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ABSTRACT: Deciphering the oligomeric state of proteins within
cells is pivotal to understanding their role in intricate cellular
processes. With the recent advances in single-molecule localization
microscopy, previous efforts have harnessed protein location
density approaches, coupled with simulations, to extract membrane
protein oligomeric states in cells, highlighting the value of such
techniques. However, a comprehensive theoretical approach that
can be universally applied across different proteins (e.g., membrane
and cytosolic proteins) remains elusive. Here, we introduce the
theoretical probability of neighbor density (PND) as a robust tool
to discern protein oligomeric states in cellular environments.
Utilizing our approach, the theoretical PND was validated against
simulated data for both membrane and cytosolic proteins,
consistently aligning with experimental baselines for membrane proteins. This congruence was maintained even when adjusting
for protein concentrations or exploring proteins of various oligomeric states. The strength of our method lies not only in its precision
but also in its adaptability, accommodating diverse cellular protein scenarios without compromising the accuracy. The development
and validation of the theoretical PND facilitate accurate protein oligomeric state determination and bolster our understanding of
protein-mediated cellular functions.

■ INTRODUCTION
The complex interplay of proteins coming together to form
larger structures�known as oligomerization�has far-reaching
effects on how cells function and maintain their stability.1−5

Research has consistently shown that proteins often act in their
combined or “oligomeric” forms for key cellular processes,
such as regulating genes and controlling enzyme activity.6−12

The behavior of these protein assemblies is not solely
determined by their individual properties but is also shaped
by the specific conditions within the cell.13−16 While in vitro
studies provide immensely valuable information, they often fail
to fully capture the true essence of protein behaviors in a
cellular context. For example, they might miss the effects of
changes in cellular components or neglect variables like protein
concentration and post-translational modifications. On the
contrary, in-cell quantification offers a more complete picture.
It accounts for the dynamic cellular environment, including the
effects of crowding, varying pH, and other cellular components
that directly influence protein states. Furthermore, in-cell
studies pave the way for real-time observations, revealing short-
lived interactions or transitional states that are difficult to
observe in in vitro studies.

Deciphering protein oligomeric states within cells has
necessitated a methodological evolution, transitioning metic-

ulously from ensemble techniques to single-molecule method-
ologies and finally to the precision of single-molecule
localization microscopy (SMLM). Ensemble approaches,
such as ensemble FRET, BiFC, FCS, and PLA, served as
foundational pillars, providing insights into the predominant
oligomeric states within cellular populations.17−20 However,
while these methods elucidated average oligomeric states, they
could often overlook molecular heterogeneity or rare
oligomeric forms. To unmask this concealed diversity, single-
molecule techniques like smFRET, single particle tracking, and
single-molecule anisotropy were adopted.14,21−23 These
methods illuminated the full spectrum of oligomeric states
by capturing individual protein molecules, revealing not just
the dominant forms but also transient or less abundant
oligomeric states.

By combining single-molecule insights with super-resolution
techniques, SMLM enables the identification of individual
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oligomeric states in densely populated cellular areas, providing
a detailed perspective on protein oligomerization. Among the
available methodologies, fluorescence photophysical property-
based strategies exploit the unique photophysical behaviors of
fluorophores, such as their blinking and bleaching kinetics, to
deduce oligomeric forms.24−29 Protein localization-based
methods, on the other hand, capitalize on the difference in
local molecule density, calculated from the protein positions,
for assemblies with different oligomeric states.30−32 By
extensively simulating the random positions of protein
assemblies with different oligomeric states and comparing
them with the experimental data, this approach allows for a
quantitative assessment of the protein assembly’s oligomeric
states. Nevertheless, to fully harness the potential of this
method, a solid theoretical foundation is essential. An all-
encompassing theoretical model would streamline the
extraction process with analytical solutions and enhance the
accuracy and applicability.

