Graphical Analysis and Fitting

Physics 3110 Dr. Rebecca Forrest University of Houston

<u>The Art of Experimental Physics</u>, D. Preston & E. Dietz, NY, John Wiley, (1991), pp. 18 - 22

Plotting on the Computer

- Excel
- Gnuplot http://www.gnuplot.info/
- PSI plot
- Mathcad
- Mathmatica
- Origin
- SciDavis
- Etc.

Graph Guidelines

- Graphs should be big and clear, with data symbols, numbers, and labels that can be easily read.
- Label axes, include units.
- Use symbols to indicate data points.
- Graphs, like all figures, must have a caption that explains their contents.
- Graphs, like all figures, must be referred to in the text by #, in order of appearance.

Graph Guidelines

- Use error bars to indicate errors in measurements.
- DO NOT connect points with straight lines (almost never)
- If you are trying to show that your data is described by a certain function, i.e. linear, sine, etc., you need to either show the function on the same plot, or fit the data.

Graphs in Your Reports

"...Taking account of the nondegeneracy for $n \le 2$ gives the solid curve in Fig. 1, which includes prominent well known resonances. Including nondegeneracy for $n \le 4$ [26] gives the dotted curve in Fig. 1."

"Locality of Quark-Hadron Duality and Deviations from Quark Counting Rules Above the Resonance Region", Qiang Zhao1 and Frank E. Close,Phys. Rev. Lett., 022004, **91**, 2003.

FIG. 1. Energy dependence of the differential cross section for π^+ photoproduction at $\theta = 90^\circ$. The solid curve denotes degeneracy breaking for $n \le 2$, while the dotted for $n \le 4$. The empty circles are old data from Ref. [20], and the solid dots are new data from JLab [21].

Examples

Figure 1 displays the data points along with the best fit model.

FIG. 1. Setting equation 8 equal to hv and solving for v gave rise to an equation suitable for finding μ_s using the least sum of squares method for a linear equation in GNUPlot. <u>Good</u> •Caption •Fig. 1 is mentioned by name in text above.

Bad
All fonts too small
No error bars
Too much info in Caption.

Figure 2: Displays the slope of log T vs. log E. A linear fit is placed on our data and we take a linear fit to get the slope equivalent to approximately four for the Stefan-Boltzmann experiment.

<u>Good</u> •Caption •Axes are labeled and units are shown •Legend

Bad •No data symbols shown

 Instead, data points connected with lines The first part of our experiment showed a distinct wave like pattern that we would expect. This shape can be seen in Fig. 1.

Fig. 1: Plot of distance versus meter reading for the first experiment Good

Caption

•Fig. 1 is mentioned by name in text above.

•Axes are labeled

•Data symbols shown with error bars

Bad

All fonts too smallAxis units not labeled

•This is an exception about connecting data points. Without it, the data trend is not obvious.

•Meter reading vs. distance

Figure 1: FWHM (18.0,0.15), a point was made to on point (185,0.15) to repersent the fwhm while the rest are data points.

<u>Good</u> •Caption •Data point symbols

Bad Caption doesn't make sense No error bars No axis labels or units X-axis should

•X-axis should focus on data of interest

Trend Analysis & Fitting

- Trying to show that the data follows some formula, i.e. linear, sine, x⁻¹...
- Fitting your data to get a numerical result from the fit

Trend Analysis

Data Fitting

- A set of observations/data are given
- You want to fit a "model" function to the data
- Figure-of-merit function measures agreement between the data and the model

Fitting with Computer Software

- Most common approach is Least Squares Fitting
- Excel
 - Chart: Add Trendline
 - Limited function choices
 - Goodness of fit: R-squared
- Mathematica
 - Fit[data,funs, vars]
 - Goodness of fit: " χ^2 " = $\Sigma_i |F_i f_i|^2$, sum of residuals
- Origin
 - Several Choices
- Gnuplot
- SciDavis

Least Squares Fitting

Adapted from: Numerical Recipes The Art of Scientific Computing W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Cambridge University Press 1992 New (and free Older versions) at WWW.Nr.com

Least Squares Fitting

•You want to fit a function to a set of data (x_i, y_i) . Assume no error in independent variables $(\sigma_x \circ s = 0)$ and errors in y of s, $\sigma_y \circ s$, are known. $a_i \circ s$ are parameters in function.

$$y(x) = y(x; a_1 \dots a_M)$$

$$\sum_{i=1}^{N} \left[y_i - y(x_i; a_1 \dots a_M) \right]^2$$

• sum of the residuals should be small

Central Limit Theorem

- For large enough N, the measurement errors follow a Gaussian distribution with standard deviations σ
- Minimize χ^2 :

$$\chi^2 \equiv \sum_{i=1}^N \left(\frac{y_i - y(x_i; a_1 \dots a_M)}{\sigma_i} \right)^2$$

Minimize χ^2

$$\chi^{2} \equiv \sum_{i=1}^{N} \left(\frac{y_{i} - y(x_{i}; a_{1} \dots a_{M})}{\sigma_{i}} \right)^{2}$$
Solve $\frac{\partial(\chi^{2})}{\partial x} = 0$

