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ABSTRACT

The Quark-Gluon Plasma (QGP) is a phase of matter that is believed to be created shortly after

the Big Bang, an extremely hot and dense matter where quarks and gluons become deconfined

from their typical hadronic states. A Large Ion Collider Experiment (ALICE) at the Large Hadron

Collider (LHC) and the experiments at the Relativistic Heavy Ion Collider (RHIC) have obtained

experimental evidence of QGP formation generated through relativistic heavy ion collisions with

ultra-relativistic energies. They have provided a tool to study the phase transition from hadronic

matter to this deconfined phase of quarks and gluons. This dissertation results from studies at

the Large Hadron Collider in Geneva, Switzerland, in which nuclei collide to study matter under

the most extreme conditions on earth. It’s been a big open challenge to obtain an experimental

determination of the temperature reached in a heavy-ion collision and also the determination of

other thermodynamic quantities, such as the entropy, which gives access to the number of degrees

of freedom. Recent endeavors in determining the temperature of the medium formed in heavy-ion

collisions made it possible to empirically measure other thermodynamic quantities, such as the

speed of sound. The speed of sound is a fundamental property of any material. It is directly

related to the thermodynamic properties of the QGP and the hot hadronic matter produced by

the QGP after the phase transition. It also plays a fundamental role in exploring the equation of

state (EOS). This dissertation uses the data from heavy-ion collisions from the ALICE detector,

in Pb-Pb collisions at
√
sNN = 5.02 TeV and Xe-Xe collisions at

√
sNN = 5.44 TeV. Two methods

were explored to extract the speed of sound experimentally in ultra-central collisions. i.e., the two

nuclei collide head-on. The values obtained are consistent with predictions from Lattice QCD at

temperatures of around T = 150 MeV.
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1 Introduction

The Quark Gluon Plasma (QGP) is a state of matter in which the quarks and gluons, which are the

elementary particles and building blocks of matter, become deconfined. The temperatures required

for this transition are approximately 4 trillion kelvin. It is believed that the universe existed in such

a state shortly after the big bang. But what exactly happens to strongly interacting matter in the

limit of high temperatures and densities like those of the quark-gluon plasma? This question has

fascinated physicists ever since the discovery of the strong force and the multiple hadron production

it leads to. The next chapters are based on some of the properties of QGP that are understood

either by theoretical or experimental studies.

The standard model (SM), quantum chromodynamics (QCD), lattice quantum chromodynamics

(LQCD), and multiplicity sensitivity to initial states will be reviewed in this chapter. In section

1.1, the standard model will be discussed, which is a theory that can address many questions

regarding subatomic scales that physicists could not address before. It can describe the interactions

between elementary particles. All ordinary matter in today’s universe is made up of atoms. Each

atom contains a nucleus composed of protons and neutrons surrounded by a cloud of electrons.

Protons and neutrons are, in turn, made of quarks bound together by other particles called gluons.

Subsequently, quantum chromodynamics (QCD) will be explained in section 1.2. It is the most

successful theory of strong interactions between elementary particles. Quarks interact via the

strong nuclear force, and the strong force is mediated by gluons. In section 1.3, Lattice QCD

will be addressed, which is a well-established non-perturbative approach to solving the quantum

chromodynamics (QCD) theory of quarks and gluons. In section 1.4, the QGP and its properties

will be explained in detail. In the end, in section 1.5 the equation of state in QGP will be explained,

followed by the predictions of LQCD for the speed of sound.
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1.1 The Standard Model

Generally, the interactions between elementary particles can be described by four forces: Gravi-

tational, Electromagnetic, Weak, and Strong [1]. The last three belong to a relativistic quantum

field theory which is called the Standard Model (SM). The standard model is the best theory of

elementary particles so far, and it aims at describing all the phenomena of particle physics except

those due to gravity. It elaborates on the properties and interactions of fundamental particles,

which are now defined as being point-like, without internal structure or excited states.

Figure 1: The fundamental characteristics of quarks including their mass, electrical charge, weak
isospin, the third element of the isospin (I3), as well as strangeness (S), charm (C), bottom (B),
and top (T) properties [3].

An elementary particle can be characterized by its mass, electric charge, and spin. There are

seventeen known elementary particles in the standard model, as one can see in Figure 2. These

particles are either the building blocks of matter, called fermions or the mediators of interactions,

called bosons. There are twelve named fermions with spin half and five named bosons, which

include four gauge bosons with non-zero integer spin (the force carriers) and one Higgs boson with

spin zero. There are three generations of fermions, and the mass of each generation is different.

Each generation contains two quarks and two leptons. So there are also six types of quarks, shown

in Figure 1 and six types of leptons (electron, muon, tau, and their corresponding neutrinos) [2].

In this context, spin is an angular momentum possessed by all particles in quantum theory, even

2



Figure 2: Schematic view of the elementary particles in the Standard Model [4].

when they are at rest. Spin has no classical analog and is different from the use of the same

word in classical physics, where it usually refers to angular momentum about its own axis. In

classical physics, electromagnetic interaction is propagated by electromagnetic waves, which are

continuously emitted and absorbed. While this is accurate for large distances, at short distances,

one needs to consider the quantum nature of the interaction. In quantum theory, the interaction

is transmitted by the exchange of photons, which are members of the family of fundamental spin-1

bosons of the standard model. Photons are referred to as the gauge bosons, or ‘force carriers’,

of the electromagnetic interaction. The exchange of spin-1 gauge bosons also mediates the weak

and strong interactions. For the weak interaction, these are the W+, W−, Z0 bosons (superscripts

just show the electric charges) with masses about 80–90 times the mass of the proton. For strong

3



interaction, the force carriers are called gluons. There are eight gluons, all of which have zero mass

and are electrically neutral.

Hadrons refer to the composite particles formed by quarks, with nucleons being one example.

However, there exist several hundred other types of hadrons, excluding nuclei, most of which are not

stable and decay due to one of three interactions. A large number of hadrons led to the development

of a simplified theory known as the quark model in the 1960s to explain their existence. The pion is

a commonly unstable hadron, with three electrical charge states denoted as
(
π+, π0, π−

)
. Hadrons

are significant as free quarks are not observed in nature, and thus their properties are inferred

from the study of hadrons. This is analogous to deducing the properties of nucleons by exclusively

examining nuclei. While nucleons are bound states of quarks and nuclei are bound states of nucleons,

the standard model should, in theory, explain the properties of nuclei from those of quarks and their

interactions. However, this is not currently possible due to limitations in calculation techniques,

resulting in nuclear and particle physics being treated as almost separate subjects. Nevertheless,

both fields are related, and introductory approaches benefit from presenting them together.

The strong force in the standard model can be described by Quantum Chromodynamics, which

will be addressed in the next section.

1.2 Quantum Chromodynamics (QCD)

The mathematical model used to describe the interaction between colored charges (quarks) through

the exchange of gluons is known as Quantum Chromodynamics (QCD) [31]. It is the most successful

theory that describes the strong interaction between quarks and gluons. The strong interaction

is responsible for the existence of atomic nuclei, so about 95 percent of the visible mass of the

Universe. The color charge, unlike the electric one, can have three values called red, green, and

blue conventionally. Each quark can have one color charge, while gluons can have two, a color and

an anti-color charge. This fact is related to the most unique feature of QCD compared to other

fundamental forces; it is called anti− screening and states that gluons can self-interact, which will

be explained later.
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Quarks come in three different colors: red, green, and blue, and anti-quarks come in three

corresponding anti-color charges: anti-red, anti-green, and anti-blue. The combination of quarks

can result in color-neutral particles. For instance, a combination of red, blue, and green quarks can

be color-neutral charges, just as a combination of anti-red, anti-blue, and anti-green quarks can be

color neutral for anti-charges. Similarly, the combination of opposite charges, such as green and

anti-green quarks, can also be color neutral. These combinations can form hadrons, which can be

either baryons with three quarks or anti-baryons with three anti-quarks, or mesons with a quark

and an anti-quark.

1.2.1 Screening and Anti-Screening in QCD

In the context of quantum field theory, the interactions among particles are determined by the

combined effects of all conceivable processes that can take place. To be specific, when considering

the interaction between two quarks in a vacuum, even with the basic exchange of a single gluon taken

into account, it is necessary to take into account additional processes where the exchanged gluon

can interact with short-lived particles. A possible scenario is that the exchanged gluon generates

a pair of a quark and an anti-quark (see Figure 3). Screening is the term used to describe the

reduction in interaction strength between a pair of oppositely charged quarks due to the masking

of their charges. This effect is referred to as screening because it decreases the effective charge of

the quarks. Within the framework of QCD, it is possible for other processes to occur in which a pair

of gluons is created (see Figure 4). These gluons have an attractive force on each other, resulting

in an increase in interaction strength between quarks. This particular mechanism is referred to as

anti-screening, and it is considered the primary mechanism within QCD.

1.2.2 Coupling Constant in QCD

According to the uncertainty principle, the strength of the processes in QCD relies on the mo-

mentum exchanged Q2 between two quarks, which is in inverse proportion to the spatial distance

where the interaction occurs. Therefore, the total interaction strength between two quarks, which
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Figure 3: Feynman diagram of QCD interactions representing screening

Figure 4: Feynman diagram of QCD interactions representing anti-screening

is measured in terms of the strong coupling constant αs, follows the behavior as described in Figure

5. To understand the behavior of two quarks and the interaction between them, one can check the

strong potential between them:

V (r) = −4

3

αs

r
+ κr, (1)

where r is the distance between the quarks, and κ is a constant that is equivalent to the con-

stant in the string tension equation. As momentum transfers become larger (i.e., as distances

become smaller), anti-screening becomes less significant, and the strong coupling constant (αs)

decreases to a point where partons can exist as quasi-free particles. This phenomenon is known

as asymptotic freedom. On the other hand, at low momentum transfers (i.e., for large distances
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Figure 5: Measurements summary of the QCD coupling constant along with QCD predictions
(bands) as a function of Q (energy scale) [85] .

between interacting quarks), anti-screening becomes dominant, and the strong coupling constant

(αs) diverges. The overall result can be effectively summarized as follows: when a quark and anti-

quark pair are separated, the binding energy between them increases as the distance between the

quarks increases. Eventually, the binding energy becomes so strong that it becomes energetically

favorable to create another quark and anti-quark pair from the vacuum and split the original pair

into two separate pairs. This behavior is commonly known as color confinement, which means

that quarks are limited to forming colorless bound states, such as hadrons. These two distinct

properties, namely asymptotic freedom and color confinement, are specific to QCD and define its

dynamics. Although high-energy interactions in QCD are easily comprehended and can be com-

puted via perturbation theory, low-energy interactions that involve (αs > 1) cannot be computed

this way. Therefore, it is necessary to use effective theories and/or numerical methods, such as
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non-perturbative calculations in a discretized spacetime (Lattice QCD). The aforementioned ap-

proach, specifically non-perturbative calculations in a discretized spacetime, has proven to be highly

beneficial for examining static QCD systems, as it will be discussed later. However, it encounters

significant obstacles when it comes to forecasting the characteristics of dynamic QCD systems,

which are more applicable in describing natural occurrences [32].

1.3 Lattice QCD

The equation of state of Quantum Chromodynamics (QCD) at finite temperatures and baryon

densities has a broad range of applications in modern particle and nuclear physics, including the

study of heavy ion collisions, the expansion of the early universe, and the interiors of compact stars.

However, on most relevant scales, QCD is strongly coupled and cannot be studied through pertur-

bative methods. In recent years, Lattice Quantum Chromodynamics (LQCD), a non-perturbative

method for predicting the thermodynamic characteristics of hadronic matter through numerical

simulations of the interactions between quarks and gluons, has been established. It is a lattice

gauge theory, and the basic idea behind LQCD is to discretize space-time into a lattice of discrete

points and to use numerical methods to solve the QCD equations on this lattice. This allows us to

study the properties of QCD in a controlled and systematic way, without relying on perturbative

approximations. Basically, it is a numerical technique to solve this theory:

LQCD = −1

4
F a
µνF

a,µν +
∑

q=u,d,s,c

ψ̄q [iγ
µDµ −mq]ψq (2)

where F a
µν is the QCD gluon field strength tensor, ψ represents the quark field, Dµ is the gauge

covariant derivative, m is the mass of the quarks, and γµ are the Dirac matrices.

Where F and D are defined as:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν ,

Dµψ =
(
∂µ − igT aAa

µ

)
ψ.

(3)
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The gauge field dynamics can be described as follows:

−1

4
F a
µνF

a,µν = −1

4

(
∂µA

a
ν − ∂νA

a
µ

) (
∂µA

a
ν − ∂νA

a
µ

)
−gfabc∂µAa

νA
b,µAc,ν− g2

4
fabcfadeAb

µA
c
νA

d,µAe,ν

(4)

and g is the coupling constant. In statistical mechanics, it is widely recognized that knowing a

system’s partition function allows for the theoretical calculation of all thermodynamic properties.

QFT can be defined by a Hamiltonian Ĥ with eigenvalues Ei. At a temperature T , the partition

function is:

Z =
∑

i

e−Ei/T = Tr e−Ĥ/T (5)

where the trace means one needs to integrate on some basis, e.g., position.

Z =

∫
dϕ(0)

〈
ϕ(0)

∣∣∣e−Ĥ/T
∣∣∣ϕ(0)

〉

Z ∼
∫
D
∏

j

e
−δτ

∑
i

[(
dϕ()()

δτ

)2

+V (ϕ(j))

]
=

∫
Dϕe−

∫ 1/T
0 LE(ϕ)

(6)

The partition function Z describes the probability of all possible configurations of quark and

gluon fields on the lattice. Therefore, a quantum system at finite temperature is inherently a Eu-

clidean system with periodic or antiperiodic boundaries for bosonic or fermionic fields, respectively.