In this study, a theoretical model termed the probability of
neighbor density (PND) was developed. The model
incorporates crucial parameters, including protein concen-
trations, dye photoactivation efficiency, and the radius of the
region of interest, to ensure alignment with actual experimental
conditions. Stochastic detections in single-molecule imaging
were modeled by using binomial and Poisson distributions.
Systematic validation of the theoretical PND against simulated
data confirmed its efficacy in analyzing both membrane and
cytosolic proteins, irrespective of their oligomeric states. The
limitations of the theoretical PND are also discussed. This
research highlights the theoretical PND model’s potential to
reveal both membrane and cytosolic proteins’ oligomeric states
in intricate cellular contexts, providing a quantitative platform
to enhance our comprehension of oligomer-mediated
processes in cells.

■ EXPERIMENTAL SECTION
SMLM, primarily known for spatial mapping, has vast potential
when aligned with theoretical models to deduce protein
oligomeric states. Here, we present a key parameter, the PND,
to streamline the process of quantifying protein oligomeric
states in a cellular environment. The PND represents the
likelihood of encountering molecular neighbors within a
circular region of interest (ROI) of radius r. Specifically, with
a given number of detected locations, N, within a field of view
(FOV, the square with length L), we define the neighbor
density (ND) of an activated subunit as the number of
neighbors located within the ROI (Figure 1a). By collecting all
ND values within the FOV, a probability distribution of
observing different ND values is derived. For instance, Figure
1a left shows four instances where ND = 0 and two instances
where ND = 1, translating into 66.7 and 33.3% PND
probabilities, respectively, in Figure 1a, right.
Theoretical PND for Protein Assemblies Existing in

One Oligomeric State. To derive the theoretical PND from
experimentally detectable locations (N), we start with protein
assemblies with a single oligomeric state. Let us postulate that
there are AO dg

protein assemblies of a defined oligomeric state
(Og) within the FOV. In SMLM, each equivalent is labeled by
irreversible photoactivatable fluorophores with a specific
photoactivation efficiency (PE). Given the stochastic nature
of activation, the relationship between the number of detected

locations and the number of protein assemblies can be
expressed as N = AO dg

× Og × PE or

=
×

A
N

O PEO
g

g
(1)

For example, if we have eight trimeric protein assemblies
(AO dg

= 8 and Og = 3) with the FOV, with a PE of 0.5, N = 12
equivalents will be detected (Figure 1b), distributing to singly,
doubly, and triply activated forms.

Assuming a sufficiently low assembly concentration (i.e.,
only one single assembly within each ROI) and recognizing
that activation is a sequence of independent events, the
likelihood of exactly Na equivalents becoming activated for an
assembly with the Og oligomeric state, pO

N
g

a, can be described by

the binomial distribution

= × ×
i
k
jjjjjj

y
{
zzzzzzp

O

N
PE PE(1 )O

N N O Ng

a
g

a a g a

(2)

Using the trimeric model as an example, we can calculate the
probability, pO

N
g

a, for each scenario of the Na-activated trimers.

For a singly activated trimer, pT1 , where one out of three
oligomerization sites is activated, the probability is calculated

Figure 1. PND generation overview. (a) The ND at each location is
determined by tallying neighbors within an ROI of radius r.
Aggregating these ND values across all locations yields an ND
histogram. This histogram is then normalized to produce the PND.
(b) Various activation forms (red) of a trimeric assembly, including
singly, doubly, and triply activated forms. (c) Schematic representa-
tion of ND = 0 and ND = 1 of a pure trimeric assembly. ND = 0
involves targeting a singly activated protein assembly without any
other activated protein assemblies within the ROI (left). ND = 1 can
arise from two scenarios (right): first, by targeting a singly activated
assembly with one additional singly activated assembly in the ROI and
second, by targeting a doubly activated assembly without other
activated assemblies in the ROI.
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as follows: = × × =( )p 3
1 0.5 (1 0.5)T

1 1 3 1 3
8
. In the case

of a doubly activated trimer, pT2 , or fully activated with all three
s i t e s , p T

3 , t h e p r o b a b i l i t y i s
= × × =( )p 3

2 0.5 (1 0.5)T
2 2 3 2 3

8
a n d

= × =( )p 3
3 0.5T

3 3 1
8
, respectively.

