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Abstract

The measurement of conserved charge distributions has generated considerable in-

terest in understanding the cumulants of conserved quantum numbers in the quantum

chromo-dynamics (QCD) phase diagram, in particular the behavior near a possible

critical end point and hadronization near the chemical freeze-out line. Net-protons

and net-kaons have been used as proxies for net-baryons and net-strangeness, respec-

tively. In this work, the measurement of efficiency corrected and feed-down corrected

cumulant ratios (C2/C1, C3/C2) of net-Λ (Λ− Λ̄) are presented. Net-Λ fluctuations

were subjected to strangeness and baryon number conservation. Results are pre-

sented for five beam energies (
√
sNN = 19.6, 27, 39, 62.4, and 200 GeV Au + Au col-

lisions) as a function of centrality and rapidity. We compared the net-Λ results to the

published net-proton and net-kaon results at STAR. The results are presented with

the comparisons to Poisson baseline, the negative binomial distribution (NBD) ex-

pectations, the ultra relativistic quantum molecular dynamics model and the hadron

resonance gas (HRG) model. The data were corrected for efficiency in two ways, a

transverse momentum (pT ) - dependent and a pT - independent method. Both meth-

ods yielded similar results. Any feed-down contribution from multi-strange baryons

did not affect the net-Λ cumulant ratios. A non-monotonic behavior of the net-Λ

cumulant ratios indicating QCD critical point was not observed as a function of

collision centrality or energy. The energy dependence of the measured net-Λ C2/C1

stayed closer to HRG calculations assuming kaon freeze-out conditions than the HRG

calculations based on proton/charge freeze-out conditions. This could potentially be

an indication of the predicted sequential hadronization. The net-Λ cumulant ratios

showed weak dependence on the selected rapidity window. The deviation of NBD

expectation for net-Λ C2 from the measured C2 increased as a function of increasing

rapidity window, which could be attributed to baryon-number conservation.
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Chapter 1

Introduction

1.1 The evolution of the universe

At the very early stage of it’s evolution, the expansion of the universe was initiated

from a very dense and high temperature state according to the Big Bang model [1].

This state of matter is predicted to be very different from what we observe today.

Due to the extremely high energy density and temperature, nuclear matter could not

exist the way it is at present and finally after many advancements in both theory and

experiments, a new state of mater was discovered [2]. This state of matter, known

as the quark gluon plasma (QGP) is the soup of free quarks and gluons which are

known to be the basic constituents of nuclear matter.

Few moments after the Big Bang, the system started to cool-down and expand

rapidly. Numerous phase transitions took place over a period of about thirteen

billion years and resulted in the state of nuclear matter we have today. For a better

understanding of this process, new theories and experiments have been established.
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High energy particle collisions are the best way to probe the dynamics of a system

similar to the conditions at the beginning of the universe. In these collisions, an

environment similar to the very beginning of the universe is created in the lab to

investigate the physics processes during the phase transitions associated with nuclear

matter.

Figure 1.1 shows a schematic diagram which illustrates the different eras in the

evolution of the universe. This cosmological model is based on theoretical predictions

together with experimental observations. The accelerated expansion of the universe

was established after the observation of supernova’s cosmological red shift which is a

measure of how fast the supernovae are receding from us. Furthermore, the discovery

of the cosmic microwave background provides a substantial confirmation of the Big

Bang picture.

Figure 1.1: Schematic for the visualization of evolution of the universe after the Big
Bang.

In this dissertation, the focus is on the phase transition from quarks and gluons

to the ”Age of Nucleons” in Figure 1.1, which occurred ∼ 10−6 seconds after the Big
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Bang.

1.2 Standard model

The standard model is a classification of elementary particles and their interac-

tions according to many theoretical predictions followed by their experimental confir-

mations. All the forces in nature can be classified into four categories namely, weak

interaction, strong interaction, electromagnetic interaction, and gravity. Except for

gravity, all the other interactions can be described by the standard model.

The standard model includes six leptons (electron, muon, tau, and their respective

neutrinos), six quarks (up, down, charm, strange, top, and bottom), four gauge

bosons (photon, gluon, Z boson, and W bosons) and the Higges boson. Figure

1.2 shows a schematic of the standard model, where the first three columns show

three generations of matter, the 4th column shows the gauge bosons and in the 5th

column, the Higges boson. Masses, charges, and quantum numbers associated with

six different types of quarks are listed in Table 1.1.
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Figure 1.2: Schematic of the classification of elementary particles and interactions
according to the standard model.

Theoretical descriptions of the interactions associated with three generations

of matter (quarks and leptons) via the gauge bosons are supported by quantum

electrodynamics (QED), quantum chromodynamics (QCD), and electro-weak the-

ory (EWT). QED explains the interaction of charged particles through photons. Z

bosons and W bosons are the weak force carriers as described by EWT. Finally, QCD

describes the interaction between quarks and gluons through the exchange of color

charge.
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Table 1.1: List of quarks with their symbols, masses, charges, and corresponding
quantum numbers.

Quark Symbol Mass (MeV) Charge Quantum No.

Up u 1.5 −→ 4 +2
3

Isospin = +1
2

Down d 3 −→ 8 −1
3

Isospin = −1
2

Strange s 80 −→ 130 −1
3

Strangeness = −1
Charm c 1150 −→ 1350 +2

3
Charmness = +1

Bottom b 4100 −→ 4400 −1
3

Bottomness = −1
Top t 1.743× 105 ± 5100 +2

3
Topness = +1

1.3 Quantum Cromodynamics (QCD)

As mentioned earlier, quarks experience the strong interaction because they carry

color charges. Color-charge, is in many ways analogous to the electric charge. How-

ever, there are important differences. One of them, the electric charge, is a scalar,

but color-charge is not. The total color-charge of a system can be obtained by com-

bining the individual charges of the constituents according to the group theoretic

rules analogous to those used when combining angular momenta in quantum me-

chanics. There are three different color-charge states red, green, and blue. QCD

is the theory of strong interactions where these color-charge quantum numbers are

used to explain the interactions between quarks and gluons. Color confinement and

asymptotic freedom are two phenomena in QCD that are essential in understand-

ing the strong interaction. These phenomena will be briefly discussed in the next

sections.
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1.3.1 Asymptotic freedom

One of the prominent features in QCD is the phenomenon called asymptotic

freedom. It states that the interaction strength between quarks, which is also known

as the coupling constant (αs) becomes weaker as the distance between the quarks

gets smaller.

In electrodynamics, the interaction between two charged particles in a vacuum

is described by the Coulomb law. But in quantum field theory, the vacuum is not

empty and vacuum fluctuations can occur when a photon passes through it. The

interaction between two electrons in a vacuum is given by F = αem(r)/r2 where, αem

is the fine structure constant which depends on the distance, r, or the momentum

transfer, q. The dependence of αem on the momentum scale (or 1
r

scale) can be

determined by the differential equation,

µ
dα(µ)

dµ
= β(α(µ)) (1.1)

Here µ stands for the momentum scale and the β function may be calculated in

perturbation theory and the solution for the αem is,

αem(µ) =
αem (µ0)

1− αem(µ0)
3π

ln µ2

µ20

(1.2)

Here, it is obvious that the coupling becomes stronger when the distance gets

shorter. That means, QED becomes a highly coupled theory at short distances. In

QCD, the same differential equation holds except the β function is now different,

β(α) = − β0

2π
α2 + . . . (1.3)
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From the re-normalization group equation, the strong coupling constant (αs)

can be derived as in Equation 1.4. This shows that, when the momentum scale

approaches ∞ (r −→ 0), the coupling approaches 0 and this phenomena is called

asymptotic freedom. This characteristic of αs allows the use of the perturbative

approach to study free quark matter at large momentum transfers in a system such

as the one produced by heavy-ion collisions. Here, ΛQCD is the scale at where the

coupling becomes larger and the perturbative approach fails.

αs(µ) =
2π

β0 ln (µ/ΛQCD)
(1.4)

This peculiar behaviour of the strong coupling as a function of running scale, Q,

is experimentally verified as shown in Figure 1.3.

1.3.2 Color confinement

One other prominent feature in QCD in the low-energy regime (distance scale

> 1/ΛQCD) is the color confinement. As mentioned in Section 1.2, gluons and photons

are the mediators of the force between their respective particles quarks and charged.

However, there is an important difference. Photons have no charge but, gluons carry

color charges which give rise to the phenomenon called color confinement.

If two electrically charged particles are separated, the force between them de-

creases as the distance increases. This is because photons irradiate in all directions

and the intensity decreases as ∼ 1/r2. In QCD, this is different because the flux be-

tween two quarks acts in a way that it irradiates from a so-called ”color-flux tube”.

Thus, the force between quarks does not decrease but stays constant as the distance

increases. Eventually, if the tube contains enough energy, then it will breakdown
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Figure 1.3: Comparison of QCD expectation of the running coupling constant and
results from different experimental observations as a function of energy scale Q [3].

into a quark and anti-quark pair.

This phenomenon can further be explained by considering the potential VS(r),

VS(r) ∝ −4

3

αS

r
+ kr (1.5)

Here, r is the distance between the quarks, αs is the strong coupling constant,

and k is the field energy per unit length which describes long range interactions.

At short distances, Equation 1.5 resembles the Coulomb interactions while at large

distances, the kr term dominates. Therefore, in nature, color-charged particles can

not be isolated and always come in the form of color-neutral hadrons.
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1.3.3 QCD phase diagram

The phase diagram is a representation of the existence of different states asso-

ciated with matter with respect to certain thermodynamic variables such as tem-

perature, pressure, or density. For instance, the phase diagram of water represents

the different states of water as a function of pressure and temperature. The nuclear

matter phase diagram (also known as QCD phase diagram) represents the state of

nuclear matter as a function of baryon chemical potential (µB) and temperature (T ).

One version of the QCD phase diagram is shown in Figure 1.4.

Figure 1.4: QCD phase diagram: state of nuclear matter as a function of temperature
(T ) and baryon chemical potential (µB).

In the QCD phase diagram, the baryon chemical potential, which is the measure

of imbalance between matter and anti-matter, is plotted along the horizontal axis.

Zero µB represents the perfect balance between matter and anti matter. The variable

along the vertical axis is the temperature.

Led by various model predictions and experimental observations, boundaries and
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limits in the QCD-phase diagram have been established. However, not all the charac-

teristics in the QCD-phase diagram are confirmed by the experiments. Nevertheless

both theory and experiments suggest that there should be distinct phases in the

phase diagram. In the low-temperature region and around µB ∼ 940 MeV, there

exists the ground state of nuclear matter. At temperatures greater than ∼ 160 MeV

(critical temperature), the phase becomes independent of the µB and the only possi-

ble phase is the QGP. Below the critical temperature, quarks and gluons are confined

into hadrons.

The phase boundary between QGP and the hadron gas can be of different types.

At very low µB, the phase transition is expected to be a smooth crossover where

both phases can co-exist across the transition. On the other hand, when µB is finite,

the phase transition is of 1st order, where the first derivative of the Gibbs free energy

with respect to the order parameters is discontinuous. According to this description,

there should be an end-point to the first order phase boundary. That end point is

shown in Figure 1.4 and called the critical point. Searching for the precise location

of the critical end point in the QCD phase diagram is one of the challenging research

areas in high-energy physics.

During a heavy-ion collision, the initial QGP state can be achieved and the sys-

tem starts to evolve starting from very high temperatures (> 160 MeV). Then it

cools-down and rapidly expands. This expansion is nearly isentropic which follows

the trajectory of constant dµB/dS, where S stands for the entropy. Both tempera-

ture and µB decrease in this process and eventually a phase transition takes place.

Depending on the µB of the initial system (i.e. depending on the energy of the col-

lision), the system can undergo either a first-order or a crossover transition. In the

first-order transition regime, the phase will follow a path along the phase boundary
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at the transition due to the generation of latent heat. In the crossover regime, there is

no latent heat involved. Finally, the system will transit into a hadron gas of baryons

and mesons and isentropically cool down.

1.4 Freeze-out parameters

At the very initial stage (∼ fm/c, where c denotes the speed of light) after the

heavy-ion collision, the system experiences many hard processes such as fragmenta-

tion, quark pair production, and jet production. Once the system approaches the

phase transition, the QGP hadronizes into a hadron gas with a fixed chemical com-

position. This process is called the chemical freeze-out. The system is in equilibrium

at this time and the temperature (T ) and the chemical potential (µB) can be defined

as chemical freeze-out parameters. All the inelastic collisions stop at the chemical

freeze-out and as a result, particle multiplicities get fixed. Then, these produced

particles collide elastically and exchange their momenta. After the momenta become

fixed, the system reaches the kinetic freeze-out. Figure 1.5 shows an illustration of

the evolution of the system in space and time.

1.4.1 Susceptibilities of conserved charges

Conservation laws play an important role in the evolution of the system after

heavy-ion collisions. Net-charge (∆Q), net-baryon number (∆B), and net-strangeness

(∆S) are conserved quantum numbers. Globally, these conserved quantum numbers

should not fluctuate. But in an analysis where the data are recorded/analyzed in
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Figure 1.5: Evolution of the system after the heavy ion collision. vertical and hori-
zontal axes represent time and space, respectively. Origin represents the moment of
impact [4].

a finite acceptance, these quantities can fluctuate. Fluctuations of conserved quan-

tum numbers are important because they carry information about the freeze-out

parameters at the QCD-phase transition.

In a system after a heavy-ion collision, quantum number fluctuations can not

be measured directly. Therefore, proxies for these quantum numbers such as, net-

charged particles for the net-charge quantum number, net-protons for the net-baryon

quantum number and net-kaons for the net-strangeness quantum number are used.

These net-multiplicity distributions can be directly and accurately measured with

the help of particle identification techniques used in modern-day particle detectors

and as a result, fluctuations of conserved quantum numbers can be monitored.

The fluctuations of net-particle multiplicity distributions have relationships with

the theoretically calculated susceptibilities. The susceptibility in thermodynamics is
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the derivative of the pressure with respect to variations in baryon chemical potential

and is expressed as

χQBSlmn =
∂l+m+np/T 4

∂ (µB/T )l ∂ (µS/T )m ∂ (µQ/T )n
(1.6)

Here, Q, B, and S stand for charge, baryon number, and strangeness, respec-

tively. l, m, and n stand for different orders of the susceptibility. T stands for the

temperature and µ stands for the chemical potential. Susceptibilities can be modeled

in theory with the help of the partition function (Z) as

χQBSlmn =
1

V T 3

∂l+m+n(lnZ)

∂ (µB/T )l ∂ (µS/T )m ∂ (µQ/T )n
(1.7)

Once the susceptibilities are constructed in theory as a function of temperature

and chemical potential, then the extraction of freeze-out parameters can be done as

explained in the next section.

1.4.2 Extraction of freeze-out parameters

As discussed in the previous sections, fluctuations and correlations of conserved

quantum numbers can be used to probe the nature of strongly interacting matter as

described in QCD. Lattice QCD (LQCD) calculations provide theoretical interpre-

tations of the nature of the strong interaction. LQCD puts quarks and gluons on a

discrete space-time grid and numerically simulates their interactions. Here suscep-

tibilities can be calculated based on this lattice where the gluons live on the lattice

links and quarks on the sites. For instance, as explained in [5], at vanishing µB, nth

order susceptibility of net-baryon number fluctuations can be calculated as
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χBn =
1

V T 3

∂n lnZ

∂ (µB/T )n

∣∣∣∣
µB=0

(1.8)

For small, non-zero, values of µB, χBn can be approximately calculated by ex-

panding it in a Taylor series as

χBn,µ =
∞∑
k=0

1

k!
χBk+n(T )

(µB
T

)k
(1.9)

Ratios of susceptibilities with appropriate orders are related to the ratios of mo-

ments of the measured net-particle multiplicity distributions as

σ2
B

MB

=
χB2,µ
χB1,µ

, SBσB =
χB3,µ
χB2,µ

, κBσ
2
B =

χB4,µ
χB2,µ

(1.10)

Here, MB, σB, SB, and κB stand for mean, standard deviation, skewness, and

kurtosis of net-baryon probability distributions, respectively. Consider the Taylor

expansion of the simplest even-odd ratio, χB2,µ/χ
B
1,µ

σ2
B

MB

≡
χB2,µ
χB1,µ

=
T

µB

1 + 1
2

χB4
χB2

(µB/T )2 + . . .

1 + 1
6

χB4
χB2

(µB/T )2 + . . .

 (1.11)

A similar relationship holds for the next even-odd ratio, χB3,µ/χ
B
2,µ. Therefore,

to the leading order, the above approach can be used to extract the T
µB

ratio at

the chemical freeze-out at small to vanishing µB. The extraction of the freeze-out

temperature can be addressed by the even-even ratios of cumulants. For instance,

the Taylor series expansion of
χB4,µ
χB2,µ

at vanishing µB gives,

κBσ
2
B ≡

χB4,µ
χB2,µ

=
χB4 (T )

χB2 (T )

1 + 1
2

χB6 (T )

χB4 (T )
(µB/T )2 + . . .

1 + 1
2

χB4 (T )

χB2 (T )
(µB/T )2 + . . .

 (1.12)
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Here, the temperature can be extracted from the explicit temperature dependence

of even-even susceptibility ratios to the leading order as seen in the above expansion

at µB = 0. Further details and assumptions about these formulations can be found

in [5]. The use of the hadron-resonance gas (HRG) model for the determination of

freeze-out conditions is explained in Section 3.13.5.

1.5 Motivation and goals

Previously, in fluctuation measurement studies, various proxies for conserved

quantum numbers have been used to compare the experimental observations with

theory in order to determine the properties of the QCD-phase boundary. Net-charge

and net-proton measurements are considered reasonable proxies for net-charge and

net-baryon quantum numbers, respectively. But in the case of strangeness measure-

ments, kaons alone do not provide a complete proxy since they only represent ∼

70% of the strangeness in the system. Most of the remaining strangeness (∼20%)

is in the Lambda (Λ) baryon. The quark content of Λ baryon is up (u), down (d),

and strange (s) and its anti-particle (Λ̄) consists of anti-up (ū), anti-down (d̄), and

anti-strange (s̄) quarks.

The primary goal of this study is to provide the net-Λ measurement for the

study of net-strangeness fluctuations. Net-Λ fluctuation measurements together

with the net-kaon measurements will provide a more complete measurement of the

net-strangeness in the system after the collision. Furthermore, the study of the

fluctuations of net-Λ distributions is important because Λs carry both baryon and

strangeness quantum numbers. This provides an opportunity to investigate freeze-

out parameters in the context of quark-mass dependence. With the help of HRG
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and LQCD model calculations, net-Λ measurements could provide valuable informa-

tion about which quarks (light quarks or heavy quarks) play a prominent role at

the time of hadronization. Therefore, the second aim of this study is to compare

volume-independent net-Λ measurements to theoretical models and investigate the

predicted sequential hadronization [6].

Figure 1.6: (left): Continuum extrapolated lattice QCD results for χu2 and χs2 [6],
(right): Continuum extrapolated lattice QCD results for χ4/χ2 for light and strange
quarks in comparison to HRG model calculations [7].