Lattice QCD is utilized when the Lagrangian is discretized on a space-time lattice with di-

mensions of Nτ × N3
σ and lattice spacings of aτ and aσ, with aτ = aσ = a often being used for

calculations. Other important variables include the volume, which is represented by V and equals

L3, where L = Nσaσ. For finite temperature calculations, β is generally selected to be less than L,

where β = Nτaτ . The thermodynamic properties are determined by taking appropriate derivatives

of the partition function. The lattice representation of QCD involves quark fields located on lattice

sites and gluon fields defined as links connecting adjacent sites. As the lattice becomes fine and

the sites become infinitesimally close, the continuum QCD is obtained. The issue with lattice QCD
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arises when the chemical potential is non-zero, resulting in an imbalance between quarks and anti-

quarks, which breaks charge-conjugation symmetry and leads to a complex determinant that differs

from its real counterpart. This is known as the “sign problem”, limiting lattice QCD calculations

to high temperature and small baryon chemical potential. In this range, the partition function can

be expanded as a Taylor series in µB/T , with the coefficients being the generalized susceptibilities.

Figure 6 is an illustration of a grid-like pattern of connecting points that has its sites spaced

out periodically. In a 2D or 3D lattice, each site can only communicate with its neighboring sites

through a link or line segment connecting them. This means that a single site can interact with

a maximum of four neighboring sites in a 2D lattice (as shown in Figure 6) or six neighboring

sites in a 3D lattice. However, there are limitations to calculations using a lattice due to various

factors. Three main factors limit the use of lattice simulations. Firstly, as the number of sites

and links between them increases in the simulation, the processing power required to simulate the

interactions also increases. Secondly, the complexity of the interactions between the lattice sites

requires more processing power to calculate and simulate the potential effects on the lattice. For

example, using an Ising model to demonstrate the interactions between sites is far less complex

than using quantum field theory, which requires more computational resources [69]. Thirdly, while

lattice simulations can accurately describe a system in thermodynamic equilibrium, they are not

well-suited for modeling dynamic processes. Therefore, lattice simulations may not be appropriate

for studying systems that involve dynamic changes over time. However, despite these limitations,

lattices are relatively easy to construct and simulate using modern computer systems. The use

of lattices in simulating QCD relies on the incorporation of quarks and gluons into the sites and

links of the lattice. By constructing a lattice where each site corresponds to a quark and each link

represents a gluon, one can create a simulation that is similar to the physical representation of

quarks and gluons in particles or a Quark-Gluon Plasma (QGP). Due to the nature of the lattice,

the distance between the quarks (sites) is kept constant and determined by the length of the

links between them. However, the strength of the links can be adjusted to approximate the effect

that gluons would have on quarks, which allows for more accurate simulations. Additionally, the
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lattice can be constructed in such a way that the temporal dimension corresponds to a temperature

dimension.

Figure 6: Lattice approximation [68].

1.4 Creating QGP Using Heavy Ion Collisions

Based on the phenomenon of asymptotic freedom mentioned before, it was expected by many

theorists that a new state of nuclear matter containing deconfined quarks and gluons, if it could

somehow be managed to be produced in the laboratory at high temperatures and energy densities,

should demonstrate properties similar to a weakly interacting gas. Edward Shuryak first realized

in 1978 that the thermal fluctuations of gauge fields might produce a dominant effect over vacuum

fluctuations, which would translate into dominant screening over anti-screening of color fields [51,

52]. For this reason, he coined the term quark-gluon plasma for a state of matter consisting of

deconfined quarks and gluons. Also, Hagedorn had already anticipated a temperature limit for

hadronic matter (T ≃ 170MeV) using a statistical bootstrap model before the discovery of QCD

and its properties, such as asymptotic freedom [33]. Additionally, the discovery of asymptotic

freedom in QCD indicated the emergence of a new phase of weakly interacting quarks and gluons

at high temperatures, known as the QGP [34]. As illustrated in Figure 7, QCD research and the
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statistical hadronization model have already identified two separate regimes, namely the quark-

gluon plasma and hadronic matter. QCD is not the only way that one can prove the existence of

QGP. The results from heavy-ion collision experiments have revealed various data and occurrences

that provide evidence for the formation of QGP during these experiments. Several phenomena

were observed in heavy-ion collision experiments that support the existence of QGP, including the

suppression of J/ψ [36], increased production of strange hadrons compared to pp collisions [37],

significant suppression of high-energy jets and heavy quarks [38], and a large azimuthal asymmetry

in particle yields or elliptic flow, denoted by v2 [39]. The surprising aspect of these experimental

measurements was that, if the QGP consisted of weakly interacting quarks and gluons, then why

did it display fluid dynamic behavior (as observed in the v2 measurements) and jet quenching (as

evidenced by the strong suppression of high-energy jets)? The experiments discovered that the

QGP was, in fact, a strongly interacting fluid [40, 41, 42].

Also, another question was what is the transition temperature from a hadronic to a deconfined

state, and if this temperature can be achieved in the laboratory? Calculations on lattice QCD

predict the phase transition to occur at about Tc ≃ 175 MeV (which is a temperature when the

transition to partonic degrees of freedom occurs, and the medium becomes the QGP), and this

temperature is reached in heavy-ion collisions currently delivered both at RHIC and LHC. Since

such a deconfined state of matter is believed to have existed a few microseconds after the Big

Bang, by producing QGP in heavy-ion collisions, the same conditions which existed in the early

universe are being created. By doing this, the current understanding of its origin and evolution

can be enhanced. For completeness, other possible phases of nuclear matter, besides the QGP, are

presented in Figure 7, and the region explored with heavy-ion collisions at the LHC is indicated.

The baryon chemical potential indicates the difference in the number of baryons and antibaryons.

For instance, µB > 0 shows that the amount of baryon is more than anti-baryon. The line shows the

pseudo-critical temperature, and the band represents the half-width of the crossover transition (the

temperatures where a QGP and hadrons can co-exist) that is accessible to Lattice QCD calculations

[53]. The open points demonstrate experimental observations to determine the chemical freeze-out
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Figure 7: Representation of the QCD phase diagram [35]

parameters [54, 55].

After the collision, the pre-equilibrium stage forms before one fm/c in which quarks and gluons

exist in a quasi-free deconfined state. Quarks, which are always confined into hadrons, are now free

to interact with other quarks and gluons in this deconfined matter. The equilibrium stage between

quarks and gluons happens around one fm/c, as one can see in Figure 8. The QGP system continues

to expand and cool down through elastic and inelastic collisions during the expansion stage from

(1 < τ < 10fm/c). As the QGP expands and cools down, it reaches a critical temperature Tc. This
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Figure 8: Heavy-ion collision stages at the Large Hadron Collider (LHC). Figure is taken from [43]

is when the hadronization happens, and quarks and gluons start to form hadrons. The chemical

freeze-out temperature Tch ≈ 155MeV occurs during the mixed-phase or cross-over phase when the

number of hadrons is fixed, inelastic collisions cease and relative particle abundances do not change

[56]. After chemical freeze-out, elastic collisions continue to occur, and the particle’s momentum

can change but will not produce any new particles. At kinetic freeze-out, T ≈ 120MeV, around 15

fm/c, elastic collisions cease, and the system reaches a point where the kinematic distributions of

hadron species have been fixed. At this stage, the detectors will measure the particles.

1.5 The QCD Equation of State (EOS) in the QGP

The equation of state (EOS) in Quark-Gluon Plasma is one of the fundamental properties of

quantum chromodynamics (QCD) which establishes how the pressure of a system depends on factors

such as energy, baryon density, temperature, and chemical potential. Specifically, the pressure can

be expressed as a function of energy and baryon density, denoted as P = P (E , nB), or as a

function of temperature and chemical potential, denoted as P = P (T, µ). This is because, in a
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state of thermodynamic equilibrium, the total electric charge must be zero and strangeness is not

conserved. To determine the expansion of hot dense matter, the speed of sound, represented by c2s,

can be defined as:

c2s =
∂P

∂E

∣∣∣∣
s/nB

. (7)

The derivative of the pressure with respect to the energy is taken at a constant entropy per

baryon. The EOS provides a helpful representation of how pressure gradients arise from gradients

in the energy density profile. The speed of sound is also informative about the various regimes

in the QCD phase diagram. In the regime of high temperatures, where the temperature greatly

exceeds the critical temperature (T ≫ Tc), the EOS is characterized by the relationship E = 3P .

As a result, according to Equation (7), the speed of sound is equal to c2s = 1/3. The speed of

sound also equals 1/3 in the case of low temperature and zero baryon density, where the pressure

is dominated by weakly interacting, massless pions. As the QCD phase is approached from low

and high temperatures, the behavior of the speed of sound follows a pattern of initially increasing

towards its maximum value c2s = 1/3. As the crossover temperature is approached, the compress-

ibility of the matter is high, and the speed of sound reaches a minimum for the low temperature and

zero baryon density regime. However, at high temperatures, the speed of sound increases towards

the perturbative value of 1/3, indicating that a system initially produced with an energy density

far exceeding the critical density will accelerate rapidly and then transition smoothly through the

phase (see Figure 9).

1.6 Lattice QCD Predictions for Speed of Sound

The lattice spacing, denoted by a, is used to discretize the hypercubic lattice with a fixed number of

points in the temporal and spatial directions. By adjusting the lattice spacing, the temperature can

be set. This adjustment requires changing the bare parameters of the lattice action. Conversely, to

investigate the effects of lattice discretization at a fixed temperature, the value of Nt can be varied:
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Figure 9: This plot represents a comparison of the speed of sound squared obtained from lattice
QCD simulations (using HISQ and stout methods) and the Hadron Resonance Gas (HRG) model as
a function of temperature. The crossover region, which occurs at a temperature of approximately
154±9MeV, is marked by a vertical band on the plot. The horizontal line in the upper right corner
represents the ideal gas limit. The Figure is taken from [86].

T =
1

Nta
, V = (Nsa)

3 . (8)

The change in lattice spacing affects the discretization of spacetime and can affect the accuracy of

the calculations. Therefore, changing Nt can affect the prediction of the speed of sound values.

As mentioned in the previous section, by calculating the pressure and energy density of the

system one can calculate the speed of sound:
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c2s =
∂P

∂ϵ
, (9)

where P is the pressure and ϵ is the energy density. As the temperature increases, the ther-

modynamic quantities approach the values of the non-interacting massless relativistic gas, which is

known as the Stefan-Boltzmann limit.

In lattice Quantum Chromodynamics, the pressure and energy density can be obtained by

calculating the trace anomaly:

θµµ = ϵ− 3P = −a4∂ logZ
∂a

, (10)

where Z is the partition function, and a is the lattice spacing. By taking the derivative of logZ

with respect to a and multiplying by −a4, the trace anomaly can be computed. From the trace

anomaly, the pressure and energy density can be calculated as:

P =
1

3
θµµ − ϵ

3
. (11)

By using the equation for the speed of sound and the expressions for the pressure and energy

density obtained from the trace anomaly, the speed of sound can be computed.

Figure 10 presents results for the QCD pressure with Nf = 2 + 1 flavor dynamical quarks as a

function of the temperature. This result is from three different lattice spacing. The temperature

range for Nt = 6 and 8 is from 100 to 1000 MeV. But for Nt = 10, the range is from 100 up to 365

MeV. As the temperature increases, the thermodynamic properties tend to resemble those of a non-

interacting, massless relativistic gas, which is known as the Stefan-Boltzmann limit. Specifically,

the limit for the pressure of the three-flavor system is pSB/T
4 ≈ 5.209, while the energy density

is ϵSB = 3pSB, and the entropy density is sSB = 4pSB/T (these limits are all shown as arrows in

Figures).

Figures 11 and 12 are results for the energy density and the entropy density, and Figures 13
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and 14 demonstrate the speed of sound and p/ϵ.

Figure 9: The trace anomaly I = ϵ − 3p normalized by T 4 as a function of the temperature on
Nt = 6, 8, 10 and 12 lattices.

Figure 10: The pressure normalized by T 4 as a function of the temperature on Nt = 6, 8 and 10
lattices. The Stefan-Boltzmann limit pSB(T ) ≈ 5.209 ·T 4 is indicated by an arrow. For our highest
temperature T = 1000 MeV the pressure is almost 20% below this limit.

– 15 –

Figure 10: The pressure normalized by T 4 as a function of the temperature [70].
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Figure 11: The plot shows the energy density divided by T 4 as a function of temperature for lattices
with Nt values of 6, 8, and 10. An arrow indicates the Stefan-Boltzmann limit of 3pSB [70].
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Figure 12: The graph displays the entropy density divided by T 3 plotted as a function of tempera-
ture for lattices with Nt values of 6, 8, and 10. An arrow is used to indicate the Stefan-Boltzmann
limit of sSB = 4pSB/T [70].
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Figure 13: The graph illustrates the square of the speed of sound plotted as a function of temper-
ature for lattices with Nt values of 6, 8, and 10. An arrow indicates the Stefan-Boltzmann limit of
c2s,SB = 1/3 [70].

Figure 14: This plot shows the relationship between the energy density on Nt = 8 lattices and the
speed of sound and p/ϵ. An arrow is used to indicate the Stefan-Boltzmann limit [70].
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2 Definitions and Terminology

2.1 ALICE Coordinate System and Transverse Momentum

Figure 15 demonstrates the coordination space used in the ALICE detector. The beam axis is

in the z-direction, and the xy-plane, which is perpendicular to the beam direction, is called the

transverse plane. The center of the detector locates at x = y = z = 0. The angle between the x

direction and the projection of the produced particle direction in the transverse plane is referred

to as the azimuthal angle and is denoted as φ. The angle between the z direction and the direction

of the produced particle is referred to as the polar angle or θ.