Here,
i
k
jjj y

{
zzzO

N
g

a
is a binomial coefficient, signifying the number of

ways to activate Na subunits from each assembly, disregarding
the activation sequence. The terms PENa and (1 − PE)Og−Na

encapsulate the probabilities of activations and nonactivations,
respectively. Since pO

N
g

a denotes the probability of detecting Na

activated subunits within a single protein assembly, it enables
the estimation of the number of assemblies in a specific
activated form through

= ×A p AO
N

O
N

Og
a

g

a
g (3)

Each activated form contributes ×N AO
N

a g
a locations, and

they collectively yield the total location number N. The single,
double, and triple activations (i.e., Na = 1, 2, and 3) lead to ND
= 0, 1, and 2 conditions, respectively, each with a given ND
possibility

=
×

p
N A

NO
ND N O

N
( 1) a

g

a g
a

(4)

Combining the probability of each ND yields the final PND
distribution via

= [ ··· ]PND p p p, , ,O
ND

O
ND

O
ND N(0) (1) ( 1)

g g g

a

(5)

Using the above trimeric assemblies (Og = T) as an example,
the theore t i ca l PND i s ca l cu l a t ed as PND =

= = =× × × × × ×
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o r

[0.25, 0.50, 0.25].
In real systems, the assumption of a low assembly

concentration (or one activated assembly per ROI) might
not always hold. As the protein concentration increases, it is
possible to have multiple assemblies within a single ROI. To
develop a comprehensive theoretical PND, we considered
scenarios with multiple protein assemblies in an ROI,
distributed randomly across the FOV and each assembly
enters the ROI independently.

The ND value is concurrently modulated by two factors: the
number of activations and the assemblies present within the
ROI. An ND of 0 implies just one singly activated assembly in
the ROI (Figure 1c). An ND of 1 could result from two singly
activated assemblies or one doubly activated assembly. As the
ND values increase, so do the combinations leading to the
same ND. Therefore, deriving the theoretical PND necessitates
summing the probabilities across these various combinations
for each ND. The associated probability, psum

ND , can be quantified
as the product of the ND probability of the aimed activated
assembly p( )O

ND N( 1)
g

a and the probability of observing other

activated assemblies (proi) within the ROI

= ×p p pND
O
ND N

sum
( 1) roi

g

a

(6)

The independent nature of each assembly’s presence in the
ROI, combined with the constant average density across the
FOV, strongly aligns with the key prerequisites of the Poisson
distribution. As such, the probability of observing k assemblies
with Na equivalents activated in the ROI can be modeled by
the Poisson probability, p(Nda,k)

= ×
!

p
k

e
N k

k

( , )a (7)

Here, λ is the expected number of assemblies with Na
equivalents activated in the ROI. If neighboring assemblies
exhibit a different Na from the aimed one, given the random
distribution of activated assemblies AO

N
g
a, λ can be deduced

from the area ratio between the ROI and FOV and is defined
as = × AO

Narea
area

ROI

FOV g
a. In cases where neighboring assemblies

have the same Na as the aimed one, the number of activated
neighboring assemblies becomes A 1O

N
g
a . Consequently, λ is

recalculated as = × A( 1)O
Narea

area
ROI

FOV g
a .

Using trimeric assemblies as an illustrative example (Figure
1c, left), when there are no neighbors (ND = 0), the sole
scenario is a targeted singly activated trimer without other
activated trimers with the ROI. For this scenario, the k = 0 for
Na varying from 1 to 3, the probability of not observing singly,
doubly, and triply activated trimers can be represented as proi =
p(1,0) × p(2,0) × p(3,0). The probability of no neighboring
activated subunits can be expressed as

= × × ×p p p p pND
T
ND

sum
(0) (0)

(1,0) (2,0) (3,0) (8)

For the ND = 1 case, psum
ND(1) encompasses the probabilities of

two scenarios (Figure 1c, right): two singly activated
assemblies or a single doubly activated assembly. In the former
scenario, the probability is derived from pTND(0) and the
likelihood of observing one singly activated but neither doubly
nor triply activated assemblies [proi = p(1,1) × p(2,0) × p(3,0)]. For
the latter scenario involving the targeted doubly activated
assembly, the probability arises from pTND(1) and the probability
of not observing any other activated assemblies [proi = p(1,0) ×
p(2,0) × p(3,0)]. These two scenarios collectively result in