Theoretical calculations on the chemical freeze-out conditions (T, µB) in the

context of different quark masses have been done using Lattice QCD and HRG

models [7][8]. Figure 1.6 (left) shows a lattice QCD calculation of χu2 and χs2 where

u and s super-scripts stand for up quarks and strange quarks, respectively. It is

clear that for temperatures less than ∼ 250 MeV, the results show distinct values for

different quark masses. Figure 1.6 (right), shows a comparison of χ4/χ2 calculated

for light and strange quarks using lattice QCD results and HRG results. The main

difference between these two calculations is that only lattice calculations include the

quark phase and HRG does not. Therefore, the temperature at which the lattice

curves deviate from HRG possibly points to the deconfinement temperature and this

temperature for light quarks is less than it is for strange quarks as seen in Figure 1.6
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Figure 1.7: Temperature (T) and baryon chemical potential (µB) calculated at the
chemical freeze-out using thermal fits for experimentally measured particle yields and
comparing HRG model calculations with cumulant ratios of net-kaon, net-proton,
and net-charge multiplicity distributions [9].

The prediction of sequential hadronization is addressed in detail by comparing

HRG models with measured particle yields and net-particle multiplicity distributions

as shown in Figure 1.7 where the freeze-out temperature (T) is presented as a func-

tion of chemical potential (µB). Two sets of points in gray and red color show the

extracted freeze-out parameters from a HRG model using the measured net particle

multiplicity fluctuations from STAR. Two individual points in light orange and blue

show freeze-out parameters extracted using thermal fits to experimentally measured

particle yields in STAR. In both HRG and thermal fits, it is clear that the freeze-out

parameters follow different patterns for different particle species. Specifically in the

presence of strange quarks as in kaons and Λ particles, the freeze-out curves show

different values than for particles with light-quark content such as pions or protons.
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With these theoretical and experimental observations, there is clearly a need

for measuring net-Λ fluctuations to investigate and establish the validity of above

mentioned observations. Therefore in this dissertation, we report the first measure-

ment of net-Λ cumulants (C1, C2, and C3) and cumulant ratios (C2/C1, C3/C2) as a

function of collision centrality, collision energy, and rapidity.

18



Chapter 2

Experimental Set-up

2.1 Relativistic Heavy Ion Collider (RHIC)

The Relativistic Heavy Ion Collider (RHIC) is a particle accelerator capable of

colliding accelerated heavy ions and polarized protons at a speed very close to the

speed of light. RHIC is located at Brookhaven National Laboratory (BNL) in Upton,

New York. An aerial view of RHIC is shown in Figure 2.1. Presently, the only actively

operating heavy ion collision physics experiment at RHIC is the Solenoidal Tracker

At RHIC (STAR) experiment. The primary objective of the STAR experiment is

to investigate the creation and evolution of the QGP. The analysis presented here is

based on the particle data collected with the STAR detector. The pioneering High

Energy Nuclear Interaction eXperiment (PHENIX) was another major experiment

at RHIC which completed its operations in 2017. There were two other experiments

operated at RHIC namely, PHOBOS [10] and BRAHMS [11] and both completed

operations in 2006 and 2005, respectively. The RHIC ring is ∼ 1.2 km in diameter
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and is one of the largest particle accelerator facilities in the world besides the Large

Hadron Collider (LHC) at CERN. RHIC started operations in the year 2000 and

achieved many scientific discoveries such as the discovery of the QGP in 2005. The

STAR experiment is located in the 6 o’clock position in the RHIC ring as shown in

Figure 2.1.

Heavy-ion beams are prepared for the injection into the RHIC ring through several

important steps. The Tandem Van de Graaff accelerator (TANDEMS) creates ions

by stripping out electrons from atoms and prepare them for the acceleration. There

is a 700 m long tunnel called TANDEMS to Booster (TtB) which delivers heavy ions

from TANDEMS to the Alternating Gradient Synchrotron (AGS). The AGS receives

protons and other ions from Booster and accelerates them before injecting into the

RHIC ring. The last of the electrons are stripped out from atoms at AGS and the

resulting heavy ions are focused in both horizontal and vertical directions at the

same time by applying an alternating field gradient. Finally, the prepared ion beam

is separated into two beams (yellow beam and blue beam) as it enters the RHIC

ring. Beams are injected to the RHIC ring so that they travel in opposite directions

as shown in Figure 2.1 by the yellow and blue color rings. RHIC has the capability

of colliding nuclei from 5 - 200 GeV per nucleon and polarized protons up to 510

GeV.
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Figure 2.1: Areal view of RHIC accelerator and different experiments associated with
the collider [12].

2.2 Solenoidal Tracker At RHIC (STAR) detector

system

The STAR detector system consists of several sub detectors and a cross sectional

view of the detector complex is shown in Figure 2.2. Weighing over 1200 tons, STAR

is a massive detector system which has been updated by adding many features over

the past two decades of its operating time. In the following sections, only the most

important features of the STAR detector system are discussed. For guidance, the

Cartesian coordinate system used at STAR is shown in the top left hand corner of

Figure 2.2. In the STAR coordinate system, z-axis points along west, x-axis along

south, and y-axis upwards. The beam line is shown in red and it enters the detector

system along the z-axis. STAR consists of a magnet of length 6.85 m which produces
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a 0.5 Tesla magnetic field along the beam line direction (z-direction).

Figure 2.2: Cross sectional view and the detector components of the STAR detector.

Two accelerated beams collide near the center of the detector and produce electri-

cally charged or neutral particles. Charged particles will move in helical tracks in the

transverse plane (x-y plane) due to the presence of magnetic field. These tracks can

be reconstructed by the STAR tracking system which consists of several detectors as

shown in Figure 2.2. Time projection chamber (TPC), time of flight (TOF) detector,

vertical position detector (VPD), silicon vertex tracker (SVT), and electro-magnetic

caloriemeter (EMC) are some of the main tracking devices in the STAR detector

system. The operation of these tracking devices will be briefly discussed in the next

sections of this chapter.
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2.2.1 Time Projection Chamber

Time Projection Chamber is the main tracking device in the STAR detector

system. The TPC is located inside the full magnetic field of the STAR magnets. It

is filled with a gas mixture of 90% Argon (Ar) and 10% Methane (CH4) within a

cylinder of 4 m in diameter and 4.2 m in length. The beam pipe has been built so

that it passes through the center of the TPC (x = y = 0). In this geometry, the TPC

is built so that it covers the full azimuthal angle φ (0 < φ < 2π). Coverage of the

TPC along the z direction is expressed by units of pseudo-rapidity (η) and it covers

a range of, −1 < η < 1. A detailed description and introduction to η is presented in

Section 2.5. Schematic view of the TPC is given in Figure 2.3.

Figure 2.3: Cross sectional view of the STAR time projection chamber (TPC).
Schematic shows the center membrane, inner field cage (IFC), outer field cage (OFC)
and interaction point (IP). Ground stands for the ground-zero voltage. Dashed lines
show the pseudo-rapidity coverage.
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The TPC is divided into two halves by a central membrane at z = 0 as shown

in Figure 2.3. A ground-zero electric potential is maintained at the side walls of the

TPC while the center membrane is at a negative potential with respect to the side

walls. As a result, a strong electric field of 130 V/cm is acting from the side walls

towards the center membrane, along the z-axis. Each half of the TPC is divided into

12 equal sized sectors azimuthally, and they consist of 136,608 read-out pads in total

for the precise measurement of charged-particle tracks.

2.2.1.1 Track and vertex reconstruction in TPC

When an electrically charged-particle traverses through the TPC gas, it strips

out electrons from the gas molecules along the trajectory. These secondary electrons

will be accelerated towards the side walls (end-caps) due to the strong electric field.

Read-out pads at the end-caps record the signal from secondary electrons for the

reconstruction of charged-particle tracks with the help of software. The curvature

of the reconstructed helical path of a track is used to calculate the momentum of

particles while the direction of the revolution of the particle is used to determine the

sign of electric charge associated with the particle. With these options, the STAR

TPC is capable of measuring the momentum of charged particles over a range of 0.1

to 30 GeV/c.

Reconstruction of the charged particle tracks is done using STAR tracking soft-

ware. Readout pads in each sector register hits in time buckets during a collision

(event). Thousands of tracks can be formed during an event. The reconstruction

software looks for a set of hits that can be fitted to form a helical track. Once a track

is identified, the software is capable of assigning the momentum and charge of the
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particle. These identified tracks are called ”global tracks”. For a given event, once all

the possible global tracks are identified, these trajectories are extrapolated on to the

beam axis to find the position of the primary vertex (PV) where all the trajectories

originated from. In an event, if the software found more than one primary vertex,

then the primary vertex with highest probability (rank) is used. Global tracks that

have a distance of closest approach (gDCA) less than 3 cm are labeled as primary

particles and the rest as secondary particles.

Particle identification (PID) is another utility of the TPC. For PID, the ionization-

energy loss per unit length of charged particles in the TPC gas is used. The amount

of energy lost when a charged particle moves through the TPC gas depends on the

parameters such as mass, velocity, and the electric charge of the particle. A complete

description of average dE/dx for a charged particle travelling in a medium is given

by the Bethe formula:

−
〈
dE

dx

〉
=

4π

mec2
· nz

2

β2
·
(

e2

4πε0

)2

·
[
ln

(
2mec

2β2

I · (1− β2)

)
− β2

]
(2.1)

Here, me and e stand for rest mass and charge of electron or any other charged

particle of interest, z for charge (multiples of electron charge), n for electron number

density of the medium, l for mean excitation potential, c for speed of light, ε0 for

vacuum permittivity, and β = v
c
. By considering the dE/dx dependency on the

momentum of a charged particle, the Bethe formula can be fitted to experimentally

measured dE/dx and extract the information needed for the direct PID. The TPC

can identify kaons, pions, and protons in a momentum range from 0.1 to 0.7 GeV/c

while, protons can be directly identified against kaons and pions up to a momentum

of ∼1 GeV/c.

As discussed earlier, the TPC helps tracking quite important physical information
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of charged particles produced after the collision. They are, momentum, charge, path

length, and ionization energy loss per unit length (dE/dx). In addition, each track

carries information needed for the quality assurance (QA). Track and event QA is

done mainly based on the number of hits associated with a certain track as identified

by TPC. For instance, the number of hits assigned to a track, number of hits possible

for the trajectory, and number of hits used for the dE/dx calculation can be used

to identify quality tracks measured with high precision. In addition, track quality

cuts are also used to further constrain the presence of impurities and increase the

purity of identified particles. In addition to the cut parameters used in general QA

procedure at STAR, special track cuts need to be imposed depending upon the goals

of the analysis. All general and specific cut parameters used in this analysis are

described in Chapter 3 of this dissertation. More information about STAR TPC and

its functioning can be found in [13].

For the extended particle tracking in the very forward direction, the forward time

projection chamber (FTPC) has been established. This plays an important role in

tracking the charged particles produced at high track density events in Au + Au

collisions. The FTPc is located in the pseudorapidity range of 2.5 < |η| < 4.0 and

more information about the detector geometry and functions can be found in [14].

2.2.2 Time of flight detector

Although the TPC is capable of measuring the momenta of charged-particle tracks

up to 30 GeV/c, it has limited particle identification capabilities when the particle

momenta is larger (> 1 GeV/c). Therefore, for the particle identification at higher

momenta, the STAR time of flight (TOF) detector is used. The TOF has the ability
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to identify particles even at a momentum of 3 GeV/c which is about three times the

upper momentum limit for PID in TPC. The TOF detector system surrounds the

TPC in full azimuthal angle φ (0 < φ < 2π) and covers a pseudo-rapidity range of

−0.94 < η < 0.94.

The TOF consists of a trigger detector called pseudo vertex position detector

(pVPD) and time-of-flight patch (TOFp) detector. There are two pVPDs located in

the very forward direction (4.43 < η < 5.1) in the east and west side of STAR. A

schematic of the pVPDs and TOFp in relation to the STAR TPC is shown in Figure

2.4. During a collision, photons are emitted and pVPDs are used to detect photons

that travel very close to the beam pipe. The time at which these photons reach east

or west pVPDs (teast and twest, respectively) is used to evaluate the start time (t0)

of tracks originated from a certain event. Equations 2.2 - 2.4 show the estimation of

t0 where L is the distance from pVPD to the center of the detector (z = 0), zvertex

is the z-coordinate of the primary vertex and c stands for the speed of light. Using

the same set of equations, the z-coordinate of the primary vertex (PVz) can also be

calculated. This measurement is used to compare to the vertex position obtained

from TPC for the removal of bad events.

teast = t0 +
L+ zvertex

c
(2.2)

t west = t0 +
L− zvertex

c
(2.3)

t0 =
teast + twest

2
− L

c
(2.4)
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Figure 2.4: Drawing of pseudo vertex position detector (pVPD) and time-of-flight
patch (TOFp) detector in relation to the STAR time projection chamber (TPC).

To measure the ”stop time” (ts), associated with a certain track, Multi-gap Re-

sistive Plate Chambers (MRPC) are used. There are 3840 MRPCs in total which are

located at the exterior of the TPC but inside the STAR magnetic field. MRPCs are

capable of tracking down the signals from traversing charged particles with the help

of precise fast-timing electronics. In each event, MRPCs record the stop time for

tracks as well as the y-coordinate which is related to the azimuthal position (∼ φ)

of a certain track. With this information, time-of-flight (∆t) for a certain track can

be calculated as given in Equation 2.5.

∆t = t s − t 0 (2.5)

Then the inverse velocity (1/β) of a charged particle can be calculated as

1

β
=
c∆t

S
(2.6)

Here, S is the path length of the particle which can be measured by TPC and

c stands for the speed of light. Finally, the mass-squared (M2) associated with the

particle is calculated as
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M2 = p2

(
1

β2
− 1

)
(2.7)

Here, p is the momentum of the particle which can be measured in the TPC.

The calculated M2 can be used to directly identify the particle species associated

with the track. The STAR TOF is capable of identifying pions and kaons up to the

momentum ∼ 1.8 GeV and protons up to the momentum ∼ 3.0 GeV. More details

about the operation and design of STAR TOF and pVPD can be found in [15].

2.2.3 Electro-Magnetic Calorimeter (EMC)

The STAR detector system consists of two electro-magnetic calorimeters named,

barrel electro-magnetic calorimeter (BEMC) and end-cap electro-magnetic calorime-

ter (EEMC). Both of these detectors record the energy of the incident particles that

interact via electro-magnetic interaction.

The BEMC is located outside the STAR TPC and inside the solenoidal magnet. It

covers a pseudo-rapidity range of −1.0 < η < 1.0. The BEMC is capable of tracking

photons, electrons, π0, and η mesons in a large acceptance range. In addition,

the BEMC contributes as a trigger detector for the high pT physics at STAR. The

BEMC is supplemented by the EEMC which covers the forward direction in the

STAR detector system. The EEMC is located in the very forward rapidity range

1.0 < η < 2.0 and covers the full azimuthal direction. It also plays an important role

in the detection of photons, π0, and η mesons while serving as a trigger detector for

high pT triggering system similar to the BEMC. The EEMC is capable of recording

energy in the range of 10 - 40 GeV. More information about the STAR EMC system
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can be found in [16].

2.2.4 Silicon Vertex Tracker (SVT)

As described in the earlier sections, The TPC and TOF both are capable of

tracking only charged particles. But, the SVT uses secondary vertexing for the

reconstruction of short-lived particles. Primarily strange and multi-strange baryons

which decay very close to the interaction zone can be reconstructed through the SVT.

Some charged particles do not reach the active volume of TPC due to the presence

of the magnetic field and due to their low momentum. In these cases, the SVT

helps extending the kinematic acceptance of the STAR detector system by providing

capabilities for tracking of these low-momentum particles. It also improves the STAR

capabilities on two-track resolution and particle identification through energy loss.

More details about detector design and functioning can be found in [17].

The relative positions of TPC, TOF, EEMC, BEMC, and SVT in the STAR

detector system are shown in Figure 2.5.

2.3 Rapidity and pseudo-rapidity

A special set of measurement units has been introduced in accelerator physics

mainly when a measurement is taken along the direction of the beam line (z-axis).

The beams travel very close to the speed of light. Therefore, the system is Lorentz

boosted along the z-axis, with respect to the lab frame. As a result, measurements

done should either be invariant of the frame of reference or, although they are not

invariant, have transformation properties that are easy to handle. In this section,
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Figure 2.5: Configuration of TOF, EEMC, BEMC, and SVT in relation to the TPC
in STAR detector system.

longitudinal variables called rapidity (y1) and pseudo-rapidity (η) are introduced and

discussed.

First, the energy-momentum relationship for a particle whose rest mass is M can

be written as:

E2 = p2
xc

2 + p2
yc

2 + p2
zc

2 +M2c4 (2.8)

Here, px, py, and pz stand for the momentum along x, y, and z directions, re-

spectively. c stands for the speed of light. As usual, the beam-line direction is

chosen to be the z-axis. Therefore, it is assumed that the Lorentz boost occurs only

with respect to the z-axis, but not with respect to x or y-axis. Now, the Lorentz

transformations for the 4-displacements can be written as

1y represents rapidity and y represents y-coordinate in Cartesian coordinates.
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ct′ = γ(ct− βz) (2.9)

x′ = x (2.10)

y′ = y (2.11)

z′ = γ(z − βct) (2.12)

Here, t stands for time, γ = 1√
1− v2

c2

and β = v
c

and x′, y′, z′, t′ stand for Lorentz

transformed quantities. Similarly, for the components of the 4-momentum, the trans-

formations can be written as

E ′/c = γ (E/c− βpz) (2.13)

p′x = px (2.14)

p′y = py (2.15)

p′z = γ (pz − βE/c) (2.16)

Here, E stands for energy and p′x, p
′
y, p

′
z, and E ′ stands for Lorentz transformed

quantities. Then, a quantity called transverse mass (MT ) is defined by consider-

ing only the collection of Lorentz-invariant momentum components and the mass

component from the energy-momentum relationship associated with a particle as

M2
T c

4 = p2
xc

2 + p2
yc

2 +M2c4 (2.17)

Now, the rapidity (y) is defined as,

y =
1

2
ln

(
E + pzc

E − pzc

)
(2.18)

32



Rapidity is defined so that it approaches zero when the particle has no contribu-

tion to the motion along the z-axis. On the other hand, when a particle moves only

along the z axis with no contributions to transverse momentum, then rapidity of

that particle approaches ∞. Therefore, rapidity is related to the angle between the

direction of emission of the particle and the beam axis (z-axis). Now, by considering

the Equations 2.17 - 2.18, the rapidity can be re-written in terms of MT as

y = ln

(
E + pzc√
E2 − p2

zc
2

)
= ln

(
E + pzc

MT c2

)
(2.19)

There are many different ways of expressing rapidity. The following description

shows one other way of introducing rapidity using hyperbolic tangents

tanh θ =
(
eθ − e−θ

)
/
(
eθ + e−θ

)
(2.20)

Now, Rapidity can be re-written as

y = tanh−1

(
tanh

(
ln

(
E + pzc

MT c2

)))
(2.21)

y = tanh−1

exp
(

ln E+pzc
MT c2

)
− exp

(
− ln E+pzc

MT c2

)
exp

(
ln E+pzc

MT c2

)
+ exp

(
− ln E+pzc

MT c2

)
 (2.22)

Finally it simplifies to a neat expression

y = tanh−1
(pzc
E

)
(2.23)

Now, for the understanding of the transformation of rapidity under the Lorentz

boosting parallel to z-axis, Lorentz transformation is applied to Equation 2.18 where,

γ = 1√
1− v2

c2

and β = v
c
.
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y′ =
1

2
ln

(
γE/c− βγpz + γpz − βγE/c
γE/c− βγpz − γpz + βγE/c

)
(2.24)

y′ =
1

2
ln

(
γ (E/c+ pz)− βγ (E/c+ pz)

γ (E/c− pz) + βγ (E/c− pz)

)
(2.25)

y′ =
1

2
ln

(
E/c+ pz
E/c− pz

)(
γ − βγ
γ + βγ

)
(2.26)

y′ =
1

2
ln

(
E + pzc

E − pzc

)
+ ln

√
1− β
1 + β

(2.27)

Now, y′ can be expressed in term of y as

y′ = y + ln

√
1− β
1 + β

(2.28)

Equation 2.27 can further be simplified using the following relationship

ln

√
1− β
1 + β

= − tanh−1 β (2.29)

This proves the fact that Lorentz transformation of rapidity parallel to the z-axis

gives a simple relationship as

y′ = y− tanh−1 β (2.30)

This simple relation has an important consequence. Assume that two particles

ejected after a collision have rapidity, y1, and y2 according to an observer. Then,

suppose that another observer also measures the rapidity of the same two particles

and they read as y′1 and y′2, respectively. Now, as shown in Equation 2.31 below, we

can see that the difference of rapidities of two particles is independent of the Lorentz

boost along the z-axis.
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y′1 − y′2 =
(
y1 − tanh−1 β −

(
y2 − tanh−1 β

))
= y1 − y2 (2.31)

Therefore, in accelerator physics, rapidity plays a vital role in the measurements

along the beam line direction since the difference of rapidity (∆y) is not affected

by the Lorentz boost of the system along the z-axis. However, when the kinemat-

ics of the particles become highly relativistic, rapidity can not be easily measured.