The mean transverse momentum, ⟨pT⟩, and its correlation with the charged-particle multi-

plicity Nch carries essential information on the underlying particle production processes. In this

dissertation, this has been studied by using Xe–Xe and Pb–Pb collisions at
√
sNN = 5.44 TeV

and
√
sNN = 5.02 TeV, respectively. Basically, the corelation between ⟨pT⟩ and Nch is an observ-

able for tuning theoretical models. Besides, it allows the extraction of fundamental properties of

a deconfined quark–gluon medium. Transverse momentum can be expressed by two momentum

components on the transverse plane:

pT =
√
p2x + p2y

where px and py are the momentum components in the x and y directions, respectively.

2.2 Rapidity and Pseudorapidity

Rapidity characterizes the momentum component of a produced particle in the longitudinal or z

direction. A key property of rapidity is that differences in rapidity are invariant under a Lorentz

transformation in the z direction [11]. It can be expressed as:
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Figure 15: A schematic view of ALICE coordinate system axis and angles. Figure taken from [10].

y =
1

2
ln

(
E + pz
E − pz

)
(12)

where E and pz are the total energy of the particle and longitudinal momentum along the z-axis,

respectively. However, it is common to use pseudorapidity η since the total energy of the particle

is not always known because the mass of the particle is not always known in the equation:

E2 = p2 +m2
0 (13)

When the speed of the particle is very close to the speed of light, the energy coming from the
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particle’s mass is approximately zero, so E ≈ p, and one can neglect the second part in Equation

(13); thus the rapidity (y) approaches the pseudorapidity and can be expressed as below:

η = − ln

[
tan

(
θ

2

)]
, (14)

where θ, is the angle between the collision axis and the particle’s momentum vector, just like

rapidity, differences in pseudorapidity (η) are also Lorentz invariant [30]. This is the reason why

pseudorapidity (η) is used to describe the angle of a particle relative to the beam axis plane instead

of θ since the Lorentz transformations become very complicated.

2.3 Impact Parameter and Centrality

A schematic view of heavy ion collisions is shown in Figure 16, in which two nuclei are coming

toward each other in opposite directions. The variable b is the impact parameter, which refers to

the length connecting the centers of the colliding nuclei in the transverse plane.

Figure 16: A schematic view of a heavy-ion collision [50]

Centrality is used to characterize the collision geometry with respect to the impact parameter b.

When b = 0, the centrality is 0%, and this is referred to as a “head-on collision” since all the matter
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of the incoming nuclei participates in the interaction. Large values of centrality correspond to larger

values of b, and therefore less matter will participate in the interaction. The impact parameter

cannot be measured experimentally, since direct access to the collision is not possible. Instead, the

multiplicity of produced particles is used to determine the centrality. This is based on the intuitive

assumption that the number of particles produced in the collision increases monotonically with an

increasing number of participating nucleons and, therefore, with decreasing values of b.

The impact parameter (b) plays a significant role in ultrarelativistic nucleus-nucleus collisions as

it determines the size and transverse shape of the quark-gluon matter created during the collision.

When the impact parameter is small, central collisions occur, resulting in large and circular interac-

tion regions. However, when the impact parameter is large, peripheral collisions happen, producing

smaller interaction regions with a pronounced elliptical anisotropy. On the other hand, elliptic

flow [15, 16] arises from the elliptical shape of the nuclear overlap region and is more prominent in

peripheral events [17]. The dependence of various observables on centrality provides insight into

their relationship with the global geometry of the collision. High-momentum particles [12, 13] or

jets [14], (more detail about jets are explained in Appendix A) tend to lose more energy in central

collisions, as their path length inside the quark-gluon plasma is longer.

As mentioned before, at extremely high energies, the impact parameter of a single collision is a

well-defined quantity and has negligible quantum uncertainty, but it cannot be directly measured

in experiments. Instead, a single observable (denoted as n) [18] is used to estimate the impact

parameter, which can either be the number of produced particles in a detector [19, 20, 21, 22] or

the transverse energy deposited in a calorimeter [23, 24]. The general idea is that collisions with

smaller impact parameters tend to produce larger values of n. However, the relationship between

n and the impact parameter is not one-to-one, and the variation of n with the impact parameter

is unknown. This relationship is typically inferred from a microscopic model of the collision, such

as the HIJING [25] model or a two-component Glauber model [26], coupled with a simple particle

production model. These models are calibrated to match the observed probability distribution of

n, but they may not accurately describe the actual dynamics of a collision. During experiments,
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collisions are categorized based on a single measure, denoted as n. The definition of n varies among

different collaborations. For instance, the STAR Collaboration [27] defines n as the number of

tracks detected within the pseudorapidity range of −0.5 < η < 0.5, while the ALICE Collaboration

[22] uses the count of hits in two scintillators that cover the windows −3.7 < η < −1.7 and

2.8 < η < 5.1. The ATLAS [24] and CMS Collaborations [28], on the other hand, utilize the

energy deposited in two forward calorimeters with acceptance windows of 3.2 < |η| < 4.9 and

3.0 < |η| < 5.2, respectively.

The centrality with respect to the number of produced particles is defined as:

c =
1

Nevents

∫ ∞

M0

dN

dM
dM. (15)

The term M , also referres to as the multiplicity is the number of particles produced in a heavy-

ion collision. The term M0 refers to a set of collisions with a particular multiplicity, of which the

centrality c is determined. The term Nevents represents the number of collisions, and dN/dM is

the number of collisions as a function of the multiplicity M .

As illustrated in Figure 17, more particles are produced for the lower centrality percentages

(central collisions) and fewer particles for the higher centrality percentages (peripheral collisions).

2.4 Initial State Models

One of the primary goals of heavy-ion physics is to determine the properties of the quark-gluon

plasma (QGP), such as the characteristics of the initial state that leads to its formation. Due to

the fact that the QGP medium created in heavy-ion collisions is highly transient, its properties are

not directly measurable. One can compare the computational models, such as initial state models,

to experimental observations. In heavy-ion collision experiments, initial state models are used to

create energy or density profiles before the Quark-Gluon Plasma (QGP) formation occurs in the

overlap region. Having an accurate initial state model is crucial to accurately calculate the essential

properties of the QGP medium. The QGP behaves like an almost perfect fluid, and calculations
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Figure 17: Correlation between final state observable (Multiplicity) and impact parameter. The
Figure is taken from [29]

using different initial state models have shown that relativistic viscous hydrodynamics can often

describe the multiplicity distributions, particle spectra, and integrated flow measurements at the

same time. The measurement of azimuthal anisotropies in the initial state has been the subject

of extensive research in recent decades. Specifically, the use of Fourier decomposition and flow
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coefficients (vn) to describe observed azimuthal anisotropies have been studied in detail.

Anisotropic flow occurs as a result of the initial spatial anisotropy of a system formed during

heavy-ion collisions. By using Fourier expansion, we can examine the azimuthal variation of the

particles produced, breaking down the distribution into different flow harmonics or Fourier coeffi-

cients. This process allows us to analyze the angular distribution of the particles relative to the

angles of the symmetry planes and can be written as:

dN

dφ
∝ 1 + 2

∞∑

n=1

vn cos [n (φ−Ψn)]

∝ 1 + 2 {v1 cos [(φ−Ψ1)] + v2 cos [2 (φ−Ψ2)] + · · · } ,
(16)

As mentioned before, φ is defined as the azimuthal angle, and Ψn represents the n-th order symme-

try and also indicates the direction of anisotropic flow with order n. The magnitude of anisotropic

flow is measured using flow harmonics denoted by vn. Elliptic flow and triangular flow are rep-

resented by the second and third harmonics, v2 and v3, respectively. The initial almond-shaped

interaction region causes the second-order flow to be the dominant component in the Fourier ex-

pansion. On the other hand, the third-order flow is solely caused by fluctuations in the initial state

density as shown in Figure 18.

Figure 18: Graphic illustration of v2 and v3

The nuclear matter in the interaction region during a heavy-ion collision experiences fluctuations

on an event-by-event basis. Anisotropic pressure gradients, which are most pronounced in the
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direction of the arrows in Figure 18 (where the arrows correspond to the respective Ψn angles),

drive both types of flow. Because these flows are influenced by the medium’s pressure, studying

them can reveal details about the equation of the state of the quark-gluon plasma. By comparing

the observed flow coefficients with initial state models such as MC Glauber and TRENTo, one can

constrain the transport properties of the QGP, such as the ratio of shear and bulk viscosity to

entropy.

2.4.1 The TRENTo Model

What initial state models do, is generate the energy or entropy density after the collision. There

are two main methods for creating profiles of energy or entropy at the time of the QGP [57] ther-

malization that can be used in fluid dynamics. The first approach is through dynamical models,

which simulate both the initial state and pre-equilibrium evolution of the collision [58, 59]. The sec-

ond approach involves using simpler nondynamical models, which do not consider pre-equilibrium

evolution and instead construct static profiles at the time of thermalization. Non-dynamic models

create initial conditions at the time of thermalization by making assumptions about the deposition

of entropy. Although they cannot account for the formation of the QGP, they do provide the

required information for fluid dynamics and can limit the results of ab initio initial-condition calcu-

lations. The two-component Monte Carlo Glauber model is the most commonly employed method

for this purpose. It determines which nucleons participate by measuring the optical overlap and

assigns energy or entropy for each participant as well as for binary nucleon-nucleon collisions. The

TRENTo model, on the other hand, utilizes the Reduced Thickness Event-by-event Nuclear Topol-

ogy model as a new initial-condition approach for high-energy collisions involving proton-proton,

proton-nucleus, and nucleus-nucleus. It is an efficient method that aims at producing practical

Monte Carlo initial entropy profiles without making any specific assumptions about the physical

mechanisms responsible for entropy production, pre-equilibrium dynamics, or thermalization [6].

The TRENTo model [6] can be applied in high-energy proton-proton, proton-nucleus, and nucleus-

nucleus collisions. Consider two projectiles Labeled A and B colliding along the beam axis z.

29



Suppose that the density of nuclear matter that participates in inelastic collisions is ρpartA,B . As a

result, each projectile might be represented by its participant thickness [6]:

TA,B(x, y) =

∫
dzρpartA,B(x, y, z), (17)

then consider a so-called reduced thickness (see Figure 19):

TR (p;TA, TB) ≡
(
T p
A + T p

B

2

)1/p

, (18)

2

include participant matter. The two-component Glauber
ansatz adds a quadratic term to account for binary col-
lisions, i.e. f ⇠ (TA + TB) + ↵TATB .

However, recent results from ultra-central uranium-
uranium collisions at RHIC [29, 30] show that particle
production does not scale with the number of binary
collisions, excluding the two-component Glauber ansatz
[31]. Therefore N one-on-one nucleon collisions should
produce the same amount of entropy as a single N -on-N
collision, which is mathematically equivalent to the func-
tion f being scale-invariant:

f(c TA, c TB) = c f(TA, TB) (3)

for any nonzero constant c. Note, this is clearly broken
by the binary collision term (↵TATB). We will justify
this constraint later in the text; for the moment we take
it as a postulate.

With these constraints in mind, we propose for f the
reduced thickness

f = TR(p; TA, TB) ⌘
✓

T p
A + T p

B

2

◆1/p

, (4)

so named because it takes two thicknesses TA, TB and
“reduces” them to a third thickness, similar to a reduced
mass. This functional form—known as the generalized
mean—interpolates between the minimum and maximum
of TA, TB depending on the value of the dimensionless
parameter p, and simplifies to the arithmetic, geometric,
and harmonic means for certain values:

TR =

8
>>>>>>><
>>>>>>>:

max(TA, TB) p ! +1,

(TA + TB)/2 p = +1, (arithmetic)
p

TATB p = 0, (geometric)

2 TATB/(TA + TB) p = �1, (harmonic)

min(TA, TB) p ! �1.

(5)

Physically, p interpolates among qualitatively di↵erent
physical mechanisms for entropy production. To see
this, consider a pair of nucleon participants colliding with
some nonzero impact parameter, as shown in Fig. 1. For
p = 1, the reduced thickness is equivalent to a Monte
Carlo wounded nucleon model and deposits a blob of
entropy for each nucleon, while for p = 0, the model
deposits a single roughly symmetric blob at the mid-
point of the collision, and as p becomes negative, it sup-
presses entropy deposition along the direction of the im-
pact parameter. Similar behavior was discussed in the
context of small collision systems in [32]. Note that the
values 1, 0,�1 are only special cases—p is a continuous
parameter—and the scale-invariant constraint (3) is al-
ways satisfied.

We now detail the construction of the thickness func-
tions TA,B(x, y), which combined with the definition of
the reduced thickness completes the specification of the
model. The procedure is constructed from the ground
up to handle a variety of collision systems; we begin with
the simplest case.
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FIG. 1. Reduced thickness of a pair of nucleon participants.
The nucleons collide with a nonzero impact parameter along
the x-direction as shown in the upper right. The grey dashed
lines are one-dimensional cross sections of the participant nu-
cleon thickness functions TA, TB , and the colored lines are the
reduced thickness TR for p = 1, 0,�1 (green, blue, orange).

Consider a collision of two protons A, B with impact
parameter b along the x-direction and nuclear densities

⇢A,B = ⇢proton(x ± b/2, y, z), (6)

and assume that the integral
R

dz ⇢proton either has a
closed form or may be evaluated numerically, so that the
proton thickness functions can be calculated. The pro-
tons collide with probability [33]

Pcoll = 1 � exp


��gg

Z
dx dy

Z
dz ⇢A

Z
dz ⇢B

�
, (7)

where the integral in the exponential is the overlap in-
tegral of the proton thickness functions and �gg is an
e↵ective parton-parton cross-section tuned so that the
total proton-proton cross-section equals the experimen-
tal inelastic nucleon-nucleon cross-section �NN.