= × × × + ×

× ×

p p p p p p p

p p

ND
T
ND

T
ND

sum
(1) (0)

(1,1) (2,0) (3,0)
(1)

(1,0)

(2,0) (3,0) (9)

Specifically, p(1,0) is a Poisson probability representing the
likelihood of observing zero assemblies with exactly one
activated subunit within a given ROI. This contrasts with p(1,1),
which denotes the probability of observing exactly one such
assembly in the ROI. Meanwhile, pTND(0) and pTND(1) quantify the
probability of a singly activated trimeric assembly and a doubly
activated trimeric assembly (indicated by the subscript “T”) in
the ROI, respectively. These distinct probabilities collectively
facilitate comprehensive modeling of the varying activation
states and distributions of protein assemblies in cellular
environments, enhancing our understanding of their spatial
interactions.

By understanding the unique combinations that result in
different ND values, it becomes straightforward to determine
the theoretical psum

ND for any specified ND. This approach
simplifies the derivation of the final theoretically normalized
PND, which can be expressed as an array of probabilities
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= [ ···]PND p p p p, , , /ND ND ND ND
sum

(0)
sum

(1)
sum

(2)
sum (10)

Detailed mathematical information on ND = 0, 1, and 2 for
the trimeric protein assembly and corresponding illuminations
are summarized in Tables S1−S3 and Figure S1, respectively.
Theoretical PND for Protein Assemblies Existing in a

Multiple Oligomeric State. Addressing the inherent
complexity of protein assemblies, we refine the PND model
to characterize a protein assembly existing in equilibrium
among its monomeric (M), dimeric (D), and trimeric (T)
forms. Each form contains subunit populations of SM, SD, and
ST, respectively, and satisfy SM + SD + ST = 1 (Figure 2a). With

a given PE, SM, SD, and ST collectively contribute to the total N
detected locations. The number of assemblies with specific
oligomeric states (AOg,sub) can be related to N via

=
·

·
A

N S

O PEO
O

,sub
g

g

g

(11)

The incomplete activation of the fluorescence protein
introduces six potential detectable protein assemblies: M1 for
monomeric, D1 and D2 for dimeric, and T1, T2, and T3 for the
trimeric assemblies, with the subscript indicating specific
activation conditions Na (Figure 2a). To streamline the
theoretical PND derivation, we reorganize the six assemblies
based on their activation levels to form a “pseudo” trimer
condition. Specifically, M1, D1, and T1 assemblies are singly
activated; D2 and T2 are doubly activated assemblies, and T3
uniquely represents the triply activated assembly.

In scenarios where only a single assembly is present within
the ROI, the probability of the assembly having Na activated
equivalents remains the same as that in eq 2. The only

modification is to substitute AO dg
with AOg,sub in eq 3 and eq 4

for each unique assembly. This change enables the estimation
of the number of assemblies in a specific activated form and
the ND probability using eqs 12 and 13, respectively.

= ×A p AO
N

O
N

O,sub ,subg
a

g

a
g (12)

=
×

p
N A

NO
ND N O

N

,sub
( 1) a ,sub

g

a g
a

(13)

A distinct feature to consider is that various species might
contribute to the identical ND state. For instance, species M1,
D1, and T1 all contribute to the ND state of 0. Species D2 and
T2 contribute to the ND state of 1, and only species T3
contributes to the ND of 2. Considering the ND of the 0 case,
the probability emerges from aggregating contributions from
species M1, D1, and T1. Mathematically, this relationship is
expressed as

= + +p p p pND
M
ND

D
ND

T
ND

mix
(0) (0) (0) (0)

1 1 1 (14)

For the ND of 1, the ND possibility arises from the
combined effect of species D2 and T2, represented as

= +p p pND
D
ND

T
ND

mix
(1) (1) (1)

2 2 (15)

In the case of ND of 2, the probability is solely determined
by species T3

=p pND
T
ND

mix
(2) (2)

3 (16)

Combining these probabilities from eqs 14−16 provides the
final PND distribution as

= [ ··· ]PND p p p, , ,ND ND ND N
mix

(0)
mix

(1)
mix

( 1)a (17)