Therefore, in such cases where the center of mass energy of the collisions are large,

an approximation for the rapidity is done. This definition of rapidity at a high-

momentum regime is called pseudo-rapidity (η) and it is given by:

η = − ln tan
θ

2
(2.32)

Here, θ is the angle made by the particle trajectory with the beam pipe where,

cos θ = pz/p. Pesudo-rapidity is used in most experiments based on LHC due to

the extremely high collision energies they use. However, for this analysis, since the

collision energies are in the range from 19.6 to 200 GeV, rapidity (y) was used as a

longitudinal position measurement of particles. Furthermore, for the determination

of rapidity, it required the mass of the particle whereas pseudo-rapidity just required

the emission angle.

2.4 Collision centrality

When two accelerated nuclei travel at a speed very close to the speed of light,

according to the theory of relativity, it is known that the length along the direction of

the motion is contracted. Therefore, the shape of two nuclei just before the collision
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looks similar to two ”pancakes”. This can be visualized as in the schematic shown

in Figure 2.6.

Figure 2.6: Visualization of a heavy-ion collision and the amount of overlap between
two nuclei before and after the collision.
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Several geometrical and experimental measurements can be introduced for the

evaluation of collision centrality in heavy-ion collisions. One of them is the impact

parameter (b) which is the distance between the centers of two colliding nuclei as

shown in Figure 2.6. The impact parameter approaches zero as the collision centrality

increases. One other parameter which can be used to represent the collision centrality

is the average number of participant nucleons (〈Npart〉). However, Npart can not be

measured directly during a heavy ion collision. Therefore, alternative measurements

are used for the classification of collision centrality. The total number of charged

particles produced (Nch) in a certain event is one of them. Nch is larger in most

central collisions while in peripheral collisions it becomes small. Figure 2.7 shows a

histogram of the number of events occurring with a certain Nch in heavy ion collisions.

For an unbiased measurement of collision centrality, the observed total number

of charged particles, Nch, would not be an ideal candidate due to possible auto-

correlations which will be discussed in Section 3.7. Therefore, in STAR, multiplicities

based on different selection criteria known as reference multiplicities (RefMult) are

used depending on the nature of the analysis and to avoid possible auto-correlations.

The selection of reference multiplicity for this analysis is discussed in Section 3.7 in

detail. Finally, for the classification of centrality classes, Monte Carlo Glauber model

simulations [18] are used. The Glauber model can be used to find boundaries of

multiplicities for a given centrality in experimental data since the collision centrality

is known via collision geometry. This analysis is done in nine centrality classes; 0-

5% (most central), 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, and

70-80% (most peripheral). Once the centrality classification is done, 〈Npart〉 is used

for the representation of each centrality class. Details on the reference multiplicity

definition, reference multiplicity boundaries, and 〈Npart〉 for each centrality class used
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Figure 2.7: Number of events occurred (Nevents) per number of charged particles
produced in an event (Nch) in Au + Au collisions and the visualization of different
centrality classes with respect to Nch, b, and 〈Npart〉.

in this analysis are given in Appendix A.1.

38



Chapter 3

Analysis method

Experimental techniques and analytic tools play a vital role in making precise

measurements. In this chapter, all important techniques and tests done in order

to achieve the aims mentioned in Chapter 1 are explained and discussed in detail.

Specially, moment-calculation methods based on central moments and factorial mo-

ments are discussed together with statistical and systematic uncertainty estimation

techniques. Corrections done on the results for the reconstruction efficiencies and to

avoid the presence of impurities are also discussed as a part of obtaining a precise

measurement of net Λ fluctuations at the STAR experiment.

3.1 Moments calculation method for net-multiplicity

distributions.

This analysis is based on a counting exercise where the event-by-event net-Λ

(number of Λ particles - number of Λ̄ particles) value was measured and moments
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of these measured net particle distributions were calculated. The moments of prob-

ability distributions are basic parameters used to describe the shape of a probability

distribution. The moment and cumulant calculations are explained in this section.

In this description, N∆Λ was used to represent the net-Λ value in a given event. The

average of the net Λ value over all events is denoted by 〈N∆Λ〉 and the deviation of

N∆Λ from 〈N∆Λ〉 is denoted by δN .

The well known first four moments of probability distributions are, mean (M),

variance (σ2), skewness (S), and kurtosis (κ). Cumulants of probability distributions

are alternatives to moments where both are closely related. For instance, the 1st order

cumulant (C1) is equal to the mean and the 2nd order cumulant (C2) is the variance

(σ2). Relationship between cumulants and moments of a probability distribution are

shown in Equations 3.5 - 3.8. Cumulants up to the 4th were calculated as

C1 = 〈N∆Λ〉 (3.1)

C2 = 〈(δN)2〉 (3.2)

C3 = 〈(δN)3〉 (3.3)

C4 = 〈(δN)4〉 − 3〈(δN)2〉 (3.4)

Relationships between cumulants and moments are

M(Mean) = C1 (3.5)

σ2(V ariance) = C2 (3.6)

S(Skewness) =
C3

C
3
2
2

(3.7)
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κ(Kurtosis) =
C4

C2
2

(3.8)

With the above definitions, in this analysis, net-Λ cumulants (C1, C2, and C3)

and cumulant ratios (C2/C1 = σ2/M and C3/C2 = Sσ) were calculated. Results

are presented as a function of collision centrality, rapidity, and energy. In addition,

factorial moments were calculated as shown in Equation 3.9 and they were used in

both efficiency corrections and statistical error estimations. Factorial moments can

also be used to calculate cumulants as shown in Equations 3.11 - 3.15.

fi,k (np, np) =

〈
np!

(np − i)!
np!

(np − k)!

〉
=

∞∑
np=i

∞∑
np̃=k

p (np, np)
np!

(np − i)!
np!

(np − k)!
(3.9)

Fi,k (Np, Np) =
fi,k (np, np)

(εp)
i (εp)

k
(3.10)

Equation 3.9 shows the expression for the calculation of raw factorial moments

fi,k (np, np) where np and np̄ stand for number of observed particles (p) and anti

particles (p̄), respectively. Indices i and k stand for different indices in factorial

moments. p(np, np) represents the probability of an event with np number of particles

and np number of anti-particles.

The lowest order factorial moments, f1,0 and f0,1, represent the means of particle

(〈np〉) and anti-particle (〈np〉) distributions, respectively. Equation 3.10 shows the

relationship between efficiency corrected and uncorrected factorial moments where

εp and εp stand for particle and anti-particle reconstruction efficiencies, respectively.

The cumulants of net multiplicity distributions can be calculated using factorial

moments as

41



N = 〈Np〉+ 〈Np〉 =
〈np〉
εp

+
〈np〉
εp

(3.11)

C1 ≡ K1 = 〈Np〉 − 〈Np〉 (3.12)

C2 ≡ K2 = N −K2
1 + F02 − 2F11 + F20 (3.13)

C3 ≡ K3 = K1 + 2K3
1 − F03 − 3F02 + 3F12 + 3F20 − 3F21 + F30

−3K1 (N + F02 − 2F11 + F20)
(3.14)

C4 ≡ K4 = N − 6K4
1 + F04 + 6F03 + 7F02 − 2F11 − 6F12 − 4F13

+7F20 − 6F21 + 6F22 + 6F30 − 4F31 + F40

+12K2
1 (N + F02 − 2F11 + F20)

−3 (N + F02 − 2F11 + F30)

−4K1 (K1 − F03 − 3F02 + 3F12 + 3F20 − 3F21 + F30)

(3.15)

3.2 Data sets

Particle data produced in heavy ion (Au + Au) collisions from five different beam

energies (
√
SNN =19.6 GeV, 27 GeV, 39 GeV, 62.4 GeV, and 200 GeV) were used

in this analysis. These data belong to the 1st phase of the STAR beam energy scan

program (BES - I) which occurred during the years 2010 and 2011. Basic information

about the data sets are given in Table 3.1 and Table 3.2.

Good run numbers were selected by looking at the distribution of average values

of event and track information in each run. Run numbers outside a window of ± 3

standard deviations from the averages of track and event parameters were rejected in
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Table 3.1: Data sets used in the analysis from Beam Energy Scan Phase - I (BES-
I) with their statistics, year of the production and corresponding baryon-chemical
potentials (µB) extracted from HRG model [19].

√
sNN (GeV) Statistics (M) Year µB (MeV)

19.6 ∼ 34 2011 205
27 ∼ 71 2011 155

39 ∼ 114 2010 115

62.4 ∼ 40 2010 70

200 ∼ 221 2011 20

the analysis. Visualization of the bad run-number identification is shown in Figure

3.1. Bad run-number percentage was highest in the 62.4 GeV data set and lowest in

39 GeV data set.

3.3 Event selection

Event-quality cuts were used for the selection of good events for the analysis. For

all five energies, events with reconstructed primary vertex of less than 30 cm (Vz < 30

cm) were chosen for the analysis. Only the events with a radial distance to the origin

(x = y = z = 0) of less than 2 cm (Vr < 2cm) were permitted in the analysis. At

higher energies, luminosity increases and as a result, some particles from previous

events could still be traversing while the detector read-out system gets triggered

by a new event. To avoid these pile-up events in the analysis, the vertical position

detector (VPD) was used in addition to the time-projection chamber (TPC) to locate

the primary vertex. Then, events with the difference between Vz measurements from

TPC and VPD less than 3 cm (|Vz(vpd) − Vz| < 3 cm) were used in the analysis.

This additional condition was only applied to the three highest energies (39, 62.4,
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Table 3.2: Production names of data produced in Au + Au collisions from 19.6 to
200 GeV beam energies in BES-I with trigger names and IDs used in the analysis.

√
sNN (GeV) Production Trigger Name Trigger IDs

19.6 AuAu19 Production P11ik 340001, 340011
340021

27 AuAu27 Production 2011 P11id 360001

39 AuAu39 Production P10ik 280001

62.4 AuAu62 Production P10id 270001, 270011
270021

200 AuAu200 production 2011 P11id 350001, 350011
350003, 350023
350033, 350043

and 200 GeV). Some of the important event selection cuts and number of events

chosen for the analysis are shown in Figures 3.2, 3.3, 3.4, and 3.5.

3.4 Track selection

The reconstruction of the primary Λ (Λ̄) particles should be done using secondary

protons - p (p̄) and pions - π− (π+). For the identification of the possible secondary

daughter particles, the STAR TPC was used. Ionization-energy loss in the TPC

gas was used to identify these charged particles as explained in Section 2.2.1.1. To

maintain a higher purity in the particle identification procedure, several important

cuts were imposed. Only the tracks that had at least 15 hit points out of a maximum

of 45 were permitted in the analysis as shown in Figure 3.6(a). To avoid the multiple

counting of split tracks, the number of reconstructed hits was requied to be at least
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Figure 3.1: Visualization of run index outliers in 62.4 GeV Au + Au data set. Blue
points shows the calculated average of each parameter in each run index. Red dashed
lines show the 3 standard deviations (3σ) boundaries.

52% of the total possible fit points (nHitsFit/NFitPoss > 0.52). The minimum

number of points required to derive the corresponding ionization energy loss per

unit length (dE/dx) was limited to 5. In Figure 3.6(b), dE/dx of charged particles

(protons - p, pions - π, kaons - k and deuterium - d) are shown as a function of

momentum in 200 GeV Au + Au collisions.

The global distance of closest approach (gDCA) is one of the important param-

eters used to distinguish between primary and secondary particles. Since the recon-

structed trajectories of secondary particles should not point to the primary vertex,

a lower limit for the gDCA cut was imposed on both protons and pions. These cuts

are further explained in the next section (V 0 reconstruction) and all the track quality

cuts used are listed in Table 3.4.
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Figure 3.2: Number of events per z-coordinate of the primary vertex (Vz) for five
beam energies from 19.6 to 200 GeV Au + Au collisions at STAR. Red dashed lines
show the Vz cuts (|Vz| < 30 cm) used in the analysis.
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Figure 3.3: Distribution of the x and y coordinates of the primary vertices (Vx and Vy)
for five beam energies from 19.6 to 200 GeV Au + Au collisions at STAR.

√
V 2
x + V 2

y

(Vr) < 2 cm cut was used in the analysis.

3.5 V 0 reconstruction

Neutral particles such as the Λ baryon can not be identified directly in the TPC

since they do not deflect in the presence of an external magnetic field. Therefore,

extraction of Λ yields was done by reconstructing the decay vertex (V 0). Λ (Λ̄)

baryon has a decay channel, Λ (Λ̄) → p (p̄) + π− (π+) , with a branching ratio of

(63.9 ± 0.5 ) % [20]. Both the decay daughters, protons, and pions, were identified

using the TPC and the decay topology is shown in Figure 3.8.

Equations 3.17 - 3.19 show the calculation of invariant mass, (MP,π−) of the

mother particle from the properties of identified daughter particles by considering the
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Figure 3.4: Number of events per radial coordinate of the primary vertex (Vr) for
five beam energies from 19.6 to 200 GeV Au + Au collisions at STAR. |Vr| < 2 cm
cut was used in the analysis.

conservation of 4-momentum. Here, Ep(π−) and pp(π−) are the energy and momentum

of proton (pion), respectively. Note, for a given particle species x, −→p x represents the

three-momentum and px represents four-momentum. The speed of light is considered

to be equal to unity.

Λ→ p+ π− (3.16)

pΛ = pp + pπ− (3.17)

−M2
p,π− = (pp + pπ−)2 (3.18)

−M2
p,π− = M2

p +M2
π− + 2(EpEπ− −−→p p.−→p π−) (3.19)

The calculated invariant mass distribution from all measured proton and pion

pairs from 39 GeV Au + Au collisions is shown in Figure 3.7. Initially, all identified

proton and pion pairs were considered for calculation of invariant mass, independent

of whether they come from a primary Λ decay or not. This histogram should be

peaked at the rest mass of Λ baryon which is 1115.68 ± 0.006 MeV/c2 [20] due to

the conservation of energy and momentum. Protons and pions which did not come

from a Λ decay reconstruct in to a mass different than the Λ rest mass. Therefore,

a large background can be seen in Figure 3.7.
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Figure 3.5: Number of events per difference between z-coordinate of the reconstructed
primary vertex (Vz) from TPC and the z-coordinate of the primary vertex from VPD
(Vz(vpd)), for five beam energies from 19.6 to 200 GeV Au + Au collisions at STAR.
Red dashed lines show the cut boundary (|Vz − Vz(vpd)| < 3 cm)

For the net-Λ fluctuation measurement, counting of Λ and Λ̄ should be done on

an event-by-event basis. The number of Λs or Λ̄s in all events can be counted by

integrating the peaked area above the background as shown in Figure 3.7. In order

to enhance the purity of the analyzed sample, first, most of the background was

eliminated by applying a mass cut considering the invariant mass of the Λ baryon.

In each event, an invariant mass cut of 1.11 < minv
p,π− (GeV/c2) < 1.12 was imposed.

But inside this mass window, there is no established technique to distinguish between

signal and background on an event-by-event basis. Therefore, topological parameters

associated with the decay geometry were optimized in order to extract a signal with

high purity.

There are several geometrical measurements associated with the V 0 decay, as

shown in Figure 3.8. When a charged particle traverses in the presence of an ap-

plied magnetic field, it follows a helical path in the transverse plane (x-y plane).

The curvature of these tracks depends on how much momentum is carried by the
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(a) (b)

Figure 3.6: (a): Visualization of nFitPionts in TPC as a function of momentum
for 200 GeV Au + Au data set. Color palette represents the number of tracks. (b):
Ionization energy loss per unit length (dE/dx) for different particle species (π - pions,
k - kaons, p - protons, d - deuterium) as a function of momentum in 200 GeV Au +
Au collisions as measured by the STAR TPC. Color palette represents the number
of tracks.

corresponding particle. Once the tracks are reconstructed using TPC, geometrical

parameters associated with the decay topology were calculated. These geometrical

parameters are listed below and illustrated in Figure 3.8.

1. Distance of closest approach (DCA) of V 0 to the primary vertex

(PV). This distance should be zero for the ideal case but it is given an upper bound

to account for the experimental resolution.

2. DCA of proton to PV. Since the reconstruction of the V 0 is done using

the secondary protons, this distance should be large enough to prevent the presence

of primaries. Therefore a lower bound was imposed on this measurement.

3. DCA of pion to PV. Similar to the DCA of proton to PV, a lower bound

was imposed on this distance to prevent the contamination from primary pions.
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Figure 3.7: Signal and background in the reconstructed invariant mass distribution
using proton (p) and pion (π−) pairs from 39 GeV Au + Au collisions. The blue
dashed line shows the fitted first order polynomial to the background surface.

4. DCA of proton to pion. In the ideal situation, this distance should be zero

since the decay product should emit from the same decay vertex. But it was given a

window with an upper bound, to account for the possible experimental uncertainties.

5. Decay length (L). The mean-path length (cτ) for Λ baryon is 7.86 cm,

which means that about 50% of the Λs have decayed after that distance assuming

they travel at the speed of light (c). Therefore, a lower bound was imposed on the

decay length.

Exact topological cuts imposed on the V 0s and on the decay daughters are listed

in Table 3.4.
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Figure 3.8: Cross section of V 0 decay topology in x-y plane. All the topological
parameters used in the analysis are marked by numbers from 1 to 4 and V0 decay
length is represented by L.

3.6 Purity of V 0 samples

As mentioned in the previous section, various topological cuts can be used to

refine the most probable V 0 candidates in the sample. Optimization of the topolog-

ical cuts was done by using variations of different topological cut combinations and

calculating the purity of the resulting V 0 samples.