The collision probability is sampled once to determine
if the protons collide; assuming they do, we follow a pro-
cedure similar to [36] and assign each proton a fluctuated
thickness

TA,B(x, y) = wA,B

Z
dz ⇢A,B(x, y, z), (8)

where wA,B are independent random weights sampled
from a gamma distribution with unit mean,

Pk(w) =
kk

�(k)
wk�1e�kw. (9)

These gamma weights introduce additional multiplicity
fluctuations in order to reproduce the large fluctuations
observed in experimental proton-proton collisions. The
shape parameter k may be tuned to optimally fit the
data: small values (0 < k < 1) correspond to large mul-
tiplicity fluctuations, while large values (k � 1) suppress
fluctuations.

Figure 19: Reduced thickness of a pair of nucleon participants. The grey dashed lines are one-
dimensional cross sections of the participant nucleon thickness functions TA, TB. The colored lines
are the reduced thickness TR for p = 1, 0, -1 (green, blue, orange).

so named due to the fact that it takes two thicknesses TA and TB and reduces them to the third

thickness, which is similar to the reduced mass [6]. Here, p is the key parameter and controls the

nuclear matter distribution in the initial conditions. Firstly, nucleon positions should be sampled,

and then computing the participant nuclear thickness functions TA, TB, TRENTo deposits entropy
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according to the ansatz:

s ∝
(
T p
A + T p

B

2

)1/p

(19)

where p is a continuous parameter that is tunable, that effectively interpolates among different

entropy deposition schemes (see Figure 20). When p = 1, the ansatz reduces to a wounded nucleon

model (s ∝ TA + TB), while p = 0 implies entropy deposition proportional to the geometric mean

of thickness functions (s ∝ √
TATB).

2.5 Simulation Studies

Monte Carlo event generators can be beneficial for producing output that can be compared directly

to many experimental observables, including limited acceptance calorimeters, charged particle cor-

relations, etc. Besides, event generators are helpful for planning and designing future experiments.

In heavy ion collision experiments, the detected dataset has limited statistics. In addition,

the detectors’ data collection has limited efficiency. Therefore, it is essential to know the detector

efficiencies and how to do the corrections for the detector effects. Also, depending on the analysis,

various event generators are used for Monte Carlo (MC) studies. This is addressed through HIJING

and GEANT Monte Carlo simulations.

2.5.1 GEANT Model

GEANT [7] is an acronym formed from “GEometry ANd Tracking” and a collection of tools used

for simulating and describing detectors as the complexity of High Energy Physics experiments in-

creases. Its main purposes are to create and evaluate reconstruction and analysis programs, design

and optimize the detectors and comprehend the experimental data. it was originally created for

use in High Energy Physics experiments, and it is designed to model the movement of fundamental

particles as they travel through different types of matter. Its applications are: tracking the parti-

cles through the experiment to simulate the detector response and graphical demonstration of the
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FIG. 2. Multiplicity distributions for proton-proton, proton-lead, and lead-lead collisions. The histograms are TRENTo results
for reduced thickness parameter p = �1 (top, orange), p = 0 (middle, blue), and p = 1 (bottom, green), with approximate
best-fit fluctuation parameters k and normalizations given in table I. The shaded bands show the sensitivity from varying k by
±30%. Data points (triangles, squares, circles) are experimental distributions from ALICE [34, 35] o↵set by powers of ten for
comparison with the model.

TABLE I. Approximate best-fit fluctuation parameters k and
normalizations for each p value and collision system in Fig. 2.

p k p+p norm p+Pb norm Pb+Pb norm

+1 0.8 9.7 7.0 13.

0 1.4 19. 17. 16.

�1 2.2 24. 26. 18.

With the projectile thickness functions in hand, the re-
duced thickness is calculated to furnish the initial trans-
verse entropy profile up to an overall normalization fac-
tor,

dS/dy |⌧=⌧0 / TR(p; TA, TB). (10)

Composite collision systems such as proton-nucleus
and nucleus-nucleus are essentially treated as superpo-
sitions of proton-proton collisions. A set of nucleon posi-
tions is chosen for each projectile, typically by sampling
an uncorrelated Woods-Saxon distribution or from more
realistic correlated nuclear configurations when available
[37]. The collision probability (7) is sampled for each
pairwise interaction and those nucleons that collide with
at least one partner are labeled “participants” while the
rest are discarded. The fluctuated thickness function of
nucleus A then reads

TA =

NpartX

i=1

wi

Z
dz ⇢proton(x � xi, y � yi, z � zi), (11)

where wi and (xi, yi, zi) are the weights and position,
respectively, of participant i in nucleus A. TB follows
analogously.

This completes the construction of the model,
TRENTo (Reduced Thickness Event-by-event Nuclear

Topology). In summary, the model deposits entropy pro-
portional to the reduced thickness function (4), defined as
the generalized mean of fluctuated participant thickness
functions (11), with each participant nucleon weighted
by an independent gamma random number (9).

We now demonstrate TRENTo’s ability to simultane-
ously describe a wide range of collision systems. Note
that the reduced thickness parameter p, gamma fluctu-
ation parameter k, and nucleon profile ⇢proton are not
rigorously constrained—to do so would require a system-
atic model-to-data comparison [38] which is beyond the
scope of this work. Therefore, the following results do not
necessarily represent the best-fit of the model to data.

We adopt a three-stage model for particle produc-
tion similar to [36], in which the final multiplicity arises
from a convolution of the initial entropy deposited by
the collision, viscous entropy production during hydrody-
namic evolution, and statistical hadronization at freeze-
out. The average charged-particle multiplicity hNchi af-
ter hydrodynamic evolution is to a good approximation
proportional to the total initial entropy [39] and hence to
the integrated reduced thickness via Eq. (10):

hNchi /
Z

dx dy TR. (12)

Then, assuming independent particle emission at freeze-
out, the final number of charged particles is Poisson dis-
tributed [40], i.e. P (Nch) = Poisson(hNchi). The folding
of the Poisson fluctuations with the gamma weights for
each participant yields a negative binomial distribution
[36], which has historically been used to fit proton-proton
multiplicity fluctuations.

To compare with experimental multiplicity distribu-
tions, we generate a large ensemble of minimum-bias
events, integrate their TR profiles, rescale by an over-
all normalization constant, and sample a Poisson num-
ber for the multiplicity of each event. The left panel of

Figure 20: Multiplicity distributions for proton-proton collisions. The histograms are TRENTo
results for reduced thickness parameter p = −1 (top, orange), p = 0 (middle, blue), and p = 1
(bottom, green) [6].

setup and particle trajectories. Based on these applications, it is possible to represent an experi-

mental configuration using a series of geometrical volumes, each of which is assigned a numerical

medium value (referred to as “GEOM”) by the user. It is possible for different volumes to have the

same medium number. The characteristics of each medium are determined by the “TRACKING

MEDIUM” parameters, which include information about the material that fills the volume. It will
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also allow us to accept events simulated by Monte Carlo generators. The GEANT software is capa-

ble of transporting particles through different sections of an experimental setup while considering

factors such as the boundaries of geometrical volumes, the nature of the particles being studied,

their interactions with matter, and the presence of a magnetic field. This enables researchers to

better understand the behavior of particles in complex experimental configurations. In addition,

GEANT is capable of recording important data such as particle trajectories and the reactions of

sensitive detectors. The software also includes features that allow researchers to visualize both the

detectors and the trajectories of the particles being studied.

2.5.2 HIJING Model

Heavy Ion Jet Interaction Generator (HIJING) is a Monte Carlo model for multiple jet production

in pp, pA, and AA collisions [8]. By merging perturbative-QCD motivated models for producing

multiple jets with low pT multi-string observations, they have created this Monte Carlo event

generator. The generator is designed to examine the production of jets and multiple particles in

high-energy collisions involving pp, pA, and AA interactions. The model incorporates the generation

of numerous mini-jets, as well as the nuclear shadowing of parton distribution functions, and a

simplified mechanism for jet interactions that occur within a dense environment. Some of the

main features included in HIJING are as follows. The number of inelastic processes and their

dependence on the impact parameter are calculated using precise diffuse nuclear geometry, as stated

in [9]. Besides, a parton structure-function that depends on the impact parameter is presented,

to investigate how nuclear shadowing affects observables, with a particular focus on the structure

functions of the gluon. In addition, the analysis includes a jet quenching model that allows the

examination of how moderate and high pT observables are affected by an assumed parton energy

loss (dE/dx) as they pass through the produced dense matter.

HIJING incorporates a successful multi-string phenomenology that is suitable for studying low

pT interactions at intermediate energies. As a result, it provides a connection between the dominant

nonperturbative fragmentation physics at intermediate CERN Super Proton Synchrotron (SPS)
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energies and the perturbative QCD physics at the highest collider energies that are expected.

However, HIJING does not account for the mechanism of final state interactions among the low

pT particles produced, which limits its ability to address the approach to local equilibration. The

primary goal of HIJING is to explore the range of potential initial conditions that may occur in

nuclear collisions at collider energies. In contrast, the model also incorporates a basic approach to

the final state interactions of high pT partons through an effective energy loss parameter, dE/dx,

to examine the extent of jet quenching that may arise from such collisions.
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3 Experimental Setup

In this chapter, the features of the experimental setup will be introduced for a brief introduction to

the Large Hadron Collider (LHC). Then one of the major experiments at CERN will be described:

A Large Ion Collider Experiment (ALICE). Finally, a comprehensive explanation of the ALICE

sub-detectors, whose data are utilized in this thesis, will be provided.

3.1 The LHC at CERN

The largest and most powerful particle accelerator, also known as the Large Hadron Collider(LHC),

is built at CERN, the European Organization for Nuclear Research, near Geneva, Switzerland. It

is 27 kilometers in circumference, has a ring of superconducting magnets, and has an average depth

of 100 meters underground beneath the French-Swiss border. It was built from 1998 to 2008,

steering the first beam on 10 September 2008. It consists of two beam pipes where particles, beams

of protons or ions, move in two opposite directions. The LHC houses four main experiments,

located along the superconducting ring: ALICE (A Large Ion Collider Experiment), ATLAS (A

Toroidal LHC Apparatus), CMS (Compact Muon Solenoid experiment), and LHCb (LHC beauty)

(see Figure 21).

Each experimental setup is built for different purposes. The ATLAS and CMS were built with

the same goal and were designed mostly to analyze proton-proton collisions for detecting the Higgs

boson and physics beyond the standard model. The LHCb experiment studies particles containing

the b quark in order to investigate the slight difference between matter and antimatter. However,

the main goal of the ALICE experiment is to study Quark-Gluon plasma (QGP) and its phase

transition to hadronic matter. The Large Hadron Collider started its third period of operation

(Run 3) in July 2022. Since then, it has been colliding protons at a record-breaking energy of 13.6

TeV (6.8 TeV per beam). Also, Pb-Pb is accelerated and collided at a record energy of 5.36 TeV

per nucleon-nucleon collision. In addition to higher energy, the LHC is expected to reach a higher

luminosity.
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Figure 21: A schematic view of the accelerator complex at CERN

3.2 A Large Ion Collider Experiment (ALICE)

The ALICE [46, 47, 48] (A Large Ion Collider Experiment) collaboration includes nearly 2000 scien-

tists from 174 physics institutes in 40 different countries [49]. The detector has overall dimensions

of 16×16×26 m3 and is approximately 10,000 tons in weight (see Figure 22). It was designed to

cope with the particle densities expected in central Pb–Pb collisions at the LHC. It is one of the

main experiments at the LHC and has been designed to study QGP matter created in high-energy

collisions between lead nuclei.

The experiment has a high detector granularity, a low transverse momentum threshold pmin
T ≈

0.15GeV/c, and good particle identification capabilities up to 20 GeV/c. There are seventeen

sub-detectors of three categories: central-barrel detectors, forward detectors, and the MUON spec-

trometer. In this section, a brief outline of their features is given. The central-barrel detectors

are Inner Tracking System (ITS), Time Projection Chamber (TPC), Electromagnetic Calorimeter
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Figure 22: The ALICE experiment at the LHC

(EMCal), Time Of Flight (TOF), Photon Spectrometer (PHOS), Transition Radiation Detector

(TRD) and High Momentum Particle Identification Detector (HMPID). The Inner Tracking Sys-

tem and the Time Projection Chamber are the main charged-particle tracking detectors in ALICE.

In addition to tracking, SDD, and TPC provide charged-particle identification by measuring the

specific ionization energy loss dE/dx. The detectors used in this dissertation are Time Projection

Chamber (TPC), Inner Tracking System (ITS), and VZERO (V0). More details can be found in

Ref. [48].
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3.2.1 Time Projection Chamber (TPC)

Overall, the ALICE Time Projection Chamber (TPC) is a critical component of the ALICE exper-

iment and provides essential information for many aspects of the physics program at the LHC. The

TPC is a central tracking and particle identification detector (PID). By combining the information

from multiple measurements, the TPC can determine the trajectory of the charged particles and

their momenta. It covers a symmetric pseudorapidity interval around midrapidity |η| < 0.9 and a

full azimuthal angle.

The TPC has a cylindrical shape that surrounds the ITS with a length and outer diameter

of about 5 m, resulting in a total volume of 88 m3 and a length along the beam axis of 500

cm, filled with Ne − CO2 − N2 (see Figure 23). It employs a cylindrical field cage with a high-

voltage electrode in its center, dividing its volume into two halves (see Figure 23). Each of the

two endplates includes 18 inner and outer readout chambers, which are arranged in pairs to form

18 equal azimuthal sectors. The TPC was successfully operated in pp, p–Pb, Pb–Pb, and Xe–Xe

collisions at a variety of collision energies during LHC Run 1 and Run 2 [64].