To extend the derivation to the most general condition,
where assemblies exist in various oligomeric states and in high
concentrations, two probabilities are pivotal: the ND
probability of the aimed assembly, denoted as pND N

mix
( 1)a , and

the probability of observing other activated assemblies,
denoted as pmix

roi . Using an ND of 0 as an example (Figure
2b), the ND probability pmix

ND(0) will be the sum of M1, D1, and
T1, as specified in eq 14. For estimating the likelihood of the
absence of other neighboring activated assemblies in the ROI,
pmix
roi , it is imperative to individually appraise the Poisson

distributions, eq 7, for not having singly, doubly, and triply
activated conditions. The probability of not observing singly
activated assemblies (i.e., no M1, D1, and T1) can be calculated
by substituting AO dg

1 with Amix
1 = AMd1

1 + ADd1

1 + ATd1

1 − 1 in the λ
parameter. Analogously, the λ values for not observing doubly
(D2 and T2) and triply (T3) activated assemblies can be
calculated by using Amix

2 = ADd2

2 + ATd2

2 and Amix
3 = ATd3

3 ,
respectively. Therefore, the probability of observing zero
neighboring activated assemblies, especially when assemblies
exhibit diverse oligomeric states and are present in high
concentrations, is given by pmix,sum

ND(0) , which is formulated as

= × = × × ×p p p p p p pND ND ND
mix,sum

(0)
mix

(0)
mix
roi

mix
(0)

(1,0) (2,0) (3,0)

(18)

By iterating this analytical process, the generalized
theoretical PND after normalization emerges as

Figure 2. Theoretical PND for proteins with varied oligomeric states:
(a) activation and reorganization of protein mixtures comprising
monomeric (M), dimeric (D), and trimeric (T) states. (b) Schematic
example of ND = 0, representing a single activated protein assembly
within the ROI. M1, D1, and T1 in the ROI collectively contribute to
pmix
ND(0). The absence of singly activated (M1, D1, and T1),

doublyactivated (D2 and T2), and triply activated (T3) forms in the
ROI contribute to pmix

roi .
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= [ ···]PND p p p p, , , /ND ND ND ND
mix,sum

(0)
mix,sum

(1)
mix,sum

(2)
mix,sum (19)

PND Simulation for Protein Assemblies. Through
integration with point spread function (PSF) engineering,
SMLM localizes proteins within a three-dimensional
space.33−35 In recent advances in single-molecule imaging
systems, the double helix has proficient mapping spatial
distributions within a z range of 2−3 μm, achieving a lateral
and axial resolution of less than ∼50 nm.36−38 This precision
offers invaluable experimental insights, particularly when
probing the oligomeric states of both membrane and cytosolic
proteins.

Leveraging the detection principles of SMLM, a simulation
methodology was formulated to generate PND simulations for
both membrane and cytosolic protein assemblies with specific
oligomeric states. The strategy for simulating the spatial
distribution of membrane protein assemblies in confined
spaces aligns with established methodologies (Figure 3a).31 In
short, based on the experimentally determined locations, the
number of assemblies was first evaluated via eq 1. The spatial
distribution of membrane assemblies in a confined square was
simulated by randomly positioning monomeric equivalents
within the FOV. For multimeric assemblies, a two-dimensional
Brownian diffusion model was applied to the original
monomeric subunit to predict the positions of the other
equivalents. All simulated locations were randomly sampled
based on the photoconversion efficiency of the chosen
fluorophore. The resultant sampled locations formed the
basis for PND distribution calculations, with iterations
continuing until saturation. Analogous methods were em-
ployed for cytosolic proteins (Figure 3b), with the distinction
of simulating protein assemblies within a cubic FOV and
employing a 3D diffusion model for multimeric assemblies.