For the extraction of the signal, firstly, the number of entries in the signal and

background areas of the invariant mass distribution were counted. A first order

polynomial fit was used to identify the background shape as shown by the blue

dashed line in Figure 3.7. With the help of the background fit function, the area

below the signal was estimated. Then the calculated signal to background and signal

ratio (Equation 3.21) was used as the measure of the purity of the sample. Five

sets of different topological cut sets were used in this analysis as shown in Table 3.3.
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These cut-set variations were done starting with wide topological cuts (cut set - 5)

and making them narrower and finally ending with the most strict cut set (cut set -

1). In each step, measures of purity were calculated as

S

B
=

Signal

Background
(3.20)

Purity =
Signal

(Signal +Background)
× 100% (3.21)

Table 3.3: Purity of the V 0 candidates in different topological cut selections for
39 GeV Au + Au collisions. These results are based on 1 million minimum-biased
events.

Parameter cut set - 1 cut set - 2 cut set - 3 cut set - 4 cut set - 5

DCA (V 0 to PV) < 0.35 < 0.5 < 0.65 < 0.8 < 0.95
DCA (p to PV) > 0.6 > 0.5 > 0.4 > 0.3 > 0.2
DCA (π to PV) > 1.75 > 1.5 > 1.25 > 1.0 > 0.75
DCA (p to π) < 0.5 < 0.6 < 0.7 < 0.8 < 0.9
Background 3196 8608 22908 34184 82161

Signal 108654 160737 196537 213468 253431
S/B 33.00 18.67 8.58 6.24 3.08

Purity 97.14% 94.92% 89.56% 86.20% 75.52%

As seen in the Table 3.3 and Figure 3.9, the purity of the sample heavily depends

on the topological cuts used. When a strict cut set (cut set -1) was used, the purity

of the sample dramatically increased. But a portion of the signal was also lost at the

same time. Corrections for this loss of the signal was addressed in the analysis during

the efficiency correction and will be explained in Section 3.11. For this analysis, ”cut

set - 2” was selected which has a purity level of greater than 90%. The selection

of this topological cut set was done by considering not only the purity but also the

resulting reconstruction efficiency. The requirement that the efficiency should not
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Figure 3.9: Number of reconstructed V 0s (from p, π−) in each invariant mass bin for
five cut set variations as explained in Table 3.3. These results are based on 1 million
minimum bias events of 39 GeV Au + Au collisions.

drop below the 10% level to prevent the efficiency corrected distributions becoming

totally Poisson was considered in the cut optimization. All the track-cut sets used in

this analysis are listed in Table 3.4. Invariant mass distributions obtained with the

optimized cut sets are shown in Figure 3.10 for all energies from 19.6 to 200 GeV.

The transverse momentum and rapidity of reconstructed V 0s in the 200 GeV Au +

Au collisions are shown in Figure 3.11.

3.7 Selection of collision centrality

Collision centrality is an important parameter in analyzing the medium produced

in heavy ion collisions. Centrality can be represented by different parameters such as

number of participating nuclei (Npart), number of binary collisions (Ncol), and impact

parameter (b). But these parameters can not be directly measured. So, the collision
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Figure 3.10: Invariant mass distributions of reconstructed V 0 for five collision ener-
gies from 19.6 to 200 GeV after the optimized cut sets were used in order to achieve
a purity greater than 90%.

centrality is deduced by using a combination of experimental measurements and

Monte-Carlo simulations. As explained in Section 2.4 of this dissertation, in STAR

experiment, charged particle multiplicity measured by TPC and TOF detectors which

is also known as reference multiplicity were used for the centrality determination.

There are different types of reference multiplicities available from the previous

fluctuation analysis. These existing definitions were examined for any possibility of

using one of them in this analysis. When selecting a proper centrality definition, it is
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Table 3.4: Track and V 0 selection criteria used in this analysis.

Particle Cut parameter Cut boundary

Proton Transverse momentum pT (GeV/c) > 0.05
Rapidity |y| < 1.0

nFitPoints > 15
nHitsFit/NFitPoss > 0.52

PID nσ < 2.0
DCA to PV > 0.5cm
DCA to π < 0.6cm

Pion Transverse momentum pT (GeV/c) > 0.05
Rapidity |y| < 1.0

nFitPoints > 15
nHitsFit/NFitPoss > 0.52

PID nσ < 2.0
DCA to PV > 1.5cm
DCA to P < 0.6cm

V 0 Transeverse momentum 0.9 < pT (GeV/c) < 2.0
Rapidity |y| < 0.5

DCA to PV < 0.5cm
Decay length > 3.0cm

Pointing away from PV (rv0 − rpv) .pv0 > 0

important to make sure that it does not include secondary protons or pions to avoid

possible auto-correlations. To partially fulfill this requirement, the reference multi-

plicity definition used in the net-proton analysis (RefMult3) was selected which does

not include protons [21]. However, RefMult3 used primary pions in the definition

and it was necessary to determine the effect of the presence of pions in this centrality

definition.

For this test, first the number of pions used in the reconstruction of Λ baryon was

counted in each event and the number of pions used in the RefMult3 centrality defi-

nition was counted. In the RefMult3 definition, pions with global distance of closest

approach less than 3 cm (gDCA < 3.0 cm) were used. Pions used in this analysis
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Figure 3.11: Transverse momentum (pT ) and rapidity (y) distributions of recon-
structed V 0s for 200 GeV Au + Au collisions. A transverse momentum cut of
0.9 < pT (GeV/c) < 2.0 and a rapidity cut of |y| < 0.5 was used and cut boundaries
are represented by dashed lines.

have a gDCA > 1.5 cm and they also have an additional DCA to proton cut (< 0.6

cm). These cuts limit the number of primary pions used for reconstruction of V 0s.

This makes the number of pions used in the reconstruction of V 0s and also used

for the centrality definition (RefMult3) small. To investigate this effect in detail,

RefMult3A distributions were examined for all five energies from 19.6 to 200 GeV.

The RefMult3A quantity was calculated by subtracting one count from RefMult3

whenever there was a pion which agrees with the conditions used in RefMult3 clas-

sification and also passed all the track cuts used in this analysis. In Figure 3.12, it

is clear that reference multiplicities (RefMult3 and RefMult3A) are almost identical.

This justifies the use of ReMult3 for the centrality determination in this analysis.

Net-Λ distributions were studied in nine collision centralities and more details about

the centrality classification was explained in Section 2.4 of this dissertation.
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Figure 3.12: Number of events with RefMult3 condition, RefMult3A condition and
their ratio for five beam energies from 19.6 to 200 GeV.

3.8 Net-Λ distributions.

After the V 0 reconstruction was done and the centrality definition was estab-

lished, transverse momentum (pT ) spectra for Λ and Λ̄ were obtained. Figure 3.13

shows the pT spectra of Λ and Λ̄ in nine centrality bins from 39 GeV Au + Au

collisions at STAR. These results were not corrected for reconstruction efficiency or

feed-down contributions. In most central collisions, V 0 production was enhanced

compared to peripheral collisions. For any given centrality, pT spectrum peaked near

∼ 1 GeV/c and fell as a function of increasing pT . Based on the pT spectra, a pT

range of 0.9 GeV/c to 2.0 GeV/c was selected for the analysis where the spectrum is

approximately exponential and also reconstruction efficiency is greater than ∼ 10%.

After the V 0 reconstruction, the event-by-event net-Λ value was found. Net-Λ

distributions for five beam energies at RHIC, as measured by STAR detector, are
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(a) (b)

Figure 3.13: Normalized pT spectra of (a).Λ and (b).Λ̄ in different collision central-
ities and in rapidity window, |y| < 0.5 from 39 GeV Au + Au collisions at STAR.
Dashed lines represent an exponential fit (p0e

−1/pT , where p0 is a free parameter).
Results were not corrected for reconstruction efficiency or feed-down contribution.
Nevt represents the number of events.

shown in Figure 3.14. These results were not corrected for reconstruction efficiency

or feed-down contribution. The results are presented in two collision centralities,

0-5% most central collisions and 60-70% peripheral collisions. In all energies, the

width of the net-Λ distributions for most central collisions was larger than that of

peripheral collisions. When going from low energy to higher energy, specifically, the

distributions in most central collisions tended to be symmetric near zero.

58



Figure 3.14: Event-by-event net-Λ distributions (Λ - Λ) for five beam energies from
19.6 GeV to 200 GeV as measured by the STAR detector in most central (0-5%)
and peripheral (60-70%) collisions. Results were not corrected for reconstruction
efficiency.

3.9 Statistical uncertainty estimation.

The statistical uncertainty estimation for this analysis was done by using the

error propagation explained in [22] following the Delta theorem [23]. The Delta

theorem is a well known theorem in statistics, which was used to approximate the

distribution of a transformation of a statistic in large samples if we can approximate

the distribution of the statistic itself. Error propagation was implemented by using

the co-variance matrix for Λ and Λ̄ and also by taking the reconstruction efficiency

into account. The co-variance matrix was calculated as shown in Equation 3.22.
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Cov (fr,s, fu,v) = 1
n

[∑r
i=0

∑s
j=0

∑u
k=0

∑v
h=0

∑i+k
α=0

∑i+k
β=0

∑i+k
β=0 s1(r, i)s1(s, j)

×s1(u, k)s1(v, h)s2(i+ k, α)s2(j + h, β)fα,β − fr,sfu,v

]
(3.22)

In Equation 3.22, s1(n, i) and s2(n, i) represent the Stirling numbers of first and

second kind and they were calculated as in Equations 3.23 and 3.24.

s1(n, i) = s1(n− 1, i− 1)− (n− 1)× s1(n− 1, i) (3.23)

with the conditions, s1 (n, i)|n<i = 0, s1 (n, i)|n=i = 1, s1 (n, 0)|n>0 = 0

s2(n, i) = s2(n− 1, i− 1) + i× s2(n− 1, i) (3.24)

with the conditions, s2 (n, i)|n<i = 0, s2 (n, i)|n=i = 1, s2 (n, 0)|n>0 = 0

The variance of a statistic quantity Φ (Np −Np ) of an event-by-event net par-

ticle distribution, V (Φ (Np −Np)) can be expressed in terms of the co-variance,

Cov(fi,j, fu,v) as:

V (Φ (Np −Np)) =
1

n

H∑
i,j=0

H∑
u,v=0

Di,jDu,v

εi+up εj+vp

(
f(i,u),(j,v) − fi,jfu,v

)
(3.25)

Here, n is the number of events and Di,j, Du,v are the differential coefficients

which can be calculated as

Di,j =
H∑
r=1

H∑
s,t=0

(
∂Φ

∂µr

∂µr
∂ms,t

∂ms,t

∂Fi,j

)
(3.26)

Du,v =
H∑
r=1

H∑
s,t=0

(
∂Φ

∂µr

∂µr
∂ms,t

∂ms,t

∂Fu,v

)
(3.27)
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Here, mr and µr represent the multivariate and central moments, respectively.

For a multivariate random vector X = (X1, X2, .... , Xk) and set of numbers r =

(r1, r2, .... , rk), these quantities were calculated as

mr(X) = E

[
k∏
i=1

Xri
i

]
(3.28)

µr(X) = E

[
k∏
i=1

(Xi − E [Xi])
ri

]
(3.29)

Here, E denotes the expectation value operator. With these definitions, the

statistical uncertainty in the mean was calculated as

σ (M = 〈Np −Np〉) =
√
V (M) =

1

ε

√
V (np − np)√

n
=

1

ε

σ (np − np)√
n

(3.30)

The statistical uncertainty in the variance was calculated as

σ
(
σ2 (Np −Np)

)
=

1√
n

√(
A

ε4
+
B

ε3
+
C

ε2

)
(3.31)

A, B, and C were calculated as

A = 2f0,2 − f 2
0,2 − f 2

2,0 + 4f0,3 + f0,4 − 4 (−f0,2f1,1 + 2f1,2 + f1,3)

+2f2,0 + 2 (f2,2 − f0,2f2,0) + 4
(
−f 2

1,1 + f1,2 + f1,2 + f2,1 + f2,2

)
+4f3,0 − 4 (−f1,1f2,0 + 2f2,1 + f3,1) + f4,0

(3.32)

B = 2(2M + 1) (−f0,1f0,2 + 2f0,2 + f0,3) + 2(1− 2M) (f1,2 − f0,2f1,0)

−4(2M + 1) (−f0,1f1,1 + f1,1 + f1,2) + 2(2M + 1) (f2,1 − f0,1f2,0)

−4(1− 2M) (−f1,0f1,1 + f1,1 + f2,1) + 2(1− 2M) (−f1,0f2,0 + 2f2,0 + f3,0)

(3.33)
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C = (2M + 1)2
(
−f 2

0,1 + f0,1 + f0,2

)
+ 2(1− 2M)(2M + 1) (f1,1 − f0,1f1,0)

+(1− 2M)2
(
−f 2

1,0 + f1,0 + f2,0

)
(3.34)

The statistical uncertainty in C3 was calculated as

σ (C3 (Np −Np)) =

√√√√ 3∑
r,s=0

3∑
u,v=0

Dr,s

εr+sp

Du,v

εu+v
p

Cov (fr,s, fu,v) (3.35)

and, the differential coefficients can be calculated as

Di,j =
dµ3

dFi,j
(3.36)

The statistical uncertainty in C2/C1 (σ2/M) was calculated assuming no correla-

tions between C2 and C1. But for C3/C2 (Sσ), correlations between C3 and C2 were

taken into account and the statistical uncertainty was calculated as

σ (Sσ (Np −Np)) =

√√√√ 3∑
r,s=0

3∑
u,v=0

Dr,s

εr+sp

Du,v

εu+v
p

Cov (fr,s, fu,v) (3.37)

and, the differential coefficients can be calculated as

Di,j =
d (µ4 − 3µ2

2)

dFi,j
=

dµ4

dFi,j
− 6µ2

dµ2

dFi,j
(3.38)

All simplified differential coefficients (Di,j) needed in the statistical error esti-

mation of cumulants and cumulant ratios up to the 4th order can be found in [22]

and they were used in these calculations. Absolute statistical uncertainties of net-Λ

cumulants and cumulant ratios are presented in Appendix A.2 - A.6.
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3.10 Volume fluctuation effects.

In heavy ion collisions at STAR, collision centrality can not be measured di-

rectly, thus, it is determined by comparing the produced particle multiplicities to

Glauber model simulations. This approach potentially can cause two known effects;

a centrality bin-width effect (CBWE) and a centrality-resolution effect (CRE).

When presenting the higher order cumulants of net particle multiplicity distribu-

tions, wider centrality bins were used such as, 0-5%, 5-10%, 10-20% up to 70-80% for

better statistical accuracy. But the variations in finite centrality bin width can cause

effects on the final results. To eliminate the CBWE, centrality bin-with correction

(CBWC) was used in the calculation of various cumulants of net particle multiplicity

distributions as shown in the Equation 3.39, where X represents a given moment,

index i runs over each fine centrality bin, ni is the number of events in the ith, bin

and
∑
ni is the total number of events in a given centrality bin.

X =

∑
i niXi∑
i ni

(3.39)

Figure 3.15 shows the effect of CBWC tested on different finite centrality bin

widths. Results were tested on four different bin widths and there was no significant

effect of the variations on the cumulants except for small deviations in most central

collisions (d, h, and j sub plots of Figure 3.15). However, these deviations are

consistent within the statistical uncertainties.

The centrality resolution effect is related to the initial geometry of the system

after heavy-ion collisions. This arises because produced particle multiplicities and

the impact parameter do not necessarily correspond one-to-one. Therefore, there
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Figure 3.15: Effect of centrality bin-width correction (CBWC) on net-Λ cumulants
(C1, C2, and C3) from 39 GeV Au + Au collisions. Only the statistical uncertainties
are shown. Bin centers of Refmult3 axis in d, h, and l sub-plots were weighted by
the number of particles in each RefMult3 bin.

could be differences of results depending on the different centrality definitions. This

effect is shown in Figure 3.16 [24] where the ultra relativistic molecular-dynamics

(UrQMD) model was used to calculate the net-proton cumulant ratios C3/C2 (Sσ)

and C4/C2 (κσ2) in centrality definitions which use particles with different acceptance

(|y| < 0.5, 1.0, 1.5, and 2.0). In RefMult3, a wider acceptance coverage (|y| < 1.0)

was used for the acceptance of the particles (primary kaons and pions) in order to

account for the CRE.

The results presented in this analysis were corrected for CBWE and accounted
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for the effects of CRE. Centrality-dependence results are presented in nine centrality

bins from 0-5% (most central collisions) to 70-80% (most peripheral collisions). For

the representation of the centrality dependence in this analysis, the average number

of participant nucleons (〈Npart〉) was used.

Figure 3.16: The energy dependence of the moments products (Sσ, κσ2) of net-
proton multiplicity distributions for Au+Au collisions at

√
sNN = 7.7, 11.5, 19.6, 27,

39, 62.4, and 200 GeV in the UrQMD model with different centrality definitions [24].
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3.11 V 0 reconstruction efficiency and efficiency cor-

rection methods.

In real world experiments, we do not observe 100% detector efficiency. On top of

that, there is finite acceptance and also several geometrical cuts need to be imposed

in order to arrive at a required purity. Therefore, we always identify less particles

than the actual number present in the system after the collision. To account for this

loss, the V 0 reconstruction efficiency should be calculated and corrections must be

applied accordingly. For this purpose, specific detector response functions defined in

GEANT and real events with known number of embedded particles were used and

V 0 reconstruction efficiency was calculated as in Equation 3.40. Here, ε(pT ) is the

reconstruction efficiency as a function of transeverse momentum (pT ), fGEN(pT ) is

the generated pT spectrum of V 0s and fREC(pT ) is the reconstructed pT spectrum of

V 0s.

ε(pT ) =
fREC(pT )

fGEN(pT )
(3.40)

In the process of calculating the efficiency in STAR, first, a known number of

particles are thrown into a real event environment which is called embedding. The

purpose of embedding is to provide users with Monte Carlo tracks with known particle

types and their kinematics. The way these particles are reconstructed provides a base

line which can be used to correct for the acceptance effects.

Embedding of V 0s can be done independent of transverse momentum (embed-

ded flat in pT ) or by including a dependency of transverse momentum (embedded

exponentially in pT ). Selecting one of these types of embedding depends on the need
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Figure 3.17: (a). Centrality dependence of reconstruction efficiency calculated from 1
million embedded events in 200 GeV Au + Au collisions. (b). Percentage uncertainty
estimated for reconstruction efficiency. [25].

and the type of analysis. For this analysis, samples of V 0s embedded flat in pT

were used since the need was to find the number of V 0s recovered after the vertex

reconstruction and also after imposing strict topological cuts.

The calculated V 0 reconstruction efficiency could depend on many factors like

transverse momentum, rapidity, and collision-centrality. Transverse momentum and

centrality dependence of the V 0 reconstruction efficiency are shown in Figure 3.17

(a). The centrality-dependence of efficiency has been taken into account since the

corrections for the analysis was done separately in each centrality bin. Transverse

momentum dependency of efficiency should also be taken into account and is de-

scribed in Section 3.11.2 (pT dependent efficiency correction). In most STAR past

fluctuation measurement analyses, efficiency corrections were done by considering

the pT averaged efficiency as described in Section 3.11.1 (pT independent efficiency
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correction). In this analysis, different approaches were tested and final results were

corrected for efficiency using pT dependent efficiency correction.

Figure 3.18: V 0 reconstruction efficiency of Λ and Λ as a function of transverse
momentum for five collision energies from 19.6 to 200 GeV Au + Au collisions. Solid
lines are the fit ( p0 exp(−p1/x) +p2 where, p0, p1 and p2 are free parameters ) to the
data points. For 62.4 GeV, only Λ-reconstruction efficiency is presented.