The ALICE TPC and other central-barrel detectors sit inside a 0.5 T solenoidal magnetic field

[26]. This constant magnetic field, combined with the electric field from the TPC, will cause charged

particles moving through the chamber to have a curved path or helical motion. The direction of the

charged particle is determined by the initial kinematics after the collision and the electric field. It

operates by detecting the ionization of gas atoms caused by the passage of charged particles. When

a charged particle from a collision enters the TPC, the particle traverses the gas chamber, ionizing

gas molecules. The electric field drifts the resulting ionization electrons toward a set of readout

electrodes, where the position and amount of the ionization can be measured. This drift is based

on the central high voltage electrode with electric potential, which creates a uniform electric field in

the z-direction [65]. Ionization plays a special role because it is a function of particle velocity. Each

plate provides a maximum of 159 points along the particle path for tracking. The read-out pad

provides the coordinate in the x−y plane, whereas the z-coordinate is calculated from the drift time

and drift velocity. The maximum drift time is approximately 88 µs. As a charged particle passes
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Figure 23: Schematic view of the ALICE TPC

through the gas mixture medium, the inelastic collisions between a produced charged particle and

atoms in the gas result in the ionization of the gas, which corresponds to a decrease in the particle

energy. The energy loss depends on the momentum of the produced particle.

3.2.2 Inner Tracking System (ITS)

The innermost detector of ALICE is called Inner Tracking System (ITS) and is the closest detector

to the collision point. Its distance from the beam line ranges from 3.9 cm for the innermost layer

and 43 cm for the outermost. Its goal is to determine the primary collision vertex to a resolution

better than 100 µm and to help improve the resolution of pT and angle from reconstructed particles

39



by the TPC. Also, it provides momentum determination for low momentum particles, which are

less than 200 MeV/c [75] and cannot be measured by the TPC. The ITS consists of six tracking

layers: two Silicon Pixel Detectors (SPD), two Silicon Drift Detectors (SDD), and two Silicon Strip

Detectors (SSD) (see Figure 24).

Figure 24: Schematic view of cylindrical detector ITS that is made up of six total layers.

The two innermost layers are silicon pixel detectors (SPD), high spatial resolution detectors that

can provide two-dimensional hit information, which is required for primary vertex determination.

The SPD has a resolution of about 0.5 percent centrality bin width, which can be used for centrality

determination. These layers are located at radii of 3.9 cm and 7.6 cm away from the beam axis and

can cover pseudorapidity of −1.98 < η < 1.98. The third and fourth layers are located at radii of

15.0 cm and 23.9 cm away from the beam axis and consist of silicon drift detectors (SDD). Their

main function is to determine the drift time of the charge deposited when a particle passes through

the detector together with the segmentation through cathode strips to determine the position of

the particle by providing energy-loss information (dE/dx) (see Figure 25).

Silicon Strip Detectors (SSD) consist of the two outermost layers of the ITS, which are located at
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Figure 25: TPC energy loss dE/dx measurements as a function of magnetic rigidity for 2011 Pb-Pb
data. The Figure is taken from [63].

radii of 30.0 cm and 43.0 cm away from the beam axis. SSDs are equipped with double-sided Silicon

Strip Detectors and cover the pseudorapidity range |η| < 0.9 with full azimuthal coverage, which

provides a two-dimensional measurement of track position, which is very important in matching

tracks from the ITS to the TPC. They also provide energy loss (dE/dx) information for PID. More

details of the ITS detector are shown in Figure 26.

3.2.3 VZERO (V0)

The V0 detector is a small detector located at a forward angle, which is made up of two arrays

of scintillator counters called V0A and V0C, as shown in Figure 27, which are arrays situated on

both sides of the ALICE intersection point, in certain pseudo-rapidity ranges 2.8 ≤ η ≤ 5.1 and
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Figure 26: Geometrical parameters of the upgraded ITS [76].

−3.7 ≤ η ≤ −1.7 respectively [66].

The main objective of the V0 detector is to provide minimum-bias triggers for the central-

barrel detectors in p-p and A-A collisions. These triggers are activated by particles originating

from the initial collisions and from secondary interactions in the vacuum chamber elements. As

the correlation between the number of registered particles on the V0 arrays and the number of

primary emitted particles is linear, the V0 serves as an indicator of the centrality of a Pb − Pb

collision via the multiplicity recorded in the event. The purpose of these triggers is to sort events

based on certain criteria that they are designed to detect during the experiment. The minimum

bias (MB) trigger is the most basic type of trigger, as an event is classified as part of the minimum
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Figure 27: The VZERO sensors, consisting of V0-A and V0-C on either side of ITS [67].

bias data set if it generates a signal in the V0A or V0C detectors. As a result of these triggers, it

is feasible to identify whether a collision took place or whether the signal observed in the detectors

originated from interactions between the beam and the gas. Additional triggers utilized for Pb−Pb

data comprise those that mandate a signal surpassing a particular threshold in the V0 detector to

document favorable central collisions. The central trigger (kCent) pertains to events with centrality

ranging from 0-10 percent, the semi-central trigger (kSemiCent) pertains to events with centrality

ranging from 30-50 percent, and the minimum bias trigger (kINT7) pertains to events with centrality

ranging from 0-90 percent.

3.3 The ALICE Analysis Train System

The ALICE collaboration stores approximately 10 PBs of data annually across various storage

elements worldwide. To analyze a single dataset, around 105 files, each containing approximately

50 TB of data, must be read. The ALICE analysis framework can create and submit analysis

jobs to the Grid, which can then be monitored and resubmitted using the MonALISA monitoring

service. The LEGO train system was developed on top of these existing frameworks to improve

CPU efficiency and enable more user analysis with the same amount of computing resources. This
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is achieved by collecting multiple analysis tasks that analyze the same dataset and running them

within the same analysis job, which reads the data once and uses it for multiple analysis tasks. By

doing so, the data is not read repeatedly for each analysis task, resulting in higher CPU efficiency

and faster processing time. Additionally, the LEGO trains hide the complexity of the Grid from

users, allowing them to define their code on a web page and providing the analysis results as soon

as they become available. The system is fully automated, and the jobs running on the Grid do not

require supervision [61]. Improvements are continuously implemented in the computing process

to utilize available resources more efficiently [60]. The train system is divided into several trains

based on physics working groups such as jet analysis, particle correlations, etc., and different types

of datasets such as p-p, p-Pb, or Pb-Pb collisions, as well as data or Monte Carlo simulations.

Analyzing a dataset using a train is referred to as a train run. After working as a train operator

for over two years, part of my responsibilities was testing and running trains. To run on a train, a

user must first submit their analysis code to a repository. The code configuration is then defined

on a web page in a train wagon. Train operators manage the trains by defining the datasets and

configuring the train runs’ jobs. The trains are started on a regular basis, usually once per day, by

an operator who composes a train run from a set of wagons and a dataset. The train run undergoes

an automated testing procedure, and only if the test is successful can it start on the Grid. Figure

28 shows an example of a train test. The Baseline tests the train configuration and does not contain

any user code, while the Full train contains all train wagons. Each wagon is individually tested in

between. The test provides various measurements, including the status (OK or Failed) and memory

consumption, which is divided into total consumption and growth per event. The growth per event

indicates a memory leak, and the number is highlighted in red if one is suspected. The timing

information shows the time used per event, providing a rough estimate of the train duration. The

last column reports the result of the merging test.
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Figure 28: Representation of an example test before train run [61].

4 Determining the Speed of Sound from Experimental data

Finding the temperature reached in heavy-ion collisions has been an open challenge for decades,

as well as other thermodynamic quantities such as entropy. In recent endeavors that have been

published in Nature Physics [73], using hydrodynamic simulations, the authors obtained the so-

called effective temperature, which is the temperature averaged over the spacetime evolution of the

medium. In order to understand the idea, consider a uniform gas at rest that has volume V in a

vacuum. At the time t = 0, the gas starts to expand freely. If the interactions between particles are

sufficiently strong, the expansion will be governed by ideal hydrodynamics, and the total energy

and entropy of the system will be conserved. Since the initial volume is known, by measuring

the final state variables like the total number of particles and the average energy per particle, the

thermodynamics of the initial state can be reconstructed without having any information about

the hydrodynamic expansion. In order to apply this idea in the QGP expansion, one can define

an effective volume, which is a volume of the QGP at rest that has the same energy and entropy

produced in the collision. In order to formulate this idea, the effective temperature Teff , and the

effective volume Veff , those of a uniform fluid at rest which would have the same energy and entropy

as the fluid at freeze-out, are shown by these equations [73]:
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E =
∫
f.o. T

0µdσµ = ϵ (Teff )Veff

S =
∫
f.o. su

µdσµ = s (Teff )Veff .
(20)

The integral is taken over the freeze-out hypersurface, with dσµ representing the elementary

hypersurface element. The first line of the stress-energy tensor of the fluid is denoted as T 0µ, where

uµ represents the fluid’s 4-velocity. The energy and entropy density in the fluid rest frame is denoted

as ϵ and s, respectively. By using the ratio E/S, one can solve for Teff in the resulting equation

while eliminating Veff and using the same equation of state as in the hydrodynamic calculation. It

is important to note that the equation of state of the fluid constrains the relationship between Teff

and s (Teff ). The effective temperature is lower than the initial temperature due to longitudinal

cooling but higher than the freeze-out temperature because the kinetic energy from the collective

motion of the fluid is included in the energy E defined by Equation (20).

In an ideal gas with Boltzmann statistics, the energy per particle is equal to three times the

temperature. The Boltzmann constant and the speed of light in vacuum are set to unity in natural

units, making momentum and temperature have the same dimension. At high energy and near

midrapidity, the transverse momentum of a particle is expected to be approximately equal to three

times the effective temperature ⟨pT⟩ ≈ 3Teff . To test this expectation, hydrodynamic simulations

of Pb +Pb collisions were carried out. Three sets of calculations were performed using ideal

hydrodynamics, viscous hydrodynamics with only shear viscosity, and viscous hydrodynamics with

only bulk viscosity [73] since the transport coefficients of the quark-gluon plasma are not well

constrained. Using empirical evidence, they ascertain the temperature, entropy density, and speed

of sound in the material formed during lead-lead collisions at the Large Hadron Collider. As one

can observe in Figures 29 and 30, the relation between the effective temperature Teff the effective

volume Veff. and the multiplicity of charged particles is shown.

Results are presented as a function of the collision energy for a fixed centrality range (5 percent

of most central collisions). They finally obtain the speed of sound by using two collision energies

using 0–5 percent centrality in Pb–Pb collisions. In a fixed central interval, the volume is fixed as
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Figure 29: Representaion of hydrodynamic simulations of Pb + Pb collisions. Black curves corre-
spond to the average transverse momentum, ⟨pt⟩, red curves to the effective temperature, Teff [73].

one increases the energy pressure and the temperature increase which yields compressibility. The

latter is related to the speed of sound, which is (see Figure 31):

c2s (Teff ) = 0.24± 0.04. (21)

Two methods are used in this dissertation to calculate the speed of sound experimentally. One

by the definition of the speed of sound in the relativistic limit and one by an analytical method. The

idea is that ultra-central collisions (defined, for instance, as the 0.1 percent most central collisions)

produce a quark-gluon plasma that always has the same volume as one can see in Figure 30. In

a relativistic fluid, the square of the speed of sound is defined as the change in pressure when the

energy density changes:
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Figure 30: Representaion of hydrodynamic simulations of Pb + Pb collisions. The plot shows the
relation between effective volume, Veff, and the multiplicity of charged particles [73].

c2s =
dP

dϵ
(22)

then by using thermodynamics relations:

dε = Tds, dP = sdT (23)

and by substituting these relations in Equation (22), one can get:

c2s =
dP

dε
=
s

T

dT

ds
, (24)
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Figure 31: Speed of sound as a function of the temperature. Magenta bands are obtained by ab
initio calculations using LQCD, and the Grey box represents the result from heavy-ion experimental
data [73].

using the relations:

dT

T
= d lnT,

ds

s
= d ln s, (25)

one gets:

c2s =
dP

dϵ
=
d lnT

d ln s
. (26)

.

The effective volume is essentially constant as a function of the energy so that the effective
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entropy density is proportional to the multiplicity. Analogously, the effective temperature is pro-

portional to ⟨pT⟩. This implies:

ds (Teff)

s (Teff)
=

dNch

Nch
,

dTeff
Teff

=
d ⟨pT⟩
⟨pT⟩

(27)

then the equation for the speed of sound becomes:

c2s (Teff ) ≡ dP

dε
=
s dT

T ds

∣∣∣∣
Teff

=
d ln ⟨pT⟩

dln (dNch/dη)
(28)

where P , ϵ, T , and s represent the pressure, energy density, temperature, and entropy density,

respectively. pT is the proxy for temperature, and Nch is the proxy for entropy.

The second method is an analytical method developed by a simple assumption that the proba-

bility distribution of S at a fixed impact parameter b is a Gaussian [72]. As mentioned before, the

original meaning of centrality was based on impact parameter classification. However, in current

experiments, it is defined by collision classification using the parameter n. To avoid confusion,

the term b-centrality is used when referring to centrality determined based on impact parameters.