To model protein assemblies with multiple oligomeric states,
the subpopulation of each oligomer (e.g., SM for the monomer,
SD for the dimer, and ST for the trimer) was incorporated
(Figure 3c). The number of assemblies for each specific
oligomeric state was determined using eq 11. The spatial
distribution of assemblies of various oligomeric states was
simulated according to previously described methods (Figure
3a,b) and amalgamated to derive the PND distributions. This
methodology was iteratively applied until a saturation point
was achieved. We compared the outcomes from three
independent trials. The differences were typically below 10−4,
indicating robust simulation results (Figure S2). Simulations
were extended to include assemblies as large as hexamers,
encompassing more than 92% of the protein population in
most cells.1

To validate our simulation model, we compared the
simulated results to experimental data for two specific
membrane proteins: UhpT, which exists predominantly as a
monomer, and SbmA, known to be in a monomer−dimer
equilibrium with approximately 70% monomer and 30% dimer.
The comparison between our simulated data and the
experimental distributions revealed a high degree of correlation
(Figure 3d,e), suggesting that our simulation routine
successfully captured the experimental PND distributions for
both UhpT-mEos3.2 (UhpTmE) and SbmA-mEos3.2
(SbmAmE). Moreover, our model is scalable and easily extends
to higher oligomeric states. Its flexibility in generating ground
truth data for diverse protein assemblies offers a solid
foundation for testing and refining theories across a spectrum
of oligomeric complexities.

■ RESULTS AND DISCUSSION
Theoretical PND Faithfully Describes Oligomeric

States of Membrane and Cytosolic Protein Assemblies.

Figure 3. PND simulation schemes. For (a) membrane and (b) cytosolic proteins with a single oligomer state or (c) membrane protein with a
multiple oligomeric state, the simulation involves four steps: (1) randomly assigned assembly locations, (2) spatial map with a simulated subunit for
the monomer (blue), dimer (green), and trimer (orange), (3) randomly selected N locations (red) to account for incomplete fluorophore
activation, and (4) employment of a circular ROI for membrane proteins and a spherical ROI for cytosolic proteins to determine the ND for the
chosen locations, resulting in the final PND distributions. (d,e) Experimental (red) and corresponding simulated ground truth (blue) PND
distributions with different protein concentrations (N/μm2) for UhpTmE (d) and SbmAmE (e). All simulations in this study have a typical error of
10−4, which is smaller than the symbol size.
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The theoretical PND distributions were rigorously validated
using simulated ground truth data for both membrane and
cytosolic proteins across a spectrum of oligomeric states
ranging from the monomer to hexamer. Simulations and
theoretical derivations were based on specific parameters.
Specifically, 120 detectable locations (N = 120), with a
photoactivation efficiency of 0.42 (PE = 0.42), were placed
into FOVs. These FOVs were defined as either squares for
membrane proteins or cubes for cytosolic proteins, both with
dimensions of L = 0.5 μm. The NDs were collected within the
defined ROI: a circular region with a radius of r = 0.02 μm for
membrane proteins and a spherical region with a radius of r =
0.05 μm for cytosolic proteins. The selection of r was informed
by the spatial resolution limits of the SMLM and the
dimensions of the protein assemblies. We ensured that r is
larger than typical localization precision at a scale appropriate
to encompass entire protein assemblies while avoiding the
inclusion of neighboring proteins not part of the assembly.
This balanced approach ensured that the radius was optimally
set to capture relevant biological interactions and maintain the
integrity of our model’s predictions.

Figure 4a depicts the PND distributions for both membrane
and cytosolic protein assemblies existing in a single oligomeric

state, spanning the spectrum from monomers to hexamers. The
distinct PND variations observed among different oligomers
emphasize the capability of the PND to effectively distinguish
between these states. Furthermore, the theoretical PND aligns
closely with the simulated PND for each of the oligomeric state
evaluated. This congruence validates the accuracy of the
theoretical PND model in characterizing the spatial distribu-
tion of both membrane (Figure 4a, left) and cytosolic proteins

(Figure 4a, right), irrespective of their specific oligomeric
states.

In the evaluation of protein assemblies existing in an
equilibrium among varied oligomeric states, we explored four
specific combinations, encompassing monomers (M), trimers
(T), and hexamers (H). These combinations included equal
proportions of monomers and trimers (M:T = 50%:50%),
monomers and hexamers (M:H = 50%:50%), trimers and
hexamers (T:H = 50%:50%), as well as a configuration with
40% monomers and 30% each of trimers and hexamers
(M:T:H = 40%:30%:30%). The congruence observed between
the simulated and theoretical PND distributions attests to the
robustness of the PND methodology. This underscores its
precision in delineating the oligomeric states of both
membrane and cytosolic proteins, as depicted in Figure 4b.
Consistent Performance of the Theoretical PND

Model across Diverse Experimental Conditions. Having
established that the theoretical PND faithfully describes
oligomeric states of membrane and cytosolic protein
assemblies under specific conditions, namely, the size of ROI
(r), the photoactivation efficiency (PE), and the concentration
of protein assembly concentration (N), we sought to further
validate its robustness under varying parameters. This was
essential to ascertaining the universal applicability of the
theoretical PND model across diverse experimental setups.

