cumulants were not

possible to obtain. It can be observed in a) that C2/C1 increases monotonically as a function of

increasing collision energy in most central collisions. The measured values shows better agreement

with the Ideal HRG model at high sNN , while UrQMD shows strong deviations from data with

increasing
√
sNN .

Figure 63 b), shows that C3/C2 monotonically decreases as a function of increasing colli-

sion energy with approach to zero at 200 GeV and approach to unity at 3 GeV. UrQMD pre-

dictions for C3/C2 also followed the same trend as in the data and decreased as a function of
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(a) C1 (b) C2

(c) C3 (d) C4

Figure 61: Single cumulants as functions of rapidity window compared with thermal model calcu-
lations.

increasing energy but deviate from most of the data points. It can also be observed that the

results from the ideal HRG model show better agreement with the data points. The ideal HRG

predictions for net-lambda cumulant ratios were calculated at the values of freeze-out temper-

atures (Tf ) and chemical potentials (µf ) extracted from particle yields from different energies

(
√
sNN = 3, 4.9, 7.7, 11.5, 19.6, 27, 39, 62.4, 200GeV). The ideal HRG using the SCE ensemble is

added for comparison at
√
sNN = 3.0 GeV; overall it shows a weak suppression from the predicted
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(a) C2/C1 (b) C3/C2

(c) C4/C2

Figure 62: Cumulant ratios as functions of rapidity window compared with thermal model calcu-
lations.

point of ideal HRG GCE.
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Figure 63: Cumulant ratios (C3/C2 and C2/C1) as functions of center of mass energy.
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10 Summary

The objective of the beam energy scan (BES) at RHIC is to study the characteristics of the QCD-

phase diagram to obtain information about the strongly interacting matter and its evolution along

the temperature and chemical potential. The identified net-particle multiplicity distributions that

were created after heavy ion collisions were used as proxies for net quantum number fluctuations.

The importance of the proxies relies on their sensitivity to the correlation length that could provide

hints on the location of the QCD critical point. The second beam energy scan (BES-II) was

motivated by many results obtained in the BES-I that suggested a change in the equation of state

of QCD matter [73], [74]. The study from BES-I showed a non-monotonic behavior of the cumulant

ratio C4/C2 of net-proton multiplicity distributions in central Au+Au collisions as a function of

energy [75]. This result motivated the focus on the collision energy in the region between 3−20 GeV,

which required the change in configuration in the STAR detector from collider mode to fixed-target

mode.

From the previous work on net-lambda fluctuations [35], it was shown that the first cumulant

ratios and did not provide any information about the location of the critical point, higher order

fluctuations were necessary to have better sensitivity to the location of the critical point due to

their relation with the correlation length. Therefore, in order to measure higher order fluctuations

higher statistics are necessary. During BES-II the statistics was increased and the fixed target mode

extended the range of energies down to
√
sNN = 3.0 GeV. This dissertation describes a systematic

study of cumulants and correlation functions of lambda multiplicity distributions from Au+Au

collisions at
√
sN = 3.0 GeV. The data was collected with the STAR fixed-target mode in 2018 at

RHIC. The results include cumulants and factorial cumulants as functions of centrality, acceptance

and the result was compared with the previous results at other different energies. The STAR TPC

detector was used for the charged particle identification of protons and pions for the reconstruction

of the invariant mass of the lambda baryon. The purity of the reconstruction of the V 0 for the
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lambda particle was enhanced by optimizing topological cuts. The result is shown for a purity of

(∼ 93.75%) and it was systematically studied for other lower values of purity. The reconstructed

lambda particles were corrected for reconstruction inefficiencies using a binomial response function.