The relationship between n and b can be established following a Gaussian distribution. This Gaus-

sian distribution is characterized by a mean n̄ and width σ, both of which depend on the impact

parameter [72]:

P (n | cb) =
η (cb)

σ (cb)
√
2π

exp

(
−(n− n̄ (cb))

2

2σ (cb)
2

)
. (29)

Due to the central limit theorem, it is anticipated that this will be a good estimate for a large

system. The parameter n comprises contributions from numerous collision processes located at

distinct points in the transverse plane, making them causally disconnected and independent. In

order to normalize the Gaussian to unity, one can perform:

η (cb) = 2

[
1 + erf

(
n̄ (cb)

σ (cb)
√
2

)]−1

. (30)

50



Testing the Gaussian approximation on a model is a practical approach. Within the hydrody-

namic framework, the final-state observables that establish collision centralities, such as transverse

energy or multiplicity, are proportional to the initial entropy of the system. The initial entropy

represents the experimental parameter n and is determined by models of initial conditions, such

as TRENTo. Figures 32 and 33 demonstrate some checks [72] on this approximation for Pb + Pb

collisions at (
√
sNN = 2.76 TeV utilizing the TRENTo model, which has been described before.

Figure 32: The shaded regions are the probability distribution of the variable n for a fixed impact
parameter. The values of impact parameter used were 0, 5, 8, and 12 fm , corresponding to collision
centrality percentages of 0%, 10%, 26%, and 58%, respectively. The number of events for each
impact parameter is 5× 10∧5. The solid lines are Gaussian fits on data. [72]

By integrating over cb in Equation (29), basically the final state observable will be obtained:

P (n) =

∫ 1

0
P (n | cb) dcb (31)
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Figure 33: Final observable distribution with Gaussian fit [72].

In order to fit Equation (31) on data, a smooth function of n̄ (cb) is needed, which should be

positive and monotonically decreasing as a function of cb and that can be [72]:

n̄ (cb) = nknee exp
(
−a1cb − a2c

2
b − a3c

3
b

)
(32)

which is a five-parameter fit function to fit on P (n), using Equations (29), (30) and (31).

Using Equation (29), and considering that one of the final observables (n), can be entropy S,

one can write:
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P (S | b) = 1

σ
√
2π

exp

(
−(S − S̄(b))2

2σ2

)
. (33)

By integrating over the impact parameter, the distribution of entropy S can be derived (note

that the knee is defined as the mean value of S at zero impact parameter Sknee ≡ S̄(0) and the

change of variable is b→ S̄(b)) [71]:

P (S | S̄) = 1

σ
√
2π

exp

(
−(S − S̄)2

2σ2

)
. (34)

By integrating over S̄ and assuming that the probability distribution of S̄, P (S̄) is constant:

P (S) =

∫ Sknee

0
P (S | S̄)P (S̄)dS̄

∝
∫ Sknee

0
P (S | S̄)dS̄

∝ erfc

(
S − Sknee

σ
√
2

)
.

(35)

The dashed line in Figure 34 (a), is a representation of this model in which the parameters

Sknee and σ have been calculated by using TRENTo model. The next assumption is that the

initial radius R is solely dependent on the impact parameter, or in other words, on the parameter S̄

[71]. Using Bayes’ theorem, the distribution of S̄ can be determined at fixed entropy, and following

that, R can be determined for fixed S.

P (S̄ | S) = P (S | S̄)P (S̄)
P (S)

. (36)

Integrating the above equation gives:

⟨S̄ | S⟩ = S − σ

√
2

π

exp
(
− (S−Sknee)

2

2σ2

)

erfc
(
S−Sknee√

2σ

) . (37)

For S < Sknee , the second term on the right-hand side can be ignored, and the inner product

⟨S̄ | S⟩ is approximately equal to S, indicating that fluctuations are averaged out [84]. On the
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Figure 34: This Figure displays the outcomes of the TRENTo model utilizing initial conditions
with p = 0 and k = 2.0, using 20 million Pb + Pb collisions at (

√
sNN = 5.02 TeV. Only the top

10% of events with the highest values of the total entropy per unit rapidity (S), corresponding to
0− 10% centrality, were considered. The probability distribution of S and the V0 amplitude (used
by ALICE to determine centrality) are shown in panel (a). The initial radius (R) and effective
entropy density (s) are presented in panels (b) and (c), respectively. The dots and dashed lines
represent the averaged results of the TRENTo simulation, while the dot-dashed lines indicate one-
parameter fits employing Eqs. (35), (38), and (39). The knee’s position and the specific values of
the centrality percentile are highlighted with vertical lines [71].
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right-hand side of the knee, S̄ saturates at its maximum value: ⟨S̄ | S⟩ ≃ Sknee . According to

the TRENTo calculation, which shows that the entropy density remains constant to the left of the

knee, it is assumed that the volume is proportional to S̄. Based on this assumption, the radius R

can be expressed as follows:

R = R0

(⟨S̄ | S⟩
Sknee

)1/3

, (38)

where the entropy density s is given by:

s = s0
S

⟨S̄ | S⟩ . (39)

These equations have two fit parameters, R0 and s0, which represent the value of R to the

right of the knee and the value of s to the left of the knee, respectively. Figure 34, panels (b) and

(c), demonstrate the initial radius R, and effective entropy density s, both averaged over events,

respectively.

Now the crucial aspect is determining how to extract the parameters using data through this

analytical approach. To obtain the values for Sknee and σ, one can replace the variable S with the

number of charged particles Nch and analyze its distribution. This can be achieved through either

the straightforward Bayesian method outlined in Reference [13] or by fitting a model such as the

Glauber model to the experimental histogram and computing the values for Sknee and σ within the

model. In this study, the methodology outlined in Reference [72], is used for the analysis of ALICE

data:

⟨pT⟩ = pT0

(
S

⟨S̄ | S⟩

)c2s

. (40)

The expression ⟨pT ⟩ refers to the average transverse momentum left of the knee and its initial

value is denoted as pt0. The conditional average ⟨S̄ | S⟩ is determined by the Equation (37). In

this study, the value of pt0 is taken as 682 MeV, which was measured by ALICE for collisions in the
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0-5 percent centrality range [74] and corresponds to an effective temperature of Teff = 222 MeV,

which is predicted by lattice QCD to have a squared speed of sound of c2s = 0.252.

56



5 Analysis Details

5.1 Analysis Software, ROOT Framework

The analysis in this dissertation utilizes the ROOT [46] software package, which is a widely used

software package developed at CERN for data analysis in numerous high-energy physics experi-

ments. This software framework is implemented in the C++ programming language and is appro-

priate for analyzing experimental high-energy physics data. ROOT provides an integrated I/O,

an efficient hierarchical object stored with a complete set of object containers, and a C++ inter-

preter. Additionally, the ALICE offline framework, AliRoot, is constructed on top of ROOT and

offers a comprehensive range of features required for event generation, detector simulation, event

reconstruction, data acquisition, and data analysis.

5.2 Track Reconstruction

This analysis studies charged particle multiplicity distributions and multiplicity-dependent trans-

verse momentum spectra for Pb-Pb and Xe-Xe collisions at
√
sNN = 5.02 TeV,

√
sNN = 5.44

TeV collision energies, respectively. The TPC detector is responsible for track reconstruction and

particle identification, while the ITS is used to improve the resolution of spatial and momentum

measurements, as mentioned in Section 3.2. This helps to eliminate the background from secondary

tracks, which may arise from weak decays, conversions, secondary hadronic interactions in the de-

tector material, and pile-up. Pileup events occur when multiple interactions take place within the

same bunch crossing. The TPC data collected during the 2018 Pb−Pb run has pileup. The process

of reconstructing charged tracks using the ALICE software involves several stages. It commences by

identifying the primary vertex through clusters detected in the two SPD layers. Subsequently, the

clusters detected in the central barrel are integrated to form tracks that account for the curvature

caused by the magnetic field and energy loss using a helix approximation. After this, the Kalman

filtering technique is utilized to fit these spatial points and generate track candidates for recon-

structing the kinematics of particles. These spatial points are created by the clusters of charged
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particles in the TPC tracking device. The process of finding and fitting tracks starts from the

outermost pad rows of the TPC, where the tracks are widely spaced apart. The fitting process then

progressively moves inward towards the ITS, where the tracks are closer together. Next, the track

candidates are assigned to different clusters using the Kalman filter in the ITS data to improve

the estimation of track parameters such as momentum. After this assignment, the ITS stand-alone

tracking procedure is carried out using the remaining clusters to recover any tracks that might have

been lost in the TPC due to factors like crossing a dead zone, decays, or the momentum cut-off.

Once all the ITS clusters are added to the tracks, the procedure is restarted from the inner ITS

layer to the outer TPC boundary. In this step, any improperly assigned clusters are eliminated to

enhance the track quality. The process then extrapolates to the Time-of-Flight (TOF), Transition

Radiation Detector (TRD), Particle Identification (HMPID), and Photon Spectrometer (PHOS)

detectors to obtain information that can be used to identify the particle species. In the final stage,

the filter is once again reversed for a final refit of the track back towards the primary vertex to

calculate the best track parameters at the vertex. Secondary tracks can be utilized to reconstruct

decay vertices. These are the tracks that did not pass the final refit toward the primary vertex.

5.3 Event and Track Selection

The data analyzed in this thesis was collected during the Run 2 period at the LHC by the ALICE

detector, which comprises various detectors as explained in the previous chapter. The analysis

specifically utilizes tracks obtained from the TPC and ITS detectors. The data collected by the

ALICE detectors is generally stored in the ALICE Grid in the form of Event Summary Data (ESD),

which includes all the information from the raw data, such as primary vertex, tracking, secondary

vertices, etc. However, since ESDs contain a vast amount of information, they occupy a considerable

amount of memory. If all users from the ALICE collaboration were to utilize ESDs for their analysis,

it would result in an enormous consumption of computer resources and time. To mitigate this

issue, the concept of Analysis Object Data (AOD) was introduced in ALICE, which contains only

relevant and lighter analysis-related information of an ESD, making it more manageable in terms
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of memory usage. During data taking at the LHC, the ALICE detectors capture information about

the particles created during collisions that occur in a single beam crossing, which is referred to as an

event. Often, one collision is more prominent in the detector than the others within an event. The

uninterrupted recording of events is referred to as a run, and multiple runs are grouped together

into periods that correspond to the duration of the LHC’s operation. Additionally, the ALICE

Data Preparation Group has generated MC data for each period, which includes ESDs and AODs.

The datasets used in this analysis are shown in Table 1. Heavy-ion events are selected within

a primary vertex z range of (−10 < Vz < 10) cm, which maximizes the acceptance of the TPC

and ITS detectors. The event trigger selection is the minimum bias V0 trigger both for Xe-Xe and

Pb-Pb collisions. One of the potential event backgrounds comes from multiple collision overlaps

or pileups. Generally, there are two categories of pileup: Same-bunch-crossing pileup and Out-of

bunch pileup [83]. Same-bunch-crossing pileup happens when two (or more) collisions occur in

the same bunch-crossing, and it will be seen by all the detectors. In drift detectors (TPC and

SDD), the estimation of track parameters is correct, the reconstructed points are in the “correct”

spatial position, and the efficiency of prolongation from TPC to ITS is the same for the “main” and

for the piled-up collision(s). This type of pileup can be removed at the event selection level with

cuts based on multiple reconstructed vertices. Out-of-bunch pileup happens when one (or more)

collisions occur in bunch crossings different from the one which triggered the acquisition. Depending

on the readout time of the detectors, they get affected differently. Generally, readout times are

relevant for the sensitivity of a given detector to out-of-bunch pileups. In drift detectors (TPC

and SDD), the reconstructed points are spatially shifted along the drift direction (i.e., z for TPC).

Table 1: Datasets used in this dissertation

System Type
√
sNN TeV Period (or tag)

Xe-Xe Raw 5.44 LHC17n-pass1
Xe-Xe MC 5.44 LHC17j2-2 (HIJING)
Pb-Pb Raw 5.02 LHC18r-pass3-AOD252
Pb-Pb MC 5.02 LHC20e3a-AOD252 (HIJING)

Datasets used from Run 2 raw and Monte Carlo data for this analysis both for Xe-Xe and Pb-Pb.
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This type of pileup can also be removed at the event selection level with cuts based on multiple

reconstructed vertices, which work for collisions that occurred within the SPD readout time, and

cuts based on correlations between the number of tracks/tracklets/amplitudes in different detectors,

which can be used to remove events with out-of-bunch pileup outside the SPD readout time. In

many of the Run 2 samples, a large fraction of the recorded events has more than one collision in

the TPC readout time. Hence, tagging and removal of events with pileup, although possible, would

result in a dramatic loss of statistics. Cleanup should therefore be based on track selection cuts,

i.e., removing the tracks from the pileup collisions and keeping only the ones from the collision that

fired the trigger. The Monte Carlo productions of the Run-2 data samples include the simulation of

pileup to better match the TPC performance observed in the data. The pileup is simulated via the

class AliGenPileup, which generates a number of collisions based on the average number of collisions

per bunch crossing and the BC mask. Same bunch and out-of-bunch pileups are simulated, with

the proper assignment of collision time based on the bunch crossing in which the collision occurs.

To correctly treat the Monte Carlo information at the analysis level without getting a bias on the

efficiencies, particles from out-of-bunch (OOB) pileup should be removed at generator level analysis.

Same bunch crossing is very rare in Pb-Pb 2018 and is negligible for most analyses. ALICE employs

a variety of techniques. One such technique is the use of high-speed readout electronics, which can

quickly identify and reject signals that are not associated with the primary collision. Another

technique is to use sophisticated event reconstruction algorithms that can separate the signals

produced by the primary interaction from those produced by out-of-bunch pileups. Additionally,

ALICE employs a trigger system that selects only the most interesting collisions based on certain

criteria, such as the energy or type of particles produced in the collision. This helps to reduce

the amount of data that must be processed, which in turn reduces the impact of the out-of-bunch

pileup. Overall, mitigating the effects of out-of-bunch pileups is an important aspect of the data

analysis process for the ALICE experiment and requires a combination of advanced technology and

sophisticated algorithms.