The uncertainty in reconstruction efficiency was calculated according to the pro-

cedure explained in [25]. The calculated percentage uncertainty on the efficiency is

shown in Figure 3.17 (b) and was also used to determine the variation of efficiency in

the estimation of systematic uncertainty. As seen in Figure 3.18, within the uncer-

tainties, Λ and Λ efficiencies show no differences for all collision energies. Therefore,

in the efficiency corrections, Λs and Λs were treated equally.
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3.11.1 pT -independent efficiency correction.

As mentioned in the previous section, in most fluctuation measurements analysis

in STAR, efficiency corrections were done using the pT averaged efficiency which

was calculated using Equation 3.41. This calculation was done in each individual

centrality bin by using the efficiency corrected pT spectra of Λ (f(pT )) and momentum

dependent reconstruction efficiency ε(pT ). Integration was done over the entire pT

range of the analysis (0.9 GeV/c < pT < 2.0 GeV/c).

ε =

∫ 2.0

0.9
ε (pT ) f (pT ) pTdpT∫ 2.0

0.9
f (pT ) pTdpT

(3.41)

εC1 = c1 (3.42)

ε2C2 = c2 − n(1− ε) (3.43)

ε3C3 = c3 − c1

(
1− ε2

)
− 3(1− ε) (f20 − f02 − nc1) (3.44)

n ≡ 〈n1〉+ 〈n2〉 = f10 + f01 (3.45)

Once the pT averaged efficiency was calculated, efficiency corrections were done

for the cumulants as described in Equations 3.42 - 3.45 where cm represents un-

corrected cumulants and Cm represents corrected cumulants [26]. The cumulants

separately were corrected for efficiency in each centrality bin. The correction becomes

more sensitive in higher order cumulants. The pT -averaged efficiency calculated with

the topological cuts used in this analysis was in the ∼ 15% level and higher order

cumulants become difficult to interpret. Therefore, in this analysis, only the first

three efficiency corrected cumulants (C1, C2, C3) and cumulant ratios (C2/C1, C3/C2)

are presented.

69



100 200 300
0

0.5

1
1

(a). C

100 200 300
0

2

4

6

8
2

(b). C

)〉 
part

 N〈Avg. num. of participants (

100 200 300
0

0.5

1

1.5
3

(c). C

100 200 300

8

10

12

14

16
1C
2C

(d).  = 200 GeVNNS

Not efficiency corrected

 indep.)
T

Effiency corrected (p

)〉 
part

 N〈Avg. num. of participants (

100 200 300

0

0.1

0.2

0.3
2C
3C

(e). 
Au + Au collisions

 (GeV/c) < 2.0
T

0.9 < p
|y| < 0.5S

in
gl

e 
cu

m
ul

an
ts

 (
un

itl
es

s)

C
um

ul
an

t r
at

io
s 

(u
ni

tle
ss

)

Figure 3.19: Comparison between efficiency corrected and un-corrected net Λ single
cumulants: C1, C2, and C3 (a, b, c) and cumulant ratios: C2/C1, C3/C2 (d, e)
as a function of average number of participant nucleons (〈Npart〉) for 200 GeV Au
+ Au collisions. Results were corrected for CBWE and pT -independent efficiency
correction was used. Only statistical errors are presented.

As shown in Figure 3.19 (a, b, c), the efficiency correction increased all three

cumulants C1, C2, and C3 by a large factor. However, the effect of efficiency correction

on the cumulant ratios (C2/C1, C3/C2) was relatively small compared to the single

cumulants as seen in Figure 3.19 (d, e). The statistical uncertainties of C3 and C3/C2

in most central collisions become large due to higher order correction factors and due

to low-reconstruction efficiency. In peripheral collisions, corrected C2/C1 deviates

(significantly lower) from the uncorrected values. This observation is possible due to

the use of pT -independent efficiency correction and this matter was then addressed

in the pT -dependent efficiency correction as explained in the next section.
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3.11.2 pT -dependent efficiency correction

Reconstruction efficiency depends on various factors and one of them is the mo-

mentum of produced particles. For instance, low momentum particles may not tra-

verse all the way through to the detector. Therefore, in most cases, the reconstruction

efficiency becomes relatively small in low momentum region. For Λ and Λ reconstruc-

tion efficiency, this effect is visible at all energies as shown in Figure 3.18. Doing

the efficiency correction using pT -averaged efficiency as explained in the previous

section will not completely take this dependency into account. Therefore, in this

section, important steps used for the pT -dependent efficiency correction are shown

in Equations 3.46 - 3.56 as explained in [27] and the correction was done using three

pT bins as shown in Figure 3.19 (0.9 < pT (GeV/c) < 1.2, 1.2 < pT (GeV/c) < 1.6

and 1.6 < pT (GeV/c) < 2.0).

Figure 3.20: pT dependence of reconstruction efficiency for 0-5% central and 5-10%
central 200 GeV Au + Au collisions. Black vertical lines are the boundaries for three
acceptance regions used in the corrections. Red horizontal line shows the equivalent
pT -averaged efficiency.

This efficiency correction is done by considering the binomial model. Suppose
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the multiplicity distribution of a particle number N is given by P(N). Suppose that

individual particles are observed with a probability, p, which is independent for

different particles. If the number of observed particles is denoted as n, and the

distribution of n as P (n), then it is related to P (N) using the binomial distribution

function as

P (n) =
∑
N

P (N)Bp,N(n) (3.46)

Here the binomial distribution Bp,N(n) is given by

Bp,N(n) =
N !

n!(N − n)!
pn(1− p)N−n (3.47)

According to the method described in [27], for the multivariate case, consider the

probability distribution function

P (N) = P (N1, N2, . . . , NM) (3.48)

For M stochastic variables N1, N2, ..., NM where Ni with different i represent

particle numbers entering detectors which cover different acceptances. Then the

cumulant generation function K(θ) is defined as

K(θ) = ln

[∑
N

eθ1N1+...+θMNMP (N )

]
(3.49)

Then the Q(a) is defined as the linear combination of Ni

Q(a) =
M∑
i=1

aiNi (3.50)

The mth order cumulant can be expressed as

〈
Qm

(a)

〉
c

= ∂m(a)K (θ)|θ=0 (3.51)

where
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∂(a) =
M∑
i=1

ai
∂

∂θi
(3.52)

Here, a = 1 for baryons and a = −1 for anti-baryons and M represents the

different acceptance regions. Explicit results up to the 3rd order are shown below as

described in [27]. In this analysis, three acceptance (pT ) regions were used. Ideally

the number of pT bins should be maximized, but the required computing time for the

calculation grows considerable with more pT bins. Therefore, a test was performed

using the finer pT segmentation with 6 pT bins which yield the same results than the

results from the analysis done with 3 pT bins. Therefore, the analysis was performed

in the three acceptance regions as illustrated in Figure 3.20.

〈Q〉c =
〈
q(1,1)

〉
c

(3.53)

〈
Q2
〉

c
=
〈
q2

(1,1)

〉
c

+
〈
q(2,1)

〉
c
−
〈
q(2,2)

〉
c

(3.54)

〈Q3〉c = 〈q3
(1,1)〉c + 3

〈
q(1,1)q(2,1)

〉
c
− 3

〈
q(1,1)q(2,2)

〉
c

+
〈
q(3,1)

〉
c
− 3

〈
q(3,2)

〉
c

+ 2
〈
q(3,3)

〉
c

(3.55)

q(r,s) = q(ar/εs) =
M∑
i=1

(ari/ε
s
i )ni (3.56)

The corrected results using the pT -dependent efficiency correction method are

shown in Figure 3.21 with a comparison to the results corrected using pT -independent

efficiency correction method for 200 GeV Au + Au collisions. The single cumulants

and cumulant ratios in most central collisions are independent of the efficiency cor-

rection method. The important observation here is that, in most peripheral collisions

(60-70% and 70-80%), C2/C1 calculated with pT -dependent efficiency correction be-

came larger than pT -independently corrected C2/C1. The corrected C2/C1 using a
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Figure 3.21: Comparison between different efficiency correction methods, pT -
independent and pT -dependent for net-Λ single cumulants: C1, C2, and C3 (a, b,
c) and cumulant ratios: C2/C1, C3/C2 (d, e) as a function of average number of par-
ticipant nucleons (〈Npart〉) for 200 GeV Au + Au collisions. Results were corrected
for CBWE. Only statistical uncertainties are presented.

pT -dependent efficiency correction is in accordance with the baseline expectations

and therefore the issue in peripheral collision when C2/C1 was calculated using pT -

independent correction was resolved. All the centrality and energy dependence of

net-Λ cumulants presented in this analysis were corrected for the reconstruction ef-

ficiency using pT -dependent efficiency correction as explained in this section.
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3.11.3 Feed-down correction

There may be contamination in the Λ and Λ yields due to the weak decays of

multi-strange baryons like Ξ and Ω. These weak decays take place in the very prox-

imity of the primary vertex and therefore Λs or Λs coming from Ξ and Ω weak decays

could mistakenly be identified as primary particles. To correct for this contamina-

tion, feed-down contribution from Ξ and Ω should be estimated and subtracted from

the raw yields. In this analysis, a feed-down contribution of 15% is considered [28]

and the correction was done according to the Equation 3.57 where, ε is the recon-

struction efficiency without feed-down correction, ε
′

is the reconstruction efficiency

with feed-down correction included, and δ is the feed-down contribution level.

ε
′
=

ε

(1− δ)
(3.57)

The feed-down corrected and efficiency corrected pT spectra for Λ and Λ̄ from

39 GeV Au + Au collisions at STAR are presented in Figure 3.22. Comparison of

feed-down corrected and uncorrected net Λ single cumulants and cumulant ratios

are shown in Figure 3.23. As expected, the single cumulants (C1, C2 and C3) have

smaller values when the feed-down correction was applied. But in cumulant ratios,

there was no significant difference between the feed-down corrected and uncorrected

results.

The estimation of the feed-down contribution should be done as a function of

momentum, collision energy, and centrality. In the narrow pT range used in this

analysis, the feed-down contribution was assumed to be independent of pT . A test

was performed to estimate the feed-down contribution as a function of collision en-

ergy. The efficiency corrected pT spectra from this analysis without the feed-down
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(a) (b)

Figure 3.22: Normalized pT spectra of (a). Λ and (b). Λ̄ in different collision central-
ities and in rapidity window, |y|V 0 < 0.5 for 39 GeV Au + Au collisions at STAR.
Dashed line represents an exponential fit (p0e

−1/pT , where p0 is a free parameter).
Results were corrected for reconstruction efficiency and feed-down contribution. Nevt

represents the number of events.

contribution were compared with efficiency corrected and feed-down corrected pT

spectra from the analysis presented in [29] at STAR. It was found that the feed-

down contribution is in a level of ∼15% from 19.6 to 200 GeV. One of the reasons

for the weak dependence of feed-down contributions in this analysis as a function

of collision energy could possibly be due to very strict topological cuts used in the

reconstruction of V 0s. For instance, the DCA of V 0 primary vertex cut used in this

analysis has a much higher purity than the cuts used in other analysis where the V 0

signal extraction was done by the background subtraction methods.
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Figure 3.23: Comparison between feed-down corrected and uncorrected net-Λ single
cumulants: C1, C2, and C3 (a, b, c) and cumulant ratios: C2/C1, C3/C2 (d, e) as
a function of average number of participant nucleons (〈Npart〉) for 200 GeV Au +
Au collisions. Results are corrected for CBWE. Only statistical uncertainties are
presented.

3.12 Estimation of systematic uncertainties

Systematic uncertainties can arise due to various sources such as imperfect cal-

ibration of the measuring instruments, or imperfect methods of observations. De-

tector imperfections can be addressed up to some level in the efficiency corrections

using simulated environments as explained in previous sections (3.11.1 and 3.11.2).

But there are other sources of systematic uncertainties which need to be addressed

in detail. One of them is the uncertainty associated with the selection process used

for the identification of charged particles in STAR TPC. Ionization energy loss was
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used to identify charged particles in TPC and the purity of the samples depends on

the conditions applied such as particle identification (PID) cuts. Boundaries for cut

variables were decided by considering factors such as expected purity. Therefore,

the influence of the variations of charged particle identification criteria on the final

results was examined and included as one of the sources for systematic uncertainty.

Different topological cuts were used for the reconstruction of V 0s as explained in

Section 3.6. These cuts also affect the purity of the sample and the reconstruction

efficiency as well. Therefore, variations of these topological cuts were also included

as another source for systematic uncertainty estimation. In addition, uncertainties in

the reconstruction efficiency were also included as a source for systematic uncertain-

ties. Estimation of the uncertainty associated with the reconstruction efficiency is

explained under the Section 3.11 and is at 2.25%. All the sources and their variation

are listed in Table 3.5. The root mean square (RMS) value for each cut variations are

shown in Figure 3.24 and 3.25 for C2/C1 and C3/C2, respectively. The calculation

of systematic uncertainty was done as shown in Equations 3.58 and 3.59 by taking

the contributions from all potential sources mentioned above.

Table 3.5 shows the sets of different PID and topological cut variations performed

to estimate systematic uncertainty. For each cut-set variation, results are corrected

for the reconstruction efficiency. Then, the point by point difference between the

results from each cut selection and the default results was calculated. The RMS

value for each cut was calculated from Equation 3.58 where N stands for the number

of different cuts used in a certain cut variation, Xi stands for the results from a certain

cut set, and Y stands for the default results. Finally the systematic uncertainty was

calculated as shown in Equation 3.59 where j stands for the number of sources used

in the error estimation.
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Figure 3.24: Effect of cut parameter and efficiency variations on the efficiency cor-
rected net-Λ C2/C1 for the estimation of systematic uncertainties in 200 GeV Au +
Au collisions.
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RMS =

√
1

N
ΣN
i−1 (Xi − Y )2 (3.58)

SysErr. =
√

ΣjRMS2
j (3.59)

The main source of the systematic uncertainty is the selection criteria used in

the identification of protons and pions. It has a relative contribution of 44.9% to

the systematic uncertainty in C2/C1 for 0-5% central collisions at 200 GeV. The

second largest contribution comes form the efficiency variations. The contribution

of the topological cut variations on the systematic error was relatively small as seen

in Figure 3.24. Similarly, as seen in Figure 3.25, cut variations done on PID for

proton and pion had the largest contribution in the RMS calculation for C3/C2.
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Figure 3.25: Effect of cut parameter and efficiency variations on the efficiency cor-
rected net-Λ C3/C2 for the estimation of systematic uncertainties in 200 GeV Au +
Au collisions.
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The absolute systematic uncertainties of net-Λ cumulants and cumulant ratios are

presented in Appendix A.2 - A.6.

3.13 Baselines for the net-Λ distributions.

A study of different baselines and model expectations was done in order to under-

stand the underlying physics interpretation to the experimentally measured data and

also to keep track of any possible deviations of data from baselines. In the following

sections, several baselines and model calculations used in this analysis are discussed.
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Table 3.5: Different sources of the systematic uncertainty, their variations and the
contribution for the systematic error. Relative contributions are calculated in the
most central collisions (0-5%) of C2/C1 in 200 GeV Au + Au collisions.

Source Variations Contribution

< 0.6 (default)
< 0.5

DCA of p to π < 0.55 11.2%
< 0.65
< 0.70

> 0.5 & > 1.5 (default)
> 0.6 & > 1.7

DCA of π to PV & p to PV > 0.55 & > 1.6 20.3%
> 0.45 & > 1.4
> 0.4 & > 1.3

< 2.0 & < 2.0 (default)
nσ (π) & nσ (P) < 2.5 & < 2.5 44.9%

< 1.5 & < 1.5
ε & ε (default)

Eff (Λ) & Eff (Λ) ε× (1 + 2.25%) & ε× (1 + 2.25%) 23.6%
ε× (1− 2.25%) & ε× (1− 2.25%)

3.13.1 Central Limit Theorem (CLT).

In probability theory, the central limit theorem says that, when random vari-

ables are added, their properly normalized sum tends towards a normal distribution.

For instance, take a sample obtained with a large number of observations so that

these observations do not depend on each other. Then if the arithmetic average of

this sample is calculated, CLT says that if this process is done many times, these

computed averages of samples will be distributed according to a normal distribution.

In heavy ion collisions, the centrality dependence of moments of net-particle mul-

tiplicity distributions can be understood in the by the CLT. Moments show depen-

dence of averaged number of participant nucleons (Npart). In the context of CLT,
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Npart can be considered as sources of independent emission of particles. With this

description, the first four moments of net particle multiplicity distributions can be

expressed in terms of Npart as

M ∝< Npart > (3.60)

σ ∝
√
< Npart > (3.61)

S ∝ 1√
< Npart >

(3.62)

andκ ∝ 1

< Npart >
(3.63)

The central limit theorem expectations for the first four moments of net-Λ are

shown in Figure 4.1 for five Au + Au collision energies from 19.6 to 200 GeV as a

function of collision centrality in next chapter.

3.13.2 Poisson baseline.

In this approach, individual particle distributions are assumed to be Poissonian.

Then, the baseline for net particle multiplicity distributions would be the difference

of two independent Poisson distributions which is called a Skellam distribution. The

probability mass function for Skellam distribution is

P (N) =

(
µ1

µ2

)
(N/2)IN (2

√
µ1µ2) e−(µ1+µ2) (3.64)

Here, µ1 and µ2 are the means of individual Λ and anti-Λ particle distributions

(µΛ and µΛ, respectively). IN are the modified Bessel functions of the first kind.

Then, the baselines for cumulants of the net-Λ distribution can be calculated as
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C2n = µΛ + µΛ, (n = 1, 2, 3, . . . ) (3.65)

C2n−1 = µΛ − µΛ, (n = 1, 2, 3, . . . . . . ) (3.66)

C2

C1

=
µΛ + µΛ

µΛ − µΛ

(3.67)

C3

C2

=
µΛ − µΛ

µΛ + µΛ

(3.68)

The collision centrality, collision energy, and rapidity dependence of net-Λ cu-

mulants and cumulant ratios are presented using Poisson expectations as one of the

baselines and possible deviations from the baselines. This is discussed in the next

chapter.

3.13.3 Negative binomial expectations.

In probability theory, if we consider a sequence of independent and identically

distributed Bernoulli trials, then the number of successes before a specified number

of failures occurred can be described by a negative binomial distribution (NBD).

NBD is a discrete probability distribution and the probability mass function is:

NB(k; r, p) =

 k + r − 1

k

 pr(1− p)k (3.69)

where p is the probability of success, r stands for the number of failures before

the experiment is stopped (stopping parameter), and k is the number of successes.
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The NBD is valid if the mean (M) of a distribution is less than the variance (σ2) of

the distribution. The NBD expectations for the cumulants can be written as

C2 = σ2 = rµ (3.70)

C3 = Sσ3 = rµ(2r − 1) (3.71)

C4 = κσ4 = rµ
(
6r2 − 6r + 1

)
(3.72)

where, µ is the mean, and r = σ2

µ
. Finally the NBD expectation for net-Λ cumu-

lants can be calculated considering the cumulants of individual particle distributions

as

Cn = C+
n + (−1)nC−n (3.73)

3.13.4 UrQMD simulation study.

The ultra relativistic molecular dynamics (UrQMD) model is a fully integrated

Monte Carlo simulation package which can be used to study the evolution of the

system after heavy-ion collisions [30]. This package has the ability to simulate p +

p, p + Au and Au + Au collisions at both RHIC and LHC energies which provides

base lines for the experimentally measured quantities.