Using monomeric, trimeric, and hexameric membrane
proteins, the effects of the ROI size were first explored (Figure
5a). It is worth noting that the choice of the ROI size often
correlates with the location error inherent to imaging
approaches. Our analysis revealed that the likelihood of
encountering neighboring assemblies grew as the ROI size
expanded, leading to a shift toward larger ND values.
Additionally, a larger ROI attenuated the differences in the
PND distribution across various oligomeric states.

Since PE is fluorophore specific (e.g., PE of mEos3.2
PEmEos3.2 = 42%, while PEmEos2 = 60%),39 we further
investigated the impact of PE on PND distributions (Figure
5b). A higher PE naturally heightened the probability of
activating multiple subunits, leading to an anticipated surge in
the populations at higher ND values. With an increase in PE,
the PND values of different oligomers became more
distinguishable.

Within cells, protein concentrations inherently fluctuate, and
these changes are intricately linked to the oligomeric state of
the protein assemblies. Reflecting this biological reality, we
examined a range of concentrations (Figure 5c). The
likelihood of detecting neighboring assemblies increases at
higher concentrations, resulting in an elevated ND value.
Additionally, the differences in the PND distributions among
various oligomers also decrease under these conditions.

To quantitatively assess the influence of r, PE, and N on the
model’s applicability, we analyzed the discrepancies between
the theoretical and simulated PND distributions (Figure 5d).
An error matric, err, was introduced and defined by

= | |PND PNDerr O Osim, Theo,g g (20)

where PNDsim,Og and PNDTheo,Og are simulated and theoretical
PND distributions for proteins with an oligomeric state of Og,
respectively. Across the range of tested conditions (Figure 5a−
c), the error remained predominantly below 5%. A slight
increase in the error was observed with larger r values, likely
due to ROI inconsistencies near the FOV boundaries. When a

Figure 4. Validation of the theoretical PND using simulation. (a)
Comparison of simulated (solid line) and theoretical (dashed circle
line) PND distributions for membrane (left) and cytosolic (right)
proteins with single oligomeric states. (b) Analogous comparison for
proteins with multiple oligomeric states.
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detected protein assembly is near the FOV edge, the chances
of another protein assembly entering its ROI decrease. This
affects ND collection and PND generation. Such a
complication is not considered in our theoretical model,
eventually leading to larger discrepancies between simulated
and theoretical PND values as r grows. It is crucial to note that
the localization precision of the imaging method predom-
inantly determines the choice of r. Our PND approach might
not be ideal for systems with significant location errors such as
conventional fluorescence systems with around 200 nm errors.
A similar analysis is performed for the cytosolic protein, which
also shows consistent alignment between theoretical and
simulated PND distributions (Figure S3). These results affirm
the consistent accuracy and reliability of the theoretical PND
model, even with variations in the r, PE, and N.
Extracting Subpopulation of the Mixed Oligomeric

State Is Feasible for Membrane and Cytosolic Protein in
a Certain Protein Concentration Range. Extracting the
subpopulations of different oligomeric forms is pivotal for
understanding oligomer-mediated processes that drive specific
cellular functions. To evaluate the effectiveness of the
theoretical PND model in extracting the subpopulations of
different oligomers, we examined membrane assemblies with
four combinations of monomers (M), dimers (D), and trimers
(T): M:D = 50%:50%, M:T = 50%:50%, D:T = 50%:50%, and
M:D:T = 40%:30%:30%. By allowing the subpopulation of

each oligomeric form to float during the fitting step, a residue-
based algorithm was employed to identify the theoretical PND
distributions that are most closely matched to the experimental
data. Results from Figure 6a demonstrate that fitting with
theoretical PND effectively extracted the protein oligomeric
subpopulations with a typical error < 6 ± 1% across the four
test conditions. Comparable outcomes were observed for
cytosolic proteins.