 ∂a_i

•To apply this, we need to know the function $y(x_i; a_1...a_m)$

Example:

Least Squares Fitting to a Straight Line

Also called linear regression

$$y(x) = y(x; a, b) = a + bx$$

$$\chi^{2}(a,b) = \sum_{i=1}^{N} \left(\frac{y_{i}-a-bx_{i}}{\sigma_{i}}\right)^{2}$$

• Minimize
$$\chi^2$$
: Solve $\frac{\partial(\chi^2)}{\partial a_i} = 0$

Taking Derivatives $\chi^{2}(a,b) = \sum_{i=1}^{N} \left(\frac{y_{i} - a - bx_{i}}{\sigma_{i}}\right)^{2}$

$$0 = \frac{\partial \chi^2}{\partial a} = -2 \sum_{i=1}^{N} \frac{y_i - a - bx_i}{\sigma_i^2} = -\frac{\partial \chi^2}{\partial b} = -2 \sum_{i=1}^{N} \frac{x_i (y_i - a - bx_i)}{\sigma_i^2} = -\frac{\partial \chi^2}{\sigma_i^2}$$

$$= -2(S_y - aS - bS_x)$$

$$= -2(S_{xy} - aS_x - bS_{xx})$$

$$S \equiv \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \quad S_x \equiv \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \quad S_y \equiv \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2}$$
$$S_{xx} \equiv \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} \quad S_{xy} \equiv \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2}$$
$$aS + bS_x = S_y$$
$$aS + bS_x = S_y$$

$$aS + bS_x = S_y$$
$$aS_x + bS_{xx} = S_{xy}$$

Solution to Linear System

$$\Delta \equiv SS_{xx} - (S_x)^2$$
$$a = \frac{S_{xx}S_y - S_xS_{xy}}{\Delta}$$
$$b = \frac{SS_{xy} - S_xS_y}{\Delta}$$

•Now you have a & b that give the best fit to your data. What are the errors in a & b?

Propagation of Errors Errors in a & b

$$\delta w^{2} = \sum_{i} \left(\frac{\partial w}{\partial x_{i}} \delta x_{i}\right)^{2}, \qquad \sigma_{f}^{2} = \sum_{i=1}^{N} \sigma_{i}^{2} \left(\frac{\partial f}{\partial y_{i}}\right)^{2} \qquad a = \frac{\beta_{xx}\beta_{y} - \beta_{x}\beta_{xy}}{\Delta}$$
$$\frac{\partial a}{\partial y_{i}} = \frac{S_{xx} - S_{x}x_{i}}{\sigma_{i}^{2}\Delta} \qquad b = \frac{SS_{xy} - S_{x}S_{y}}{\Delta}$$
$$\frac{\partial b}{\partial y_{i}} = \frac{Sx_{i} - S_{x}}{\sigma_{i}^{2}\Delta}$$

C

 $\boldsymbol{\zeta}'$

C C

Variances in the Estimates

$$\sigma_a^2 = S_{xx} / \Delta$$
$$\sigma_b^2 = S / \Delta$$

Goodness of Fit

Sum of residuals
 – should be close to 0

$$\sum_{i=1}^{N} [y_i - y(x_i; a_1 \dots a_M)]^2$$

- $\chi^2 \equiv \sum_{i=1}^N \left(\frac{y_i y(x_i; a_1 \dots a_M)}{\sigma_i} \right)^2$
 - should be small, χ² ~ ν, where ν = degrees of freedom = number of data points minus the number of parameters being fit
- Reduced $\chi^2 = \chi^2 / v$ - $\chi^2 / v \sim 1.0$ is good
- Others ...

Other Popular Methods

- If 1st and 2nd derivatives are known: *Levenberg-Marquard* method
- If derivatives are not known and have to be approximated numerically: *Downhill-Simplex* or *Powell* method; in those cases, you can not get correlations or goodness of fit

Using Gnuplot for Fitting

- http://www.gnuplot.info/
- Gnuplot is a portable command-line driven interactive data and function plotting utility for UNIX, IBM OS/2, MS Windows, DOS, Macintosh, VMS, Atari and many other platforms. The software is copyrighted but freely distributed.
- For MS Windows, download the file with win32 in its name.
- Gnuplot's fit uses the nonlinear least-squares Marquardt-Levenberg algorithm

Windows GUI

🛍 gnuplot	_ & ×
File Plot Expressions Functions General Axes Chart Styles 3D Help	
Replot Open Save ChDir Print PrtSc Prev Next	
G N U P L O T Version 4.2 patchlevel 3 last modified Mar 2008 System: MS-Windows 32 bit	
Copyright (C) 1986 - 1993, 1998, 2004, 2007, 2008 Thomas Williams, Colin Kelley and many others	
Type 'help' to access the on-line reference manual. The gnuplot FAQ is available from http://www.gnuplot.info/faq/	
Send bug reports and suggestions to <http: gnu<br="" projects="" sourceforge.net="">plot></http:>	
Terminal type set to 'windows' gnuplot> _	
	▼
🧖 Start 😥 📴 🎆 👋 🐹 Couga 🔯 Micros 🐹 Downl 🔯 demo 🛛 🖾 bin 🛛 🔤 gnuplot	« 🔄 10:16 AM