The dynamics of UrQMD are based on co-variant propagation of color strings,

constituent quarks, and di-quarks accompanied by mesonic and baryonic degrees

of freedom. In addition, it includes re-scattering of particles, the excitation and

fragmentation of color strings, and the formation and decay of hadronic resonances.

In this analysis, UrQMD expectations for net-Λ single cumulants (C1, C2, and C3)

and cumulant ratios (C2/C1 and C3/C2) were calculated as a function of collision
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centrality and collision energy. For these UrQMD calculations, same event, track, V 0

cuts, and the same centrality definition (RefMult3) were used as in the real analysis.

3.13.5 Hadron Resonance Gas model.

The hadron resonance gas (HRG) model has been very successful in fitting par-

ticle yields and ratios for the extraction of freeze-out parameters [19]. In the HRG,

interacting hadronic matter in the ground state is approximated by a non-interacting

resonance gas. Information of particle species included in the calculations come from

the most recent version of the particle data booklet [20]. The pressure from the

grand canonical partition function can be written as,

pHRG/T 4 =
1

V T 3

∑
i∈ mesons

lnZMmi (T, V, µXa) +
1

V T 3

∑
i∈ baryons

lnZBmi (T, V, µXa)

(3.74)

where, mi stands for mass of the ith particle, M stands for mesons, and B stands

for baryons. Xa stands for all possible conserved charges including baryon number

(B), electric charge (Q), and strangeness (S ). The grand canonical partition function

can be written as

lnZM/B
mi

= ∓V di
2π2

∫ ∞
0

dkk2 ln
(
1∓ zie−εi/T

)
(3.75)

Here, energy εi =
√
k2 +m2

i , fugacity zi = exp
µXa
T and di stands for degeneracy

factor. Finally, the susceptibilities of conserved charges can be calculated as

χBSQlmn =
∂l+m+np/T 4

∂ (µB/T )l ∂ (µS/T )m ∂ (µQ/T )n
(3.76)
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Here, l, m, and n stand for the different orders in the susceptibility.

The net Λ fluctuation results were compared to the HRG calculations done fol-

lowing the methods described in [9].
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Chapter 4

Results and discussion

In this chapter, net-Λ fluctuation measurements are presented as a function of

collision energy, collision centrality, and rapidity. The net Λ distributions were mea-

sured for five different Au + Au collision energies from 19.6 to 200 GeV. The cu-

mulant calculations were done according to the procedures described in Chapter 3

of this dissertation. The results presented for centrality and energy dependence of

net-Λ fluctuations were corrected for reconstruction efficiency using pT -dependent

efficiency correction as described in Section 3.11.2. For the rapidity dependence of

net-Λ fluctuations, results were corrected for the reconstruction efficiency using pT -

independent efficiency correction as explained in Section 3.11.1. The statistical and

systematic uncertainties were estimated and are presented separately using vertical

error-bars and error-caps, respectively. The results were corrected for the feed-down

contributions and for the centrality bin-width effect (CBWE). The results are pre-

sented with NBD and Poisson baselines which were calculated as explained in Section

3.13. The predictions from the UrQMD model are presented as a function of collision

centrality and energy. The centrality dependence of net-Λ results are presented as
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a function of averaged number of participant nucleons (〈Npart〉). In this chapter,

results are presented with a follow-up discussion where the deviations of data from

baselines (NBD, Poisson) and model predictions (UrQMD, HRG) are addressed in

detail. The rapidity dependence of net-Λ fluctuations is presented as a measure of

the sensitivity of the results to baryon-number conservation and discussed in the last

two sections of this chapter.

4.1 Centrality dependence of uncorrected net-Λ

moments.

The collision centrality is a measure of the degree of overlap between two colliding

nuclei. A detailed explanation of the determination of collision centrality in the STAR

experiment is given in Section 2.4 of this dissertation. As mentioned earlier, for the

representation of collision centrality, the average number of participant nucleons

(〈Npart〉) was used. Figure 4.1 shows the centrality dependence of the first four

uncorrected moments (mean - M, standard deviation - σ, skewness - S, and kurtosis

- κ) of net-Λ multiplicity distributions for five Au + Au collisions energies (19.6, 27,

39, 62.4, and 200 GeV). Here, ”uncorrected moments” means results which were not

corrected for reconstruction efficiency or feed-down contribution.

As seen in Figure 4.1, both mean and standard deviation of net-Λ multiplicity

distributions increased as a function of increasing collision centrality while skewness

and kurtosis decreased. This behaviour of the first four moments as function of

collision centrality is mainly because the number of nucleons participating in a given

collision increased as a function of increasing collision centrality. This trend in the
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Figure 4.1: Centrality dependence of first four moments (mean-M, standard
deviation-σ, skewness-S, and kurtosis- κ) of net-Λ multiplicity distributions at Au
+ Au collision energies 19.6, 27, 39, 62.4, and 200 GeV. Results are not corrected
for reconstruction efficiency or feed-down contribution. Only statistical uncertainties
are presented. Dashed lines represent the CLT expectations. CBWC was applied.

data can be approximated by calculated CLT expectations which are represented

using dashed lines in Figure 4.1 . For the mean and standard deviation, the CLT

has better agreement in peripheral collisions, but deviates in most central collisions.

On the other hand, the CLT expectations for both skewness and kurtosis deviate

more in peripheral collisions than in central collisions. However, the CLT roughly

represent the trends of the centrality dependence for net-Λ moments. Specifically, at

200 GeV, all four measured moments (M , σ, S, and κ) show good agreement with

CLT expectations.
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4.2 Centrality dependence of net-Λ single cumu-

lants (C1, C2, and C3)

The results of measured net-Λ single cumulats up to the 3rd order are presented

with the calculated NBD and Poisson baselines together with UrQMD model ex-

pectations. Values of C1, C2, and C3 increase as a function of increasing collision

centrality at all energies due to the increase of the number of participant nucleons in

most central collisions compared to peripheral collisions. For C3, small fluctuations

can be seen in most central collisions, but they are within the statistical uncertainties

and in agreement with both the NBD and Poisson baselines.

The particles observed at the highest collision energies are mostly produced par-

ticles, i.e. particles formed in the fireball. That means, the probability of observing

primordial particles, i.e. particles that did not participate in the collisions, is low

at highest collision energies compared to low energy collisions. Therefore, when the

collision energy increases, the probability of finding equal numbers of Λs and Λs

in an event is also increased. As a result, net-Λ C1 and C3 for a given centrality

class decrease as a function of increasing collision energy. However, the variance of a

distribution mostly depends on the variance of the individual particle distributions

and the degree of correlations between particles and anti-particles. As seen in Figure

4.2, for a given centrality, net-Λ C2 shows similar values in 19.6, 27, and 39 GeV

collisions but relatively larger at 62.4 and 200 GeV collisions.

The statistical uncertainties are relatively small for C1 and C2 but significant

in most central collisions for C3. This is mainly due to the higher order correction

factors associated with reconstruction efficiency as explained under the statistical
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error estimation in Section 3.9. The systematic uncertainties are dominant in C2

and increase as a function of increasing collision energy and centrality. Both NBD

and Poisson baselines show reasonable agreement with the measured cumulants. For

C2, both baselines behave similarly and agree with data except in the most central

collisions at 200 GeV, where there is a visible deviation of the Poisson baseline from

the data. The NBD expectations show better agreement with data in C3 than the

Poisson baseline. In the calculation of the NBD expectations, both the mean and

variance of individual particle distributions were taken into account. Therefore, it

is possible that NBD is capable of reproducing the effects due to particle and anti-

particle correlations. The UrQMD model calculations show a better agreement with

C1 and C3 except at 27 GeV. The measured C2 deviates from UrQMD at all energies

and the deviation increases as a function of increasing collision energy.

In this analysis, only the efficiency corrected net-Λ cumulants up to the 3rd order

are presented. It was found that the net-Λ 4th order cumulant (C4) measurement was

not sensitive to centrality or collision energy due to the presence of large statistical

uncertainties and it is therefore not presented in this work.

4.3 Centrality dependence of net-Λ cumulant ra-

tios C2/C1 and C3/C2

The centrality dependence of the net-Λ cumulant ratio C2/C1 is presented in

Figure 4.3 for 19.6, 27, 39, 62.4, and 200 GeV Au + Au collisions. The results

are presented with NBD, Poisson baselines and UrQMD predictions. Both the sta-

tistical and systematic uncertainties stay significantly small. Both the NBD and
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Figure 4.2: Centrality dependence of first three single cumulants, C1, C2, and C3 of
net-Λ multiplicity distributions at Au + Au collisions energies, 19.6, 27, 39, 62.4,
and 200 GeV. NBD and Poisson baselines are presented by dashed lines. UrQMD
predictions are shown in solid lines. Black vertical lines represent the statistical
uncertainties and caps represent the systematic uncertainties. Results were corrected
for feed-down contribution and reconstruction efficiency. CBWC was applied.

Poisson expectations show better agreement with data except in 200 GeV most cen-

tral collisions, where a slight deviation from the Poisson baseline is visible. The

UrQMD predictions show notable deviations at all energies. This is mainly due to

the deviations of UrQMD expectations seen in C2. This deviation stays constant as

a function of centrality in the range of mid-central to most-central collisions at all

collision energies.

As described in Chapter 3, the reason for choosing cumulant ratios for the com-

parison of the fluctuation measurements with theory is they are independent of the
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volume of the system. Therefore, the measured net-Λ C2/C1 values show a weak

dependency on the collision centrality, as expected. The NBD expectations agree

with data better than the Poisson baseline at 200 GeV most central collisions (0-5%

and 5-10%). This observation explains the importance of including both mean and

variance of individual particle multiplicity distributions for the baseline calculations.

The agreement of NBD with data is possibly an indication of less intra-event corre-

lation between particles and anti-particles. As observed in Figure 4.3, there are no

non monotonic fluctuations present in the net-Λ C2/C1 measurement as a function

of collision centrality.

Figure 4.3: Centrality dependence of the lowest order net-Λ cumulant ratio, C2/C1

for 19.6, 27, 39, 62.4, and 200 GeV Au + Au collisions. NBD and Poisson baselines
are presented by dashed lines. UrQMD predictions are shown in solid lines. Black
vertical lines represent the statistical uncertainties and caps represent the systematic
uncertainties. Results were corrected for feed-down contribution and reconstruction
efficiency. CBWC was applied.

The centrality dependence of the net-Λ cumulant ratio C3/C2 for 19.6, 27, 39,
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Figure 4.4: Centrality dependence of the net-Λ cumulant ratio, C3/C2 for 19.6,
27, 39, 62.4, and 200 GeV Au + Au collisions. NBD and Poisson baselines are
presented by dashed lines. UrQMD predictions are shown in solid lines. Black
vertical lines represent the statistical uncertainties and caps represent the systematic
uncertainties. Results were corrected for feed-down contribution and reconstruction
efficiency. CBWC was applied.

62.4, and 200 GeV Au + Au collisions is shown in Figure 4.4. The results are

presented with the NBD and Poisson baselines together with UrQMD model predic-

tions. The statistical uncertainties dominate most central collisions at all collision

energies due to the effect of low-reconstruction efficiency on the higher-order correc-

tions. However, in mid-central and peripheral collisions, the statistical uncertainties

were suppressed and systematic uncertainties dominate. This effect is largest at low

energies. Also, systematic uncertainties grew as the collision centrality increased.

Both the NBD and Poisson baselines showed reasonable agreement with data within

the uncertainties. However, the NBD expectations described the data better than

the Poisson baseline, especially in the most central collisions. UrQMD describes the
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data in 19.6, 27, and 200 GeV collisions within the uncertainties. However, there are

deviations of data from UrQMD in 39, 62.4, and 200 GeV collision energies. The

net-Λ C3/C2 values are nearly independent of collision centrality which is possibly

due to the volume independence. According to Figure 4.4, there are no non mono-

tonic fluctuations present in the net-Λ C3/C2 measurements as a function of collision

centrality.

4.4 Beam-energy dependence of net-Λ cumulant

ratios, C2/C1 and C3/C2

Figure 4.5 shows the beam-energy dependence of net-Λ cumulant ratios, (a)

C2/C1 and (b) C3/C2 in most central (0-5%) and peripheral (50-60%) collisions with

NBD, Poisson baselines, and UrQMD model predictions. As seen in Figure 4.5 (a),

C2/C1 increases monotonically as a function of increasing collision energy in most

central and peripheral collisions. The measured C2/C1 value in peripheral collisions

is larger than that of most central collisions for all collisions energies. The statistical

and systematic uncertainties associated with C2/C1 are small in most central and

peripheral collisions. In 19.6, 27, 39, and 62.4 GeV collisions, the net-Λ C2/C1 val-

ues showed better agreement with both the NBD and Poisson baselines. However, at

200 GeV, the NBD expectation showed better agreement with the measured C2/C1

values within the systematic uncertainties than the Poisson baseline. The Poisson

baselines stayed below the NBD expectations at all energies. The UrQMD predic-

tions deviated by a large amount at all collision energies and the deviation increased
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as a function of increasing collision energy. This behaviour mainly due to the devia-

tions of UrQMD from data seen in C2 calculations (Figure 4.2). The increased net-Λ

C2/C1 ratio as a function of increasing collision energy was mainly driven by C1 as

seen in Figure 4.2. The agreement of the C2/C1 ratio with the NBD expectations as

a function of collision energy is an indication of less intra-event correlations between

particles and anti-particles.
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Figure 4.5: Beam-energy dependence of 0-5% and 50-60% central net-Λ cumulant
ratios, C2/C1 and C3/C2 for Au + Au collisions. NBD and Poisson baselines are
presented by dashed lines. UrQMD predictions are shown in solid lines. Black
vertical lines represent the statistical uncertainties and caps represent the systematic
uncertainties. Results were corrected for feed-down contribution and reconstruction
efficiency. CBWC was applied.

In Figure 4.5 (b), net-Λ C3/C2 in most central (0-5%) and peripheral (50-60%)

Au + Au collisions is presented for five collision energies from 19.6 to 200 GeV. The

96



measured C3/C2 values in most central and peripheral collisions decreased monoton-

ically as a function of increasing collision energy and approached zero at 200 GeV. At

all collision energies, the C3/C2 ratio measured in peripheral collisions stayed below

the most central collision measurement. However, the difference of the measured

C3/C2 ratio in most central collisions and peripheral collisions become small at the

highest collision energies (62.4 and 200 GeV). Large statistical uncertainties seen in

measured C3/C2 were due to the propagation of statistical uncertainties from C3 and

C2 as explained in Section 3.9. A significantly large statistical uncertainty were seen

at 62.4 GeV due to the small sample size. On the other hand, the smallest statistical

uncertainties were seen in the C3/C2 ratio calculated at 39 and 200 GeV collisions

due to the large sample size. The systematic uncertainties were small compared to

the statistical uncertainties at all energies and became largest at 62.4 GeV. In the

most central collisions, systematic uncertainties became significant relative to the

peripheral collisions at all energies.

Both the NBD and Poisson expectations decreased as a function of increasing

collision energy and follow the trend in the data. The poisson baseline showed small

deviations from data especially at 19.6 and 200 GeV. The NBD expectations stayed

closer to the data points at all energies. The Poisson baseline stayed below the

NBD expectations at all energies. The NBD expectations can be considered a better

approximation for the measured net-Λ C3/C2 ratio. Better agreement of the data

with NBD could possibly be due to less intra-event correlations between particles

and anti-particles. The UrQMD predictions for the C3/C2 also followed the same

trend as in the data and decreased as a function of increasing collision energy. The

UrQMD predictions agreeed with the measured C3/C2 ratio at 19.6 and 200 GeV

but deviated from data at other energies.
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4.5 Comparison of measured net-Λ fluctuations with

net-kaon and net-proton results at STAR

The higher order cumulants of net-proton and net-kaon multiplicity distributions

have been measured at STAR [21] [31] as proxies for the measurement of net-baryon

number and net-strangeness fluctuations, respectively. The measurement of net-Λ

cumulant ratios is presented in this analysis in the context of both net-strangeness

and net-baryon quantum number fluctuations. Figure 4.6 shows a comparison be-

tween the measured net-proton, net-kaon, and net-Λ cumulant ratios C2/C1 and

C3/C2 as a function of collision energy from 19.6 to 200 GeV Au + Au collisions in

STAR. The results from the most central collisions (0-5%) are presented. The Pois-

son baselines are shown for the net-proton and net-kaon measurements while both

Poisson and NBD expectations are presented for the net-Λ measurements together

with systematic and statistical uncertainties.

As seen in Figure 4.6(a), in the comparison of C2/C1 ratio from different fluc-

tuation analyses, all three measurements (net-kaon, net-proton, and net-Λ) followed

the same trend and increased as a function of the increasing collision energy. For

all collision energies, the net-Λ C2/C1 measurement stayed below the net-kaon mea-

surement and above the net-proton measurement. The measured net-Λ C2/C1 ratio

stayed closer to the net-proton measurement than to the net-kaon measurement. De-

viations of the net-kaon and net-proton C2/C1 measurements from net-Λ increased

as a function of increasing collision energy.

A comparison of C3/C2 measurements from the three fluctuation measurement

(net-kaon, net-proton and net-Λ) analyses is presented in Figure 4.6(b). Both the
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Figure 4.6: Beam-energy dependence of 0-5% central, net-proton [21], net-kaon [31],
and net-Λ cumulant ratios, (a). C2/C1 and (b). C3/C2 from Au + Au collisions. Net-
kaon results are presented with Poisson baseline (blue solid line) and net-Λ results
are presented with both NBD and Poisson baselines (black dashed lines). Black
vertical lines represent the statistical uncertainties and caps represent the systematic
uncertainties. Results were corrected for the reconstruction efficiency. CBWC was
applied.

Poisson and NBD expectations were shown for the net-Λ measurement, but only

the Poisson baseline is shown for the net-proton and net-kaon measurements. The

net-Λ C3/C2 ratio was consistent with the net proton measurement in all collision

centralities within the statistical and systematic uncertainties. Both the net-proton

and net-Λ C3/C2 ratio decreased monotonically as a function of increasing collision

energy while the net-kaon C3/C2 ratio showed no dependency on the collision energy.

At the highest collision energies (62.4 and 200 GeV) the deviation of net-kaon C3/C2

from net-proton and net-Λ measurements become small relative to the measurements

at the lowest collision energies.
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From the comparisons shown in Figure 4.6, it is observed that the net-Λ results

show more consistency with net-proton results than with the net-kaon results. How-

ever, only by comparing the experimentally measured values, one can not arrive

at a conclusion about the freeze-out conditions associated with them. For a bet-

ter understanding of the freeze-out process, a comparison between net-Λ fluctuation

measurements and HRG predictions are presented and discussed in the next section.

4.6 Comparison of net-Λ fluctuations with predic-

tions form HRG model

Figure 4.7 shows the comparison of measured net-Λ (a); C2/C1 and (b); C3/C2

ratios for 0-5% central collisions, as a function of collision energy with HRG pre-

dictions. The magenta bands show the HRG predictions for net-Λ cumulant ratios

calculated at the values of freeze-out temperatures (Tf ) and chemical potentials (µf )

extracted from the fit of net-kaon χ2/χ1. The purple bands show the HRG predic-

tions for net-Λ cumulant ratios calculated at the values of Tf and µf extracted from

the combined fit of net-charge and net-proton χ2/χ1 ratios. More details about the

HRG calculation can be found in [9] and in Section 3.13.5 of this dissertation.