Recognizing that protein concentrations can vary across
cellular regions, the theoretical PND’s capability was further
explored for proteins with different concentrations. A set of
PND distributions was simulated for N values varying from 60
to 240 in increments of 30. The average of these PND
distributions served as the ground truth input for the fitting
algorithm. Within the algorithm, theoretical PND distributions
with the same concentration distributions were generated and
subsequently averaged to form the fitting metric to obtain the
subpopulation of each oligomeric state. As depicted in Figure
6b, the theoretical PND again successfully determines protein
oligomeric populations, even amidst fluctuations in protein
concentrations. Conclusively, the theoretical PND emerges as a
reliable approach for ascertaining the oligomeric states of both
membrane and cytosolic proteins.

One interesting observation is that we observed a consistent
overestimation of monomers in all cases, suggesting that our
fitting algorithm exhibits increased sensitivity to monomeric

Figure 5. Effects of various experimental parameters on PND distributions of membrane proteins. Influence of (a) ROI size (r), (b)
photoactivation efficiency (PE), and (c) protein assembly concentration (N) on PND distributions for the monomer, trimer, and hexamer. (d)
Computed errors associated with variations in r (top), PE (middle), and N (bottom).
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populations, essentially setting an upper limit on their
estimation. We have quantified this overestimation to be
around 10%. Consequently, when the subpopulation of other
oligomeric forms is less than 10%, our method might
underestimate them. This limitation should be considered
when employing the PND to deduce protein oligomeric states.
Enhancing the PND Model for Single-Molecule

Localization Microscopy with Future Prospects and
Considerations. The PND offers a promising approach for
analyzing protein oligomeric states. However, several consid-
erations should be addressed when utilizing this methodology
to ensure accurate results. For example, it is essential to
recognize the impact of dye blinking and dark states in SMLM
for an accurate data interpretation. Our theoretical model,
while not detailing specific experimental protocols, assumes the
use of SMLM data processed to mitigate these effects. This
includes common SMLM practices, such as background noise
reduction and blinking correction algorithms, crucial for
distinguishing true signals from artifacts. Such processing
ensures that the data reliably represent the spatial distribution
and density of activated dyes, providing a solid foundation for
applying our PND model. This understanding is vital for
researchers integrating our theoretical framework with practical
SMLM applications, aiming for precise analysis of protein
oligomeric states in cellular environments.

Our PND model is primarily designed for analyzing protein
structures ranging from monomers to hexamers, typically not
exceeding 10 nm in size. However, it is important to note that
the model in its current form may not be suitable for analyzing
larger protein aggregates exceeding 10 nm. Addressing these
larger structures would require recalibration of both our
theoretical approach and specific parameters, such as the radius
of the ROI. Investigating protein aggregates and their statistical
distributions, potentially following power law or exponential
decay models, presents an exciting direction for future
research. While our current study focuses on quantifying

specific oligomeric states, exploring general aggregation
behaviors could offer deeper insights into protein dynamics.

■ CONCLUSIONS
Understanding the oligomeric states of proteins is crucial to
understanding the complex landscape of cellular processes.
While recent advancements in SMLM have highlighted the
capabilities of protein location density techniques, there
remains a need for a versatile method that can accurately
assess proteins across varied environments. This study
introduced the theoretical PND as a significant advancement
in the field. Our results demonstrate that the theoretical PND
consistently matches simulated data for both membrane and
cytosolic proteins. Furthermore, this consistency is maintained
across different protein concentrations and oligomeric states,
highlighting the versatility of the PND approach. However, it is
crucial to address certain limitations. The assumption of a
random protein distribution within the FOV may render the
PND less suitable for proteins with specific distribution
patterns. An optimal concentration range is also essential for
reliable results as extremely low or high concentrations can
hinder data interpretation. In the broader context, the
introduction of the PND offers a valuable avenue for accurately
determining protein oligomeric states in cells and likely
enhances our comprehension of protein-driven cellular
processes.
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