File/Demos

load				? ×
Look in:	🔁 demo		- 🔁 💣 🎟	
History Desktop Rontgen Network	 airfoil.dem al.dem animate.dem arrowstyle.dem binary.dem bivariat.dem borders.dem candlesticks.dem charset.dem contours.dem 	 controls.dem discrete.dem electron.dem enhancedtext.dem fillcrvs.dem fillstyle.dem fit.dem fitold.dem fontfile.dem fontfile_latex.dem 	 hidden.dem mgr.dem mousevariables.dem multimsh.dem multiplt.dem param.dem pm3d.dem pm3dcolors.dem pm3dgamma.dem polar.dem 	 poldat.dem prob.dem prob2.dem random.den scatter.dem singulr.dem singulr.dem spline.dem steps.dem surface1.de Open Cancel

Fit Demo for Density data

🂹 gnuplot graph

_ 🗆 🗙

Unweighted Linear Fit

•fit l(x) 'lcdemo.dat' using 1:2:3 via y0, m

•fit l(x) 'lcdemo.dat' using 1:2:4 via y0, m

•plot 'lcdemo.dat' using 1:2:5 with errorbars

Final Parameters and Error

៉ gnuplo	t							
File Plot	Expressio	ons Functi	ons Gener	al Axes	Chart Style	es 3D He	elp	
Replot	Open	Save	ChDir	Print	PrtSc	Prev	Next	
lambda	: 1.09	7683e-02	L ^{ori}	11010 10	n scoppi	ng • 10	010	-
resultan	t parame	eter valu	les					
ml		= -0.00:	100004					
mh dens_Tc		= -0.000 = 1.0249	0831266 77					
Τc α		= 46.089	79 85					
b		= 0.001	53901					
Iteratio	n 41							
WSSR dolto(US)		.00221e-0	208 - 01 9	delta(WS	SR)/WSSR	: -1.	46248e-01 010	11
lambda	: 1.09	7683e-02	L	TTHIC IC	n scohht	ng • 16-	010	
resultan	t parame	eter valı	les					
ml		= -0.00	100004					
mn dens_Tc		= -0.00	9831266 77					
Tc g		= 46.089	79 35					
Ъ́		= 0.001	53901					
After 41 final su	iterat: m of squ	ions the lares of	fit conv residual	verged. Ls : 9.00	0221e-008			
rel. cha	nge dur:	ing last	iteratio	on : −1.4	46248e-01	1		
degrees rms of r	of freed esidual:	lom (ndf) s (s):31 stdfit):	= sgrt(W	SSR/ndf)	: 5	.38882e-0	005
variance	of res:	iduals ()	reduced o	hisquare	e) = WSSR	∕ndf : 2	.90394e-0	309
Final se =======	t of par	rameters		Азут) ====:	ptotic St	andard E	rror =====	
ml		= -0.00	100004	+/- 5	7.816e-00	6 (0.7	815%)	
mh dens Tc		= -0.000 = 1.0249	0831266 77	+/- 1 +/- 3	1.544e-00 1.191e-00	5 (1.8 5 (0.0	58%) Ø3114%)	
Tc		= 46.089	79 85	+/- (0.007592	(0.0	1647%) 68%)	
Ď		= 0.001	53901	+/-	1.101e-00	5 (2.6	65%)	
convelst	ion met	wiv of +1	ha fit n	nameter				
COLLETAC	ION MALI		г з петтећа	анссега а т т-		L.		
ml	ſ	1.000		18_1 IC	я	'n		
mn dens_Tc	-	-0.018 -0.044 -0	0.790 1.	.000				
a Lc	-	0.121 (-0.558 -(0.511 -0. 0.123 0.	.749 1.0 .249 -0.9	100 582 1.00	Ø		
b gnuplot>		0.673 (0.536 -0.	.678 0.9	503 -0.56	7 1.000		
Tel 1								F

Homework

- (3 pts.) Plot the data in data.dat with error bars, found on Blackboard, using a computer program. The 3rd column is the error. The plot should have the appropriate format, but no caption is required.
- 2. (7 pts.) Fit the data in data.dat to this Gaussian distribution,

$$N(x) = \frac{A}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\bar{x})^2}{2\sigma^2}}$$

- In computer syntax, this could be written as N(x) = (A/(sqrt(2*3.1416)*w)) * exp(-(x-xave)**2/(2*(w**2)))
- Show a plot of the data with error bars and the fit, and report the fitted values of A, σ, and x_{ave}. The plot should have the appropriate format, but no caption is required. (This may count as the plot for part 1.)
- If available, report the errors in A, σ , and x_{ave} , and an estimate of the goodness of the fit, i.e. reduced χ^2 or R^2 .
- Tell me what program you used.