In the comparison of measured net-Λ C2/C1 ratios with HRG predictions in Fig-

ure 4.5 (a), it is clear that the measured net-Λ C2/C1 ratio is closer to the C2/C1 ratio

calculated assuming the kaon freeze-out conditions than the proton/charge freeze-

out conditions. That is, the deviation of HRG calculations from measured C2/C1

ratios become small when the freeze-out conditions extracted considering strange

particle fluctuations were used in the prediction. This observation was not trivial to
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interpret but one possible explanation is that the strangeness number in Λ baryon

plays a more prominent role at the freeze-out than the baryon number. For a com-

plete understanding of this observation, further investigations, both theoretically and

experimentally, are necessary.

On the other hand, the measured C3/C2 ratios, shown in Fig.4.7(b), seem to

indicate less sensitivity to the separate freeze-out conditions. Both HRG curves are

very similar over the full range of collision energies and describe the decrease in

the cumulant ratio with increasing energy reasonably well. The curve based on the

charge/proton freeze-out conditions is insignificantly closer to the data, but as was

shown already in [32], ratios that contain higher order moments are prone to be more

impacted by dynamical effects and thus lead to more unreliable results when freeze-

out parameters are extracted. We therefore focused on the high resolution C2/C1

measurement for our conclusions on the chemical T and µB at all collision energies.

4.7 Rapidity dependence of net-Λ cumulant ratios

The selection of the appropriate rapidity window is important in fluctuation mea-

surement analysis because it determined the number of particles accepted in the

analysis. In general, a full 4π measurement of a conserved quantum number should

lead to zero fluctuations, whereas a very small acceptance will always lead to Poisson-

like distributions, which means the measurement looses its sensitivity to any kind of

non-Poissonian or non-NBD contributions to the fluctuations (see the next section for

details). Therefore, it is important to find a rapidity window where a.) the deviation

from baselines becomes visible and b.) the effect of the baryon number conservation

in the measured distribution can be properly determined and potentially subtracted.
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Figure 4.7: Black markers show the beam-energy dependence of measured 0-5%
central net-Λ cumulant ratios, (a). C2/C1 and (b). C3/C2 from Au + Au collisions.
Magenta lines show the net-Λ cumulant ratios calculated in HRG [9] assuming Λ
Freezes-out (FO) at the same freeze-out conditions as for the kaons. Pink lines show
the net-Λ cumulant ratios calculated in HRG [9] assuming Λ freezes-out at the same
freeze-out conditions as for the charge/proton freeze-out.

The number of accepted particles also impacts the uncertainty in the measurement.

Low statistics lead to large statistical uncertainties and make the interpretation of

results difficult. On the other hand, allowing more particles in the analysis may

increase the risk of having more impurities and as a result, efficiency could becomes

low. In past fluctuation-measurement analyses, a rapidity window of |y| < 0.5 was

used [21][31] and in the net-Λ fluctuation analysis, the same rapidity window was

used for accepting V 0s. With this common rapidity window, the comparison of net-Λ

results with net-proton and net-kaon results was done and the results were discussed
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in the previous section. The effect of the selected rapidity window on the net-Λ cu-

mulant ratios, C2/C1 and C3/C2, was studied and results are presented in Figure 4.8.

These results are based on 0-5% and 30-40% central collisions at 200 GeV collision

energy.

As shown in Figure 4.8 (a), the net-Λ C2/C1 ratio decreased as a function of

increasing rapidity coverage in both collision centralities. But in 0-5% central C2/C1

ratio, the rapidity dependence was negligible within the systematic uncertainties.

The deviation of measured net-Λ C2/C1 ratios from the NBD baseline increased as

a function of increasing rapidity coverage in both centralities. This deviation was

mainly due to the deviations of C2 from NBD expectations and will be discussed

in next section. Figure 4.8 (b) shows net-Λ C3/C2 dependency on the selected ra-

pidity window. The statistical uncertainty dominates in most central collisions at

all rapidity windows. The C3/C2 results do not show dependency on the rapidity

coverage in both most central and peripheral collisions. The statistical uncertainties

associated with the net-Λ C3/C2 ratio increased as the rapidity coverage increased.

This is because, when the number of particles accepted in the analysis increased, the

uncertainty of the cumulants of net particle distributions increased as seen in the

statistical uncertainties associated with energy and centrality dependence of net-Λ

cumulant ratios. The NBD expectations for C3/C2 agree with data in all rapid-

ity windows in the most central collisions while there is a notable deviation from

NBD expectations by the data in peripheral collisions (especially at larger rapidity

windows).

103



y (unitless)∆
0.2 0.4 0.6 0.8 1 1.2

 (
un

itl
es

s)
1

/C 2
C

8

9

10

11

12

13 (a)Λ0-5% Net 

0-5% NBD

Λ30-40% Net 

30-40% NBD

 = 200 GeVNNS

Au + Au collisions

y (unitless)∆
0.2 0.4 0.6 0.8 1 1.2

 (
un

itl
es

s)
2

/C 3
C

0.1−

0

0.1

0.2

0.3

0.4

(b)

 (GeV/c) < 2.0
T

0.9 < p

(b)

Figure 4.8: Rapidity dependence of 0-5% (in red) and 30-40% (in blue) central net-
Λ cumulant ratios, (a). C2/C1 and (b). C3/C2 from 200 GeV Au + Au collisions.
Dashed lines show the NBD expectations. Vertical error bars represent the statistical
uncertainties and caps represent the systematic uncertainties. Results are corrected
for reconstruction efficiency and CBWC is applied.

4.8 Rapidity dependence of C2(Λ−Λ̄)/C2(NBD) ratio

Net-particle multiplicity fluctuations are predicted in HRG and LQCD models

according to the grand canonical ensemble (GCE) formulation in thermodynamics.

In the GCE formulation, net quantum numbers such as the net-baryon number and

the net-strangeness are not conserved in each micro state which makes conserved

quantum numbers fluctuate. In experiments, conserved quantum numbers fluctuate

in-and-out of a certain acceptance window. Acceptance windows such as finite rapid-

ity and transverse momentum (pT ) of the detected particles mirror the requirements

of GCE in the experiment. This allows the comparison between the experimentally

measured cumulant ratios and their theoretical predictions.
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However, if the acceptance window is too small, then statistical fluctuations will

be dominant, but important dynamical fluctuations may possibly be suppressed [33].

That is, at smaller-acceptance windows, net-particle multiplicity distributions will

be equal to the difference of individual particle distributions, which is known as

the Skellam distribution. On the other hand, if the experiment has a large enough

acceptance, dynamical fluctuations will be dominant over the statistical fluctuations

as long as the effect of baryon number conservation can be subtracted in order to

observe important correlations because of baryon-number conservation.

A quantitative determination of the optimal acceptance window can be done by

considering the acceptance factor αacc and by modeling the finite acceptance following

a binomial distribution. The acceptance factor, αacc is defined as

αacc =
〈Nacc

B 〉
〈N4π

B 〉
(4.1)

Here, 〈Nacc
B 〉 represents the number of detected baryons and 〈N4π

B 〉 is the number

of baryons in the full-phase space. The binomial-distribution function is

B (nB;NB, αacc) =
NB!

nB! (NB − nB)!
αnBacc(1− αacc)NB−nB (4.2)

If the number of baryons are distributed according to a probability P (NB) across

the whole 4π space, then the corresponding multiplicity distribution in a given ac-

ceptance P (nB) can be expressed as

P (nB) =
∑
NB

B (nB;NB, αacc)P (NB) (4.3)

Following the formulation in Equation 4.3, moments of measured multiplicity

distributions can be calculated. According to the method described in [34] the second
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order measured cumulant with respect to the Skellam expectation for the second

order cumulant is given by

C2 (nB − nB)

C2(Skellam)
= 1− αacc (4.4)

The sensitivity of the net-Λ fluctuation measurements to the dynamical fluctua-

tions can be addressed using the relationship in Equation 4.4. The NBD expectations

showed a better agreement with the net-Λ fluctuation measurements as discussed in

the previous sections of this chapter. Therefore, the NBD expectations were used,

instead of the Skellam baseline, for the estimation of deviations of measured net-Λ

C2 from the baseline as a function of rapidity. Net-Λ, C2(Λ−Λ)/C2(NBD) values were

calculated in the 0-5% most central collisions for three different collision energies (a)

19.6 GeV, (b) 39 GeV, (c) 200 GeV and the results are shown in Figure 4.9. At all

three collision energies, the measured C2 values stay above the baseline expectations

and the deviations became larger as the rapidity window increased. This observation

is consistent with the relationship shown in Equation 4.4. The rapidity window used

in this analysis is |y| < 0.5 and in this rapidity window, measured C2 has a clear

deviation (∼ 2 − 3%) from the NBD baseline. This deviation is likely due to the

fact that net-Λ fluctuations show sensitivity to the baryon-number conservation as

explained in [34].

As the collision energy increased, the rapidity range in which the detected par-

ticles are distributed became larger compared to the range of the distribution of

particles at low energies. Therefore, according to Equation 4.1, for a fixed rapidity

window, αacc decreased as a function of increasing collision energy. As a result, at

a fixed rapidity window, the deviation of measured C2 from the baseline expecta-

tion should decrease as a function of increasing collision energy. However, as seen
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in Figure 4.9, the deviation of measured C2 from the baseline stayed approximately

equal (∼ 2 − 3%) and did not decrease as the collision energy increased. This may

be because the Λ baryon was not the only contributor to the baryon-number. Also,

because the NBD baseline was constructed using both mean and variance of indi-

vidual particle distributions. There could be a possibility of NBD expectations not

showing similar behaviour as when the Skellam baselines were used. However, this

matter should be further investigated.
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(a) (b)

(c)

Figure 4.9: Rapidity-dependence of net-Λ C2 with respect to the NBD expectation
in 0-5% central collisions at (a). 19 GeV, (b). 39 GeV, and (c) 200 GeV Au +
Au collisions. Results are corrected for the reconstruction efficiency and CBWC
applied. Black vertical lines show statistical uncertainties and light blue rectangles
show systematic uncertainties.
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Chapter 5

Summary

The study of the characteristics of the QCD-phase transition provides important

information about strongly interacting matter and the way it evolves as a function of

temperature and chemical potential. During heavy-ion collisions at STAR, strongly

interacting matter called QGP was created and was analyzed in order to explore the

initial stages of hot and dense quark matter. The identified net-particle multiplicity

distributions were used as proxies for the net quantum-number fluctuations. Their

sensitivity to the correlation length provided possible clues about the QCD critical

point. The relationship of fluctuations of the conserved quantum numbers with the

susceptibilities of the medium produced in heavy-ion collisions provides information

about the freeze-out parameters (temperature and chemical potential) at the QCD-

phase transition.

Regarding the search for the QCD critical point, the net-Λ fluctuations do not

provide sufficient information because, a.) the C2/C1 ratio was not sensitive to the

critical point, b.) the C3/C2 and the C4/C2 measurements were not sensitive due
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insufficient statistics. Furthermore, the reduced Λ production at energies below 19.6

GeV, where the effect of critical fluctuations seems strongest based on the STAR net

proton results, prohibited any detailed analysis at these energies.

Information about the shapes of net particle multiplicity distributions are re-

flected by the calculated higher order cumulants. The volume-independent cumulant

ratios were related to relevant ratios of the susceptibilities of conserved quantum

numbers. The LQCD and HRG models have been successfully used in predicting

the freeze-out parameters by comparing the theoretically modeled susceptibilities

with the experimentally measured cumulants of net-particle multiplicity distribu-

tions. Furthermore, thermal fits to the measured particle yields or ratios of the par-

ticles yields can also be used to extract the freeze-out parameters. In the previous

fluctuation analyses at STAR, net-charge particles, net-protons, and net-kaons have

been used as proxies for the net-charge, net-baryon number, and net-strangeness

quantum number fluctuations, respectively. Theoretical predictions and compar-

isons of the experimental measurements with the theory, showed that there could

be a possibility of flavor hierarchy in the process of hadronization. Specifically, the

extracted freeze-out curve for strange particles points to a freeze-out temperature

higher than that of the particles that consist of light quarks. This observation was

studied using the existing net-kaon fluctuation measurements at STAR in the con-

text of net-strangeness fluctuations. In this analysis, the first measurement of net-Λ

fluctuations was presented in the context of both baryon number and strangeness

fluctuations. The net-Λ together with net-kaon fluctuation measurement provides a

more complete net strangeness measurement. On the other hand, net-Λs together

with net-protons provide more complete set of the baryon number. In addition, net-Λ

measurements can be used for the verification of predicted sequential hadronization.
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The heavy-ion collisions that take place at RHIC with variable collision energies

provide the data needed for the exploration of different regions of the QCD-phase

diagram. The excellent tracking capabilities of the STAR TPC detector provide the

information needed for the charged particle identification. The STAR TPC was used

for the identification of protons and pions for the reconstruction of invariant mass of

the Λ baryon. The purity of the reconstructed V 0 (Λ or Λ) was enhanced (> 90%)

by optimizing topological cuts. The efficiency corrected and feed-down corrected

net-Λ single cumulants (C1, C2, and C3) and cumulant ratios, C2/C1 and C3/C2,

were calculated for five Au + Au collision energies from 19.6 to 200 GeV. The results

were presented as a function of collision centrality, energy, and rapidity.

Several important steps were taken in the analysis procedure in order to investi-

gate the effects of a.) transverse-momentum dependency on the efficiency correction,

b.) feed-down correction, c.) centrality bin-width correction. Two methods (pT -

independent and pT -dependent) were used for the efficiency correction and results

from both methods were consistent in the most central collisions of single cumu-

lants and cumulant ratios. Since there was a possibility of contamination due to

Λ baryons coming from multi-strange weak decays, the feed-down correction was

performed. The single cumulants were increased after the feed-down correction but

the cumulant ratios were not affected. To eliminate the volume fluctuation effects, a

centrality bin-width correction was applied to the final results. However, the effect

of centrality bin-width correction was negligible. The analysis was done in the trans-

verse momentum range: 0.9 < pT (GeV/c) < 2.0, and in a rapidity window: |y| <

0.5, where the statistics of the sample and the V 0 reconstruction efficiency became

reasonable. The results were presented with statistical and systematic uncertainties.

The net-Λ single cumulants (C1, C2, and C3) increased as a function of increasing
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collision centrality due to the large number of participant nucleons in most central

collisions than in the peripheral collisions. This trend is in accordance with the

Poisson and the NBD expectations. The net-Λ cumulant ratios, C2/C1 and C3/C2,

showed a weak dependence on the collision centrality and this behaviour was also in

accordance with Poisson and NBD expectations. The UrQMD predictions deviate

from C2/C1, but in C3/C2 the deviation was relatively small. The net-Λ C2/C1 ratio

measurements increase monotonically as a function of increasing collision energy

in most central and peripheral collisions as expected by the NBD and the Poisson

baselines. Deviation of the UrQMD predictions for C2/C1 increased as a function

of increasing collision energy. The net-Λ C3/C2 ratio decreased as a function of

increasing collision energy and approached zero at 200 GeV in most central and

peripheral collisions. The UrQMD predictions for C3/C2 showed agreement at 200

GeV and 19.6 GeV but deviate in other energies.

The net-Λ cumulant ratios were compared to the HRG calculations based on dif-

ferent freeze-out conditions. The HRG predictions were able to describe the mono-

maniacal increase and the decrease in C2/C1 and C3/C2, respectively, as a function of

increasing collision energy. The measured net-Λ C2/C1 ratio was closer to the C2/C1

ratio calculated assuming the kaon freeze-out conditions than the proton/charge

freeze-out conditions. This observation could be due to the strangeness number in

Λ baryon plays a more prominent role at the freeze-out than the baryon number.

The measured higher order cumulant ratio, C3/C2, showed less sensitivity to the

separate freeze-out conditions which could possibly be due to the contributions from

dynamical effects.

The net-Λ C2/C1 ratio showed a weak dependence on the rapidity window while

the C3/C2 ratio showed no dependence. The deviation of the NBD expectation
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of net-Λ C2 values from measured net-Λ C2 values was studied as a function of

rapidity window for 19.6, 39, and 200 GeV most central collisions. At all energies,

the deviation increased as a function of increasing rapidity window which could be

possibly due to the effects of baryon-number conservation. However, for a given

rapidity, the deviation of the NBD baseline from measured C2 remained similar (∼ 2

- 3%) for all energies (19.6, 39, and 200 GeV). This observation was not expected as

a consequence of baryon number conservation and should be further investigated.
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Appendix A

Appendix: Centrality classes and

data tables

A.1 Centrality classes

Table A.1: Average number of participant nucleons (〈Npart〉) and RefMult3 lower
bound associated with nine centrality classes (0-5% to 70-80%) for five Au + Au
collision energies; 19.6, 27, 39, 62.4 and 200 GeV.

√
sNN

Centrality
0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

200 GeV, 〈 Npart 〉 349.67 302.22 237.26 169.02 116.73 76.93 47.21 27.43 14.96

RefMult3 > 725 > 618 > 440 > 301 > 196 > 120 > 67 > 34 > 16

62.4 GeV, 〈 Npart 〉 344.4 296.71 232.08 164.59 113.49 75.08 46.26 26.56 13.78

RefMult3 > 571 > 482 > 338 > 230 > 149 > 91 > 51 > 26 > 12

39 GeV, 〈 Npart 〉 341.76 291.95 227.72 160.87 110.54 72.86 45.25 26.23 17.96

RefMult3 > 522 > 439 > 308 > 209 > 136 > 83 > 47 > 24 > 11

27 GeV, 〈 Npart 〉 340.96 291.78 227.42 167.17 110.87 72.93 45.43 26.06 13.43

RefMult3 > 490 > 412 > 289 > 196 > 127 > 78 > 44 > 22 > 10

19.6 GeV, 〈 Npart 〉 340.67 293.93 232.41 167.02 117.86 79.93 51.21 31.43 17.96

RefMult3 > 448 > 376 > 263 > 178 > 116 > 71 > 40 > 20 > 9
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A.2 Data tables - 200 GeV

Table A.2: The Single cumulants (C1, C2, C3), cumulant ratios (C2/C1, C3/C2), sta-
tistical uncertainties, systematic uncertainties, baseline expectation (NBD, Poisson)
and UrQMD predictions for 200 GeV Au + Au collisions.

Cum.