After applying all event selections, including the standard ALICE method for pile-up rejection,

60



totals of ∼ 1.3 million Xe-Xe and ∼ 23 million Pb-Pb events are used for this analysis. As this thesis

analyzes soft probes of the QGP, charged particles were chosen for analysis within a specific range of

transverse momentum, namely between 0.2 and 5 GeV/c, and pseudorapidity, specifically |η| < 0.8.

It should be noted that the ALICE detector’s ability to track particles significantly diminishes when

the transverse momentum drops below 200MeV/c due to the magnetic field. Thus, such low-pT

tracks are not registered in the TPC. On the other hand, the upper limit of pT was capped at 5

GeV/c in order to minimize any non-flow correlations that may arise from high energy jets. The

chosen range of pseudorapidity was primarily based on the uniform acceptance of the TPC in this

region. To be included in the analysis, the tracks needed to meet certain criteria. Specifically, they

were required to have a minimum of 70 reconstructed space points out of a maximum of 159 in the

TPC, as well as to have registered a hit in at least two of the six ITS layers. Tracks with a lower

number of space points may be the result of split tracks, where one charged particle is mistakenly

identified as two separate tracks.
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6 Results

Figure 35 shows the reconstructed multiplicity distributions from Xe-Xe and Pb-Pb collisions. The

term multiplicity refers to the event-wise number of charged tracks within η and pT ranges of the

track selections and is denoted by Nch(|η < 0.8|). The distributions are normalized as probability

density functions, such that they integrate to 1 over the full Nch range. Figure 36 shows the mean

transverse momentum < pT > of charged tracks as a function of the multiplicity from Xe-Xe and

Pb-Pb collisions. In Xe-Xe collisions, the < pT > continuously rises after Nch ∼ 1400, which

corresponds to the ultra-central region of 0-1 percent centrality. For Pb-Pb, the continuous rise

occurs after Nch ∼ 2300, which also corresponds to 0-1 percent centrality. The rises in Xe-Xe and

Pb-Pb imply Equation (28) can be used to extract the speed of sound squared from both systems.

The procedure is referred to as Method One. In Figure 37, the natural logs of < pT > and

Nch are shown. As the speed of sound squared is the derivative of this measurement, a first-order

polynomial is fitted to the data, with a gradient and constants as free parameters. The fit quality

is reasonable with the χ2/DOF being below 2 in each case. The speed of sound squared values

from the gradients for Xe-Xe and Pb-Pb are also shown in Figure 50.

Figures 38 and 39 investigate using Equation (40) to obtain the speed of sound squared, which

is referred to as Method Two. The S parameters are obtained using the previous equations via

fits to multiplicity distributions. The fit quality for the < pT > vs. Nch data is also reasonable, with

similar χ2/DOF values as method one. Table 2 summarizes the squared values of the speed of sound

from both methods in each collision system. Subsequent sub-sections will discuss methods employed

for correcting the data for reconstruction efficiency, which will be followed by the presentation of

results pertaining to the squared speed of sound, derived from the corrected data.

Table 2: Speed of sound values before corrections

System
√
sNN[TeV] Method One Method Two

Xe-Xe 5.44 c2s = 0.071± 0.008 c2s = 0.085± 0.0072
Pb-Pb 5.02 c2s = 0.085± 0.002 c2s = 0.095± 0.0018

The values of the speed of sound squared for every collision system and method utilized before
the corrections.
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Figure 35: Reconstructed multiplicity distributions from heavy-ion collisions in ALICE. The un-
certainties shown are statistical.
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Figure 36: Averaged transverse momentum versus Multiplicity distributions from heavy-ion colli-
sions. The uncertainties shown are statistical.
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Figure 37: Fit results on data obtained from heavy-ion collisions before corrections and c2s calcula-
tions using method one. The uncertainties shown for the data are statistical.
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Figure 38: Fit results on data obtained from Xe-Xe collisions before corrections and c2s calculations
using method two. The uncertainties shown for the data are statistical.
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Figure 39: Fit results on data obtained from Pb-Pb collisions before corrections and c2s calculations
using method two. The uncertainties shown for the data are statistical.
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6.1 Data Corrections

To obtain the most accurate values of the speed of sound, it is necessary to correct the correlation

between primary charged particle pT spectra and their corresponding event multiplicities Nch. The

corrections for efficiency are obtained using Monte Carlo simulations based on a realistic GEANT

model of the ALICE detector and the experimental conditions present during data-taking. These

simulations provide information about efficiency, secondary contamination, and smearing ofNch and

pT. However, it has been found in previous measurements that the current state-of-the-art MC event

generators do not perfectly reproduce the relative particle abundances. This means that a purely

MC-based correction for efficiency and feed-down contamination of inclusive charged particles would

depend on the accuracy of the relative hadron abundances produced by the respective underlying

event generator. To take this effect into account, a data-driven approach is used to re-weight the

particle abundances from the event generator. This particle-composition correction utilizes several

ALICE measurements of identified (π,K,p,Λ) particle pT spectra as a function of multiplicity for

a range of collision systems as input. These data-driven adjustments for the generator bias result

in a more accurate description of the detector performance and are applied prior to the unfolding

corrections.

In the experiment, the measured transverse momentum pmeas
T spectra are obtained as a function

of the number of measured tracks Nmeas
ch . The measured multiplicity Nmeas

ch contains a fraction of

the true primary charged-particle multiplicity N true
ch that is not lost due to acceptance, efficiency,

or track selection, as well as additional tracks from secondary particles or particles smeared into

the kinematic acceptance of the measurement due to detector resolution.

Due to event-by-event fluctuations of the detector efficiency and the contamination of the track

sample, there is no unique correlation between N true
ch and Nmeas

ch . Events with a true multiplicity

can be measured with different Nmeas
ch and therefore contribute to various multiplicity dependent

measured pT spectra. Consequently, each of those spectra contains particles originating from events
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with many different true multiplicities. This means that the physical quantity characterizing the

final state of a collision (pT spectra vs. N true
ch ) cannot be directly observed and can only be extracted

by deconvoluting the measured data.

The procedure for unfolding the spectra of charged particle tracks measured as a function of

pmeas
T and Nmeas

ch , to yield the primary charged-particle pT spectra as functions of their primary

charged-particle multiplicity Nch, is based on an iterative deconvolution method. This method is

illustrated in the next section for the simple use case of unfolding event multiplicity distributions.

6.2 Unfolding Procedure

As mentioned before, due to the finite resolution of particle detectors, any measurement conducted

in experimental high-energy physics is contaminated by smearing. We parametrize the measurement

effects using a response matrix, as shown in Figures 40 and 41, that maps the (binned) true

distribution onto the measured one. One-dimensional iterative Bayesian unfolding method by G.

D’ Agostini [5] has been used to unfold the measured multiplicity distribution. The key idea in

Bayesian unfolding is to use Bayes’ theorem, which is a way of unfolding experimental data to get

the best estimates of the true distributions. This study examines the correlation between the Nmeas

with their corresponding true multiplicities Nch. From the experiment, the transverse momentum

spectra are obtained as functions of the number of measured tracks Nmeas. This method has already

been done by some other groups for pp, p–Pb, and Pb–Pb collisions [77, 78].

For Bayesian unfolding, one needs to have the smearing matrix S, which contains information

about the finite resolution and acceptance of the detectors. It will give access to the conditional

probability of an event with true multiplicity that has been considered as one with measured

multiplicity. By having the smearing matrix, one can formulate the relationship between true

multiplicity distribution and measured one with a mathematical equation:

F (Nmeas
ch ) =

∑

true

S(meas,true) · F (N true
ch ) (41)
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in which F (Nmeas
ch ) and F (N true

ch ) represent the measured and true multiplicity distributions,

respectively. This equation can not be solved easily by just inverting the response matrix since it

might have multiple solutions or none at all. The method proposed in G. D’ Agostini [5] paper

obtains the true distribution by Bayes theorem. Considering that the probabilities of observing a

true N true
ch and a measured Nmeas

ch multiplicity are given by P (N true
ch ) and P (Nmeas

ch ), respectively,

the conditional probability of observing N true
ch and Nmeas

ch at the same time is given by the joint

probability P (N true
ch ∩ Nmeas

ch ). The conditional probabilities P (N true
ch | Nmeas

ch ) and P (Nmeas
ch |

N true
ch ) are connected with P (N true

ch ∩Nmeas
ch ), according to the following equations:

P (N true
ch | Nmeas

ch ) =
P (N true

ch ∩Nmeas
ch )

P (Nmeas
ch )

(42)

P (Nmeas
ch | N true

ch ) =
P (Nmeas

ch ∩N true
ch )

P (N true
ch )

. (43)

Using the above equations, Bayes’ theorem can be written as:

P (N true
ch | Nmeas

ch ) =
P (Nmeas

ch | N true
ch )P (N true

ch )

P (Nmeas
ch )

, (44)

which gives the probability of true multiplicity, given that the measured one is accessible by exper-

imental data. The total probability of measuring an event with the true multiplicity can be written

as:

P (Nmeas
ch ) =

∑

true

P (Nmeas
ch ∩N true

ch ) =
∑

true

P (Nmeas
ch | N true

ch )P (N true
ch ). (45)

Now the final Bayesian Theorem can be rewritten as

P (N true
ch | Nmeas

ch ) =
P (Nmeas

ch | N true
ch )P (N true

ch )∑
true P (N

meas
ch | N true

ch )P (N true
ch )

(46)

The left side of the above equation gives us the so-called Unfolding Matrix, U(true,meas). By
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having this matrix, one can obtain the unfolded distribution:

F (N true
ch ) =

∑

meas

U(true,meas) · F (Nmeas
ch ) (47)

The unfolding procedure is iterative, and after some iterations, the unfolding distribution gets

close to the true distribution, but the effects of statistical uncertainties appear in the matrix; thus,

more iterations will not result in more accurate results. Starting with an initial assumption (prior)

for the desired multiplicity distribution, (in this analysis, it is taken from the MC simulation),

unfolding weights (posterior probabilities) are obtained by combining the prior with the detector

response and the measured track multiplicity distribution according to Bayesian theorem. By again

applying these posterior probabilities to the measured track multiplicity distribution, an updated

and more accurate guess for the prior is calculated. The decision about the optimal number of

iterations is based on χ2/DOF of the true and unfolded distributions. The number of degrees of

freedom is the number of data points in the respective distribution.

Multiple variables can affect the measurement of the charged particle multiplicity distributions.

In experimental measurements, some collisions within |Vz| < 10 cm with respect to the nomi-

nal interaction vertex might not be detected by the minimum-bias trigger, or they might not be

considered in the next level event selections. Depending on the vertex-position resolution of the

experiment, an event might be reconstructed outside of |V meas
z | < 10 cm and will be rejected as a

result of analysis cuts. There is also another scenario in which the measured, and selected events

might consist of collisions that do contain any primary charged particles that are produced in the

kinematic ranges of interest (i.e., events with Nch = 0 ) or collisions that do have a true vertex posi-

tion but are located outside |Vz| < 10 cm. Besides, as mentioned before, the measured multiplicity

Nmeas
ch itself is affected by track selection, tracking efficiencies, contamination with secondaries and

particles smeared into the kinematic acceptance, resulting in correlations between the true number

of charged particles N true
ch and the measured track multiplicity Nmeas

ch . Using MC simulations,

the measured track multiplicity distribution can be corrected for the efficiency, contamination, and
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smearing effects by means of the iterative unfolding procedure.

6.3 Response Matrix

As mentioned before, in Bayesian unfolding, the response matrix is a key component of the method.

It represents the probability of detecting a particle with a certain set of properties at the detector

level given that it was produced with a certain set of properties at the particle level. It characterizes

the detector’s response to the particles, which can be affected by various factors such as detector

efficiency, resolution, and acceptance. The response matrix is constructed using Monte Carlo

simulations, which simulate the interactions of particles with the detector and produce samples

of the particle-level and detector-level distributions. For each particle-level bin, the corresponding

detector-level bin is filled with the probability that a particle produced in that bin would be

detected in the corresponding detector-level bin. The response matrix is thus a square matrix with

dimensions equal to the number of bins in both the particle-level and detector-level distributions.

The response matrix can be used to predict the detector-level distribution for a given particle-level

distribution using matrix multiplication. Specifically, the predicted detector-level distribution is

obtained by multiplying the response matrix by the true particle-level distribution. This predicted

distribution can then be compared with the observed detector-level distribution to obtain the

likelihood function in the Bayesian unfolding procedure. Figures 40 and 41 are response matrices

for Xe-Xe and Pb-Pb collisions, respectively.
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Figure 40: Response matrix of measured multiplicity, Nmeas
ch , and true multiplicity, N true

ch in Xe-Xe
collisions.
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Figure 41: Response matrix of measured multiplicity, Nmeas
ch , and true multiplicity, N true

ch in Pb-Pb
collisions.
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6.3.1 Rebuilding Response Matrix

The simulated response matrix is affected by the limited statistics for high multiplicities. Since

this analysis depends on ultra-central collisions and high multiplicities, one can rebuild a simulated

response matrix to extend higher multiplicities using the binomial probability distribution. The

binomial distribution is a discrete probability distribution that describes the number of successes

in a fixed number of independent trials, where each trial has the same probability of success.