Due to a weak correlation between the measured reference multiplicity and the initial number of

participants, a considerable effect from volume fluctuations was expected. The effects of volume

fluctuations were suppressed in first order by using the centrality bin-width correction, which is a

data-driven correction. The results of proton fluctuations at the same energy
√
sNN = 3.0 GeV [59]

used a method to suppress the remaining effects of volume fluctuations [76]. However, the results

are highly dependent on the choice of the model and therefore difficult to trust; due to this reason,

the method was not applied to this analysis. It is important to mention, that the most central

events of higher order cumulant ratios C4/C2, C3/C2 and C2/C1 are the less affected by volume

fluctuations. For the net-lambda fluctuation analysis in the BES-I [35], the effects of contamination

due to lambda baryons coming from multi-strange and weak decays were studied and feed-down

correction was performed. It was found that the corrections increased the single cumulants but the

cumulant ratios were not affected, (the feed-down contribution used was ∼ 15%). The contribution

due to feed down decreases as the
√
sNN is decreased. An estimate of the feed-down contribution

from the strange production suggests a 0.4% of feed-down contribution at
√
sNN = 3.0 GeV mostly

by the contribution of Ξ−. Therefore effects from feed-down contribution for this work are negligible

for single cumulants and not expected to impact cumulant ratios. This analysis was done in the

transverse momentum range: 0.9 < pT (GeV/c) < 2.0, and in an assymetric rapidity window of

−0.5 < y < 0, where the statistics of the sample and the V 0 reconstruction efficiency became

reasonable. The results were presented with statistical and systematic error bars, the results were

compared with the transport model UrQMD and with the thermal model for different cases. The

single cumulants (C1, C2, C3, C4) increased as a function of centrality due to the increasing number

of participating nucleons in most central collisions. The cumulant ratios C2/C1, C3/C2 and C4/C2

show a weak dependence on the collision centrality and their behavior agrees with the poissonian

limit for most of the centralities. Most central collision show a weak suppression from the poissonian
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baseline. Similarly, the correlation function ratios showed values consistent with zero, corresponding

to the poissonian baseline. The UrQMD predictions show a similar trend as in data, where most

of the cumulant ratios are consistent with the poissonian baseline and agrees largely with data,

except for the most central collisions. Regarding the energy dependence of the cumulant ratios

(C2/C1 and C3/C2 ) for most central collisions, it was shown that C2/C1 follows a monotonically

increasing trend as a function of energy. C3/C2 shows a monotonic decrease as a function of energy,

starting from the highest value at
√
sNN = 3.0 and reaches it’s nadir at

√
sNN = 200 GeV. The

HRG model seem, to have better agreement with data, in contrast to the UrQMD predictions.

The rapidity dependence of cumulant and cumulant ratios of lambda show deviations from the

poissonian baseline as the rapidity window is increased. The UrQMD results yield similar trends

but deviate as the rapidity window decreases. The acceptance dependence of the lambda correlation

functions shows very weak variation with respect to the poissonian baseline making the implication

of the multi-particle correlations difficult at this energy. Additionally, the acceptance dependence

of the cumulant ratios was compared with the HRG predictions, extracted from the published

and preliminary particle yields at
√
sNN = 3.0 GeV. The comparison shows that, by using the

canonical treatment on the strangeness quantum number, the cumulants show that deviations from

the model and data are reduced considerably with increasing order of the cumulant, implying that

higher order cumulants are more sensitive to the effects of local conservation laws. Similarly, the

cumulant ratios show better agreement using the strangeness canonical approach than using the

grand canonical approach. It was noted from recent studies [71] that the correlation radius (rc)

plays a role in the description of conservation laws in event-by-event measurements of strange

particles at these low collision energies. Similarly, a description of the effects of local conservation

laws for different values of rc should be further investigated. Overall, although there is no evidence

of critical behavior in the lambda moments the detailed measurements of the rapidity dependence

of the higher order cumulant ratios in central collisions indicate the impact of strange and baryon

number conservation on the measurements, and their sensitivity to these effects. In this regard,

the data is consistent with the previously measured proton fluctuation data that showed that at
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this low collision energies the system likely does not undergo a phase transition and stays in the

dense hadronic phase which is well described with purely hadronic thermal and hadronic transport

models. The system energy is also too low to indicate any significant flavor hierarchy in the chemical

freeze-out, although studies of correlations in multi-strange baryons might be more sensitive to the

enhanced correlation of strangeness and baryon number. The precision of the data is encouraging

though, for the already sampled higher fixed target collision energies between 3.0 GeV and the

lowest collider energies at 7.7 GeV, which showed hints of phase transition behavior.
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