Cent.
70-80% 60-70% 50-60% 40-50% 30-40% 20-30% 10-20% 5-10% 0-5%

C1, val. 0.0067 0.0163 0.0372 0.0728 0.1365 0.2362 0.3901 0.5776 0.7433

±stat. 0.00020 0.00026 0.0006 0.0010 0.0020 0.0038 0.0067 0.0100 0.0121

±sys. 0.0012 0.0028 0.0066 0.0128 0.0248 0.0452 0.0804 0.1327 0.1890

NBD 0.0067 0.0163 0.0372 0.0728 0.1365 0.2362 0.3901 0.5776 0.7433

Poi. 0.0067 0.0163 0.0372 0.0728 0.1365 0.2362 0.3901 0.5776 0.7433

UrQ. 0.0015 0.0056 0.0164 0.0426 0.0968 0.2008 0.3870 0.6103 0.8504

C2, val. 0.0764 0.1778 0.3965 0.7475 1.3434 2.2271 3.5513 5.1258 6.5802

±stat. 0.0006 0.0012 0.0028 0.0055 0.0108 0.0209 0.0440 0.0702 0.0747

±sys. 0.0102 0.0282 0.0673 0.1298 0.2461 0.4340 0.7645 1.2636 1.8574

NBD 0.0776 0.1811 0.4060 0.7676 1.3865 2.3140 3.7055 5.2852 6.6846

Poi. 0.0773 0.1804 0.4018 0.7573 1.3551 2.2261 3.4901 4.9028 6.1174

UrQ. 0.0327 0.0765 0.1647 0.3315 0.6221 1.1023 1.8705 2.7318 3.5926

C3, val. 0.0068 0.0165 0.0376 0.0756 0.1481 0.2922 0.5189 0.6420 1.2443

±stat. 0.0005 0.0006 0.0020 0.0046 0.0114 0.0247 0.0630 0.1791 0.3701

±sys. 0.0009 0.0018 0.0035 0.0083 0.0157 0.0224 0.0539 0.1400 0.4401

NBD 0.0067 0.0165 0.0386 0.0774 0.1510 0.2995 0.5010 0.7710 1.0015

Poi. 0.0067 0.0163 0.0372 0.0728 0.1365 0.2362 0.3901 0.5776 0.7433

UrQ. 0.0016 0.0055 0.0162 0.0403 0.0955 0.1999 0.3793 0.6142 0.8630

C2/C1, val. 11.3914 10.8562 10.6522 10.2583 9.8393 9.4257 9.1030 8.8744 8.8521

±stat. 0.2840 0.1022 0.1070 0.0817 0.0719 0.0788 0.0574 0.0541 0.0658

±sys. 0.3551 0.1802 0.1142 0.0810 0.0867 0.0756 0.1086 0.1521 0.2282

NBD 11.5808 11.0588 10.9081 10.5338 10.1546 9.79322 9.49832 9.15028 8.99271

Poi. 11.5352 11.0156 10.7940 10.3919 9.9248 9.4213 8.9461 8.4883 8.2296

UrQ. 31.1348 14.3372 10.4619 7.9371 6.5258 5.5472 4.8646 4.4895 4.2436

C3/C2, val. 0.0891 0.0928 0.0948 0.1012 0.1102 0.1312 0.1461 0.1252 0.1891

±stat. 0.0061 0.0033 0.0043 0.0051 0.0073 0.0093 0.0147 0.0289 0.0495

±sys. 0.0036 0.0077 0.0071 0.0153 0.0134 0.0151 0.0144 0.0201 0.0325

NBD 0.0863 0.0914 0.0950 0.1009 0.1089 0.1294 0.1352 0.1458 0.1498

Poi. 0.0866 0.0907 0.0926 0.0962 0.1007 0.1061 0.1117 0.1178 0.1215

UrQ. 0.0462 0.0701 0.0972 0.1210 0.1517 0.1803 0.2021 0.2243 0.2395
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A.3 Data tables - 62.4 GeV

Table A.3: Single cumulants (C1, C2, C3), cumulant ratios (C2/C1, C3/C2), statisti-
cal uncertainties, systematic uncertainties, baseline expectation (NBD, Poisson) and
UrQMD predictions for 62.4 GeV Au + Au collisions.

Cum.

Cent.
70-80% 60-70% 50-60% 40-50% 30-40% 20-30% 10-20% 5-10% 0-5%

C1, val. 0.0112 0.0304 0.0657 0.1321 0.2675 0.4556 0.7785 1.1351 1.5257

±stat. 0.0004 0.0010 0.0022 0.0010 0.0026 0.0032 0.0053 0.0076 0.0130

±sys. 0.0021 0.0056 0.0122 0.0235 0.0484 0.0843 0.1476 0.2285 0.3429

NBD 0.0112 0.0304 0.0657 0.1321 0.2675 0.4556 0.7785 1.1351 1.5257

Poi. 0.0112 0.0304 0.0657 0.1321 0.2675 0.4556 0.7785 1.1351 1.5257

UrQ. 0.0032 0.0100 0.0292 0.0722 0.1589 0.3242 0.6173 0.9746 1.3680

C2, val. 0.0515 0.1371 0.2773 0.5299 1.0098 1.6489 2.7047 3.8688 5.0963

±stat. 0.0008 0.0015 0.0014 0.0021 0.0058 0.0122 0.0112 0.0313 0.1331

±sys. 0.0057 0.0202 0.0448 0.0882 0.1727 0.2962 0.5072 0.7992 1.2084

NBD 0.0523 0.1396 0.2815 0.5398 1.0357 1.6919 2.7750 3.9223 5.1959

Poi. 0.0521 0.1390 0.2792 0.5322 1.0172 1.6520 2.6714 3.7329 4.9323

UrQ. 0.0172 0.0410 0.0939 0.1996 0.3928 0.7327 1.3004 1.9660 2.6606

C3, val. 0.0110 0.0305 0.06389 0.1381 0.2858 0.5196 0.9624 1.7162 1.5548

±stat. 0.0012 0.0024 0.0067 0.0086 0.0310 0.0581 0.1753 0.2976 0.8326

±sys. 0.0011 0.0034 0.0057 0.0153 0.0196 0.0552 0.0772 0.4229 0.8806

NBD 0.0107 0.0311 0.0676 0.1410 0.2953 0.5070 0.9220 1.3755 1.7692

Poi. 0.0112 0.0304 0.0657 0.1321 0.2675 0.4556 0.7785 1.1351 1.5257

UrQ. 0.0032 0.0100 0.0286 0.0730 0.1594 0.3241 0.6136 0.9754 1.3588

C2/C1, val. 4.5893 4.5004 4.2160 4.0100 3.7741 3.6189 3.4740 3.4081 3.3401

±stat. 0.1452 0.1509 0.1878 0.0258 0.0280 0.0309 0.0234 0.0346 0.0694

±sys. 0.2650 0.1063 0.0564 0.0268 0.0237 0.0152 0.0174 0.0285 0.0531

NBD 4.6636 4.5815 4.2799 4.0852 3.8707 3.7133 3.5643 3.4553 3.4054

Poi. 4.6430 4.5642 4.2457 4.0275 3.8015 3.6258 3.4312 3.2884 3.2326

UrQ. 5.5873 4.2061 3.2731 2.7945 2.4893 2.2687 2.1146 2.0200 1.9475

C3/C2, val. 0.2152 0.2227 0.2303 0.2606 0.2830 0.3151 0.3558 0.4436 0.3050

±stat. 0.0187 0.0156 0.0210 0.0138 0.0271 0.0303 0.0556 0.0655 0.1417

±sys. 0.0244 0.0207 0.0215 0.0197 0.0359 0.0348 0.0471 0.0420 0.1133

NBD 0.2057 0.2228 0.2403 0.2612 0.2851 0.2996 0.3322 0.3506 0.3405

Poi. 0.2153 0.21909 0.2355 0.2482 0.2630 0.2757 0.2914 0.3040 0.3093

UrQ. 0.1831 0.2411 0.3014 0.3620 0.4034 0.4405 0.4701 0.4962 0.5101
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A.4 Data tables - 39 GeV

Table A.4: Single cumulants (C1, C2, C3), cumulant ratios (C2/C1, C3/C2), statisti-
cal uncertainties, systematic uncertainties, baseline expectation (NBD, Poisson) and
UrQMD predictions for 39 GeV Au + Au collisions.

Cum.

Cent.
70-80% 60-70% 50-60% 40-50% 30-40% 20-30% 10-20% 5-10% 0-5%

C1, val. 0.0133 0.0363 0.0786 0.1647 0.3116 0.5521 0.9133 1.2898 1.7370

±stat. 0.00019 0.00021 0.00026 0.0003 0.0006 0.0009 0.0019 0.0032 0.0099

±sys. 0.0024 0.0066 0.0137 0.0292 0.0559 0.1018 0.1732 0.2532 0.3666

NBD 0.0133 0.0363 0.0786 0.1647 0.3116 0.5521 0.9133 1.2898 1.7370

Poi. 0.0133 0.0363 0.0786 0.1647 0.3116 0.5521 0.9133 1.2898 1.7370

UrQ. 0.0043 0.0137 0.0364 0.0886 0.1945 0.3929 0.7537 1.1996 1.6881

C2, val. 0.0404 0.1065 0.2212 0.4448 0.8021 1.3629 2.1699 2.9846 3.9753

±stat. 0.0002 0.0003 0.0006 0.0012 0.0016 0.0031 0.0081 0.0132 0.0325

±sys. 0.0044 0.0154 0.0347 0.0741 0.1379 0.2445 0.4078 0.5954 0.8619

NBD 0.0411 0.1082 0.2244 0.4522 0.8155 1.3861 2.2087 3.0094 4.0210

Poi. 0.0410 0.1079 0.2232 0.4470 0.8045 1.3618 2.1500 2.9361 3.8912

UrQ. 0.0144 0.0356 0.0817 0.1777 0.3577 0.6771 1.2280 1.8845 2.5702

C3, val. 0.0136 0.0375 0.0809 0.1750 0.3329 0.6082 1.0035 1.3594 1.8891

±stat. 0.0003 0.0006 0.0012 0.0034 0.0073 0.0127 0.0365 0.0843 0.2438

±sys. 0.0017 0.0051 0.0076 0.0162 0.0305 0.0502 0.0834 0.1613 0.4248

NBD 0.0135 0.0368 0.0814 0.1746 0.3333 0.6007 1.0278 1.4226 1.9567

Poi. 0.0133 0.0363 0.0786 0.1647 0.3116 0.5521 0.9133 1.2898 1.7370

UrQ. 0.0044 0.0137 0.0366 0.0883 0.1956 0.3942 0.7588 1.1944 1.6777

C2/C1, val. 3.0234 2.9289 2.8146 2.7006 2.5737 2.4684 2.3757 2.3140 2.2886

±stat. 0.0274 0.0158 0.0075 0.0053 0.0079 0.0041 0.0054 0.0062 0.0109

±sys. 0.1773 0.0751 0.0302 0.0182 0.0118 0.0079 0.0113 0.0154 0.0266

NBD 3.0773 2.9757 2.8549 2.7457 2.6165 2.5104 2.4182 2.3332 2.3149

Poi. 3.0673 2.9671 2.8395 2.7144 2.5814 2.4665 2.3540 2.27641 2.2401

UrQ. 3.3823 2.6412 2.2699 2.0201 1.8468 1.7304 1.6335 1.5723 1.5238

C3/C2, val. 0.3363 0.3524 0.3657 0.3936 0.4150 0.4462 0.4624 0.4554 0.4752

±stat. 0.0067 0.0051 0.0045 0.0060 0.0078 0.0080 0.0142 0.0253 0.0535

±sys. 0.0242 0.0090 0.0186 0.0210 0.0260 0.0365 0.0513 0.0356 0.0347

NBD 0.3299 0.3409 0.3629 0.3861 0.4087 0.4334 0.4653 0.4727 0.4866

Poi. 0.3260 0.3370 0.3521 0.3684 0.3873 0.4054 0.4248 0.4392 0.4463

UrQ. 0.3038 0.3790 0.4444 0.4942 0.5443 0.5798 0.6170 0.6332 0.6513
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A.5 Data tables - 27 GeV

Table A.5: Single cumulants (C1, C2, C3), cumulant ratios (C2/C1, C3/C2), statisti-
cal uncertainties, systematic uncertainties, baseline expectation (NBD, Poisson) and
UrQMD predictions for 27 GeV Au + Au collisions.

Cum.

Cent.
70-80% 60-70% 50-60% 40-50% 30-40% 20-30% 10-20% 5-10% 0-5%

C1, val. 0.0177 0.0513 0.1201 0.2661 0.4849 0.8602 1.3932 2.0273 2.5788

±stat. 0.0002 0.0004 0.0006 0.0007 0.0008 0.0010 0.0017 0.0025 0.0044

±sys. 0.0021 0.0059 0.0131 0.0301 0.0541 0.0987 0.1656 0.2591 0.3646

NBD 0.0177 0.0513 0.1201 0.2661 0.4849 0.8602 1.3932 2.0273 2.5788

Poi. 0.0177 0.0513 0.1201 0.2661 0.4849 0.8602 1.3932 2.0273 2.5788

UrQ. 0.0061 0.0160 0.0425 0.1025 0.2249 0.4549 0.8770 1.4068 1.9864

C2, val. 0.0388 0.1105 0.2484 0.5311 0.9279 1.5868 2.5178 3.6125 4.5832

±stat. 0.0002 0.0006 0.0010 0.0022 0.0039 0.0064 0.0092 0.0137 0.0570

±sys. 0.0026 0.0087 0.0225 0.0541 0.0964 0.1727 0.2936 0.4637 0.6663

NBD 0.0393 0.1125 0.2526 0.5399 0.9434 1.6214 2.5652 3.6466 4.6007

Poi. 0.0391 0.1113 0.2505 0.5319 0.9276 1.5814 2.4783 3.5266 4.4325

UrQ. 0.0137 0.0320 0.0758 0.1670 0.3428 0.6571 1.2135 1.8906 2.5994

C3, val. 0.0177 0.0525 0.1245 0.2804 0.5281 0.9380 1.7153 2.5739 2.9150

±stat. 0.0003 0.0015 0.0044 0.0076 0.0147 0.0265 0.0630 0.2148 0.3773

±sys. 0.0014 0.0027 0.0061 0.01452 0.0308 0.0554 0.1043 0.2892 0.3061

NBD 0.0176 0.0535 0.1253 0.2838 0.5226 0.9484 1.6124 2.3097 2.9409

Poi. 0.0177 0.0513 0.1201 0.2661 0.4849 0.8602 1.3932 2.0273 2.5788

UrQ. 0.0061 0.0161 0.0427 0.1032 0.2265 0.4568 0.8812 1.4016 1.9901

C2/C1, val. 2.1855 2.1513 2.0678 1.9956 1.9135 1.8445 1.8072 1.7819 1.7772

±stat. 0.0205 0.0135 0.0089 0.0106 0.0059 0.0060 0.0062 0.0054 0.02018

±sys. 0.1586 0.0647 0.0283 0.01588 0.0113 0.0094 0.0087 0.0127 0.0137

NBD 2.2155 2.1895 2.1032 2.0286 1.9456 1.8848 1.8412 1.7987 1.7840

Poi. 2.2067 2.1664 2.0854 1.9987 1.9129 1.8384 1.7789 1.7395 1.7188

UrQ. 2.2611 2.0198 1.7932 1.6367 1.5300 1.4484 1.3868 1.3445 1.3097

C3/C2, val. 0.4573 0.4752 0.5013 0.5279 0.5691 0.5911 0.6812 0.7125 0.6360

±stat. 0.0076 0.0118 0.0143 0.0120 0.0135 0.0146 0.0209 0.0532 0.0725

±sys. 0.0639 0.0189 0.0189 0.0359 0.0461 0.0555 0.05396 0.02460 0.0479

NBD 0.4480 0.4759 0.4960 0.5256 0.5539 0.5849 0.6285 0.6333 0.6392

Poi. 0.4531 0.4615 0.4795 0.5003 0.5227 0.5439 0.5621 0.5748 0.5817

UrQ. 0.4474 0.4984 0.5603 0.6149 0.6568 0.6935 0.7228 0.7404 0.7645
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A.6 Data tables - 19.6 GeV

Table A.6: Single cumulants (C1, C2, C3), cumulant ratios (C2/C1, C3/C2), statisti-
cal uncertainties, systematic uncertainties, baseline expectation (NBD, Poisson) and
UrQMD predictions for 19.6 GeV Au + Au collisions.

Cum.

Cent.
70-80% 60-70% 50-60% 40-50% 30-40% 20-30% 10-20% 5-10% 0-5%

C1, val. 0.0148 0.0457 0.1139 0.2216 0.4497 0.7709 1.2907 1.8051 2.6104

±stat. 0.0003 0.0008 0.0017 0.0026 0.0059 0.0089 0.0145 0.0208 0.0285

±sys. 0.0026 0.0083 0.0205 0.0379 0.0801 0.1369 0.2342 0.3354 0.5178

NBD 0.0148 0.0457 0.1139 0.2216 0.4497 0.7709 1.2907 1.8051 2.6104

Poi. 0.0148 0.0457 0.1139 0.2216 0.4497 0.7709 1.2907 1.8051 2.6104

UrQ. 0.0074 0.0191 0.0489 0.1152 0.2520 0.5147 0.9958 1.6017 2.2515

C2, val. 0.0256 0.0770 0.1877 0.3506 0.6901 1.1663 1.9238 2.6006 3.8084

±stat. 0.0003 0.0015 0.0023 0.0046 0.0084 0.0131 0.0215 0.0340 0.0483

±sys. 0.0025 0.0102 0.0294 0.0563 0.1176 0.2015 0.3438 0.4837 0.7677

NBD 0.0259 0.0779 0.1901 0.3547 0.6990 1.1816 1.9476 2.6235 3.8527

Poi. 0.0258 0.0778 0.1881 0.3516 0.6927 1.1572 1.8851 2.5896 3.7044

UrQ. 0.0130 0.0306 0.0731 0.1611 0.3361 0.6588 1.2289 1.9282 2.6514

C3, val. 0.0149 0.0461 0.1188 0.2290 0.4551 0.8340 1.5174 1.9039 3.0062

±stat. 0.0005 0.0016 0.0037 0.0055 0.0175 0.0214 0.0843 0.1576 0.2704

±sys. 0.0023 0.0053 0.0142 0.0247 0.0332 0.0596 0.0978 0.2639 0.2896

NBD 0.0149 0.0461 0.1194 0.2260 0.4676 0.8356 1.4694 1.8985 2.9519

Poi. 0.0148 0.0457 0.1139 0.2216 0.4497 0.7709 1.2907 1.8051 2.6104

UrQ. 0.0074 0.0190 0.0491 0.1146 0.2521 0.5164 1.0002 1.6073 2.2308

C2/C1, val. 1.7284 1.6836 1.6473 1.5822 1.5346 1.5128 1.4905 1.4406 1.4589

±stat. 0.0261 0.0157 0.0146 0.0103 0.0072 0.0064 0.0064 0.0111 0.0107

±sys. 0.1525 0.0597 0.0264 0.0122 0.0094 0.0078 0.0089 0.0075 0.0123

NBD 1.7516 1.7033 1.6683 1.6006 1.5544 1.5327 1.5089 1.4533 1.4758

Poi. 1.7467 1.6991 1.6502 1.5866 1.5403 1.5011 1.4605 1.4345 1.4191

UrQ. 1.7800 1.6204 1.5031 1.4031 1.3375 1.2828 1.2363 1.2043 1.1785

C3/C2, val. 0.5850 0.5992 0.6331 0.6532 0.6594 0.7151 0.7887 0.7320 0.7893

±stat. 0.0152 0.0132 0.0151 0.0101 0.0216 0.0183 0.0358 0.0494 0.0596

±sys. 0.1575 0.0222 0.0214 0.0284 0.0591 0.0721 0.0671 0.0374 0.0649

NBD 0.5769 0.5917 0.6280 0.6371 0.6689 0.7071 0.7544 0.7236 0.7661

Poi. 0.5724 0.5885 0.6059 0.6302 0.6491 0.6661 0.6846 0.6970 0.7046

UrQ. 0.5663 0.6172 0.6675 0.7094 0.7478 0.7824 0.8127 0.8331 0.8411
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