Rebuilding the response matrix using a binomial distribution is in cases where the detector response

can be described such as the probability of a particle being detected in a given detector bin. In this

context, the binomial distribution is used to describe the probability of a particle being detected in

a given detector bin given its properties at the particle level since for each generated multiplicity

bin, there’s a corresponding reconstructed probability distribution that can be extracted from

the response matrix. Then the Binomial distribution is obtained as a function of the generated

multiplicity using:

f
(
Nmeas

ch , N true
ch , ε

)
=




N true
ch

Nmeas
ch


 εN

meas
ch (1− ε)N

true
ch −Nmeas

ch , (48)

where N true
ch , Nmeas

ch and ε are generated multiplicity distribution, reconstructed multiplicity

distribution, and efficiency, respectively. The efficiency ε can be directly obtained from the data in

Figures 40 and 41, by determining < Nmeas
ch > /N true

ch . The values determined for Xe-Xe and Pb-

Pb were found to be 0.766 and 0.745 respectively, and independent of N true
ch . Figure 42 shows the

rebuilt response matrices, using a sampling of Equation (48). For a fixed N true
ch , the widths of the

distributions were compared with widths in Figures 40 and 41, and found to be consistent. This

demonstrates the distribution of the response matrix is dominated by binomial efficiency losses,

justifying the assumption used for the rebuilt matrix.
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Figure 42: New response matrices after the rebuilding procedure for Xe-Xe and Pb-Pb collisions.

6.4 Closure Test

In order to validate the accuracy of the unfolding method, the previous Monte Carlo simulations

can be used. In this test, the true multiplicity distribution, also known as generated multiplicity
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(N true
ch )MC of the simulated collisions is known, and it can be compared to the unfolded multiplicity

distribution Nunf
ch obtained by applying the unfolding method to the measured multiplicity distri-

bution also known as Reconstructed multiplicity (Nmeas
ch )MC . By performing this closure test, one

can ensure that the unfolding method is able to correct detector effects in a reliable and accurate

manner and that it can be applied to real data to obtain corrected distributions. Monte Carlo

simulations are an essential tool for performing such tests, as they allow one to control the input

distributions and generate large enough samples to obtain statistically meaningful results. Figure

43 shows such a closure test for HIJING simulations of Xe-Xe and Pb-Pb collisions. The unfolding

uses the Bayesian method, with the number of iterations being 4 for each system. It is clear the

closure test is successful. The unfolded distributions fully overlap with the generated distributions,

and this is particularly clear for the ultra-central collisions i.e. high values of Nch relevant for this

analysis.
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Figure 43: Closure test for unfolding the reconstructed multiplicity distributions from the HIJING
event generator using the generated multiplicity distribution as a true distribution in the Xe-Xe
and Pb-Pb collisions.
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6.5 Efficiency Corrections

In heavy ion collision experiments, the collected dataset has limited statistics. In addition, the

detectors involved in the data collection have limited efficiency. That is why one needs to have a

complete idea of detector efficiencies and how to do the correction for the detector effects. This

is addressed through the MC study. In ALICE, various event generators are utilized for Monte

Carlo (MC) studies, depending on the physics requirements. This analysis employed HIJING [8].

events for the MC study, which is mentioned before. This correction is obtained from the MC

simulation tracking efficiency for primary charged particles. The tracking efficiency described here

is determined by comparing the number of reconstructed primary charged particles that depend

on the generated transverse momentum (pT) to the number of generated primary charged particles

that also depend on the generated pT, expressed as a ratio:

εMC
prim (pT) =

Y MC
prim,rec (pT)

Y MC
prim,gen (pT)

. (49)

One way to correct the detector effects is to apply this correction factor to the measured data,

which is obtained from Monte Carlo (MC) simulations. This correction factor accounts for the

difference between the reconstructed and generated quantities due to detector inefficiencies. To

obtain the correction factor, one needs to simulate the same physics process that was measured

in the detector using MC simulations. The generated events are passed through a simulation of

the detector response, which takes into account the detector resolution, efficiency, and acceptance.

The simulated data are then processed using the same analysis chain as the real data. Once the

simulated data are processed, one can compare the number of reconstructed particles to the number

of generated particles as a function of some kinematic variables such as transverse momentum (pT)

and rapidity (y). The ratio of reconstructed to generated particles, which is the correction factor,

is then extracted as a function of these kinematic variables (see Figure 44).
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Figure 44: Track finding efficiency for primary particles in Pb–Pb collisions (Monte Carlo simula-
tion) [87].

The corrected distribution of some variable X can then be obtained by multiplying the measured

distribution by the correction factor. Overall, tracking efficiency is a crucial factor in the accurate

reconstruction of charged particle tracks in the TPC detector. It is affected by various factors such

as detector resolution, gas properties, magnetic field strength, and the algorithms used for track

reconstruction. The MC simulations help in understanding these factors and correcting them to

improve tracking efficiency. Figure 45 shows the track finding efficiency obtained for both Xe-Xe

and Pb-Pb collisions.
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Figure 45: Track finding efficiency in TPC for primary particles in Xe-Xe (upper panel) and Pb–Pb
(lower panel) collisions by Monte Carlo simulation.
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6.6 Fully Corrected Results

Following the reconstruction of the response matrix, the unfolding procedure was verified using

a closure test, which involved employing Monte Carlo reconstructed and generated multiplicity

distributions. Since the closure test yielded satisfactory results, the unfolding procedure can be

applied to data, using the same number of iterations (4). The outcome of the unfolding process on

the multiplicity distributions for both Xe-Xe and Pb-Pb collisions is shown in Figures 46 and 47,

respectively. Figures 48 and 49 show the unfolded multiplicity distributions again, and corrected

measurements of < pT > vs. Nch. In order to determine the corrected value of Nch for a given

reconstructed value Nch, the unfolded multiplicity distributions are refolded, and < N true
ch > is

obtained for the appropriate Nmeas
ch range. The transverse momentum spectrum within the Nmeas

ch

range is then corrected for pT-dependent efficiency, in order to obtain a corrected value of < pT >.

All of these distributions are then fitted using method two, in order to obtain the speed of sound

squared. Figure 50 shows the natural logs of corrected values < pT > and Nch, and these are fitted

using method one.

Table 3: Speed of sound values after corrections

System
√
sNN[TeV] Method One Method Two

Xe-Xe 5.44 c2s = 0.066± 0.007 c2s = 0.096± 0.0011
Pb-Pb 5.02 c2s = 0.077± 0.002 c2s = 0.10± 0.0024

Values of the speed of sound squared for every collision system and method utilized after the
corrections.

Table 3 shows obtained values of the speed of sound squared using the corrected data. While

there are differences with respect to the uncorrected values in table 2, there are no systematic

shifts i.e. sometimes they are higher for a given system and method, and sometimes they are

lower. This demonstrates the impact of the corrections is rather minimal for the speed of sound

extraction, demonstrating it is rather robust with respect to the detector effects. Finally, in Figure

51, the extracted speed of sound values is compared with expectations from the theory. They
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appear consistent with calculations obtained at temperatures close to the QGP/hadron gas phase

transition.
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Figure 46: Result of the unfolding procedure for multiplicity distributions in the Xe-Xe collision.
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Figure 47: Result of the unfolding procedure for multiplicity distributions in the Pb-Pb collision.

7 Summary and Outlook

The purpose of the ALICE experiment is to study the properties of quark-gluon plasma (QGP), a

state of matter that is believed to have existed just after the Big Bang. By colliding heavy ions at

high energies, ALICE can recreate the conditions that existed just after the Big Bang and study

the properties of the QGP. One way to deepen our knowledge about the early universe is to study

the thermodynamic properties of the QGP. By analyzing the thermodynamic properties of the

QGP, one can investigate QGP behavior and gain insights into the underlying physics that governs

its properties. One key property that can be studied through thermodynamics is the equation

of the state of the QGP. This equation relates the pressure, temperature, and energy density of

the plasma, and provides important information about the nature of the interactions between the
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Figure 48: Fit results on data obtained from Xe-Xe collisions after corrections and c2s calculations
using method two.

particles that make up the plasma. By investigating the equation of state of the QGP, one can

test theoretical models of the strong nuclear force, such as Lattice QCD. The speed of sound is

one important thermodynamic property of the quark-gluon plasma (QGP) that can be studied

through experiments at the Large Hadron Collider (LHC) and other facilities. The speed of sound
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Figure 49: Fit results on data obtained from Pb-Pb collisions after corrections and c2s calculations
using method two.

is a measure of how quickly sound waves can travel through a material, and it depends on the

thermodynamic properties of the material, such as its temperature, pressure, and density. In the

case of the QGP, the speed of sound is an important indicator of the compressibility of the plasma,

which is related to the strength of the interactions between the particles that make up the plasma.
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Figure 50: Fit results on data obtained from heavy-ion collisions after corrections and c2s calculations
using method one.

This dissertation has investigated and analyzed the collision data obtained from Pb-Pb collisions

at
√
sNN = 5.02 TeV and Xe-Xe collisions at

√
sNN = 5.44 TeV from the LHC running period 2

to investigate measurements of the speed of sound at LHC. This dissertation used all the charged

particles measured by the ALICE detector for the kinematic ranges in pseudo-rapidity of |η| < 0.8

and in the transverse momentum range of 0.2 GeV/c < pT < 5 GeV/c. The values of the speed

of sound obtained from Xe-Xe and Pb-Pb collisions, and shown in Figure 51, are consistent with
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Figure 51: Results of Lattice Quantum Chromodynamics (LQCD) computations [70] for c2s at
different temperatures compared with the speed of sound squared (c2s) extracted from Xe-Xe and
Pb-Pb collisions. The uncertainties associated with c2s from data are determined from the differences
between methods one and two.

Lattice QCD at a temperature around the phase transition. This implies the methods investigated

are perhaps extracting the speed of the sound in the final hadronic state, as opposed to the QGP

phase, where the speed of sound is larger. This is arguably expected, as the ALICE detector

measures hadrons from the final state. A higher value in the QGP phase is expected, as the QGP is

a strongly interacting liquid, which is less compressible than the gas in the hadronic phase. Future
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measurements of ⟨pT ⟩ vs. the number of charged particles in ultra-central heavy-ion collisions could

pursue electromagnetic probes, such as photons and/or leptons. These are produced in the QGP

phase but don’t interact with the strongly coupled matter, therefore offering a more direct probe

of the thermodynamic properties of the QGP.
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A Appendix

A.1 Jets in Heavy Ion Collisions

In heavy ion collisions, when a quark or gluon undergoes hadronization, it produces a narrow

cone of particles called a jet. Quarks cannot exist in free form due to QCD confinement and

therefore fragment into hadrons to become jets that can be measured and studied to determine the

properties of the original quark. Jets are significant in relativistic heavy ion physics as they provide

insight into the QCD matter created in the collision and indicate its phase. When the QCD

matter transitions into quark-gluon plasma, the energy loss in the medium grows significantly,

which effectively suppresses the outgoing jet. When high-energy hadrons collide, one of four types

of scattering reactions can occur: elastic, diffractive, soft-inelastic, and hard. Elastic collisions are

interactions where the particles involved have the same type and energy both before and after the

collision. During the collision of high-energy hadrons, diffractive processes may occur that involve

the exchange of quantum numbers of the vacuum only. Inelastic diffractive processes are similar,

except that one or both of the incident hadrons break apart. Soft-inelastic collisions also cause

the breakup of the incident hadrons but at relatively low momentum transfers. These collisions

are best described by exchanges of virtual hadrons and make up the largest part of the total

cross-section. Hard collisions are particularly interesting as they involve direct interaction between

partons within the hadrons (such as a proton or anti-proton). During these collisions, the incident

hadrons break apart, and many new particles are created. The outgoing partons from the hard

sub-process fragment into jets of particles. The remaining particles in the event are mostly soft

particles that arise due to the breakup of the remnants of the incident hadrons and together form

the underlying event. The hard-scattering component of the event consists of the outgoing two jets,

including Initial State Radiation (ISR) and Final State Radiation (FSR). Hard probes are generated

during the early stage of a collision in the primary, short-distance, partonic scattering with large
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virtuality (Q2). Due to the uncertainty principle, their production occurs on temporal and spatial

scales (∆τ ∼ 1/Q and ∆r ∼ 1/Q), which are small enough to remain unaffected by the properties

of the medium, i.e., the final-state effects. Therefore, they can directly probe the partonic phase

of the reaction. Their production cross-section can be reliably calculated with perturbative QCD

(pQCD) or via the Color Glass Condensate (CGC) framework, as the large virtuality allows for

such calculations. Since QCD is asymptotically free, the running coupling constant can be used to

calculate the strength of the interaction.

αS

(
Q2
)
=

1

bL

(
1− b′

b

lnL

L

)
where L = ln

Q2

Λ2
. (50)

For large values of Q2 ≫ Λ ≃ Λ4
QCD, the QCD running coupling constant becomes small,

as a result of which the higher-order terms in an expansion of the cross-section in powers of αS

can be neglected. Hard collisions involve large momentum transfers, Q, and allow the probing of

the hadron structure at short distances. Due to asymptotic freedom, the QCD running coupling

constant becomes small at this scale (with αS ≤ 0.3), making perturbative methods applicable.

Consequently, measuring inclusive jet and dijet cross sections, as well as various other jet properties,

can be used to test the predictions of pQCD, improve knowledge of αS and Parton Distribution

Functions at large x, and look for quark compositeness.

A.1.1 Jet Kinematics

In a colliding system, the interacting partons are typically not in the center-of-mass frame because

the momentum fraction carried by each parton varies from event to event. As a result, the center-

of-mass system of the partons is randomly boosted along the direction of the colliding hadrons.

Longitudinally boost-invariant variables are used to conveniently describe jets in such a scenario:

mass m =
√
E2 − p2x − p2y − p2z, (51)

transverse momentum pT =
√
p2x + p2y, azimuthal angle ϕ = arctan (py/px), rapidity y =

90



arctanh (pz/E) = 1
2 ln

(
E+pz
E−pz

)
.

In the high energy limit, when p≫ m, the directly measured quantities conveniently are: energy

(E) or transverse energy (ET = E sin θ ≃ pT ), the azimuth (ϕ) and the pseudo-rapidity

η = − ln(tan θ/2) (52)

where the polar angle is given by θ = arctan (pT /pz) . (53)
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