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1. Derivation of analytical expression of f(τ), τ-1 of two FRET states model 

In this section, we derived the analytical expression of the probability density function of dwell time, 

f(τ), of the two-state model presented in Figure 1. First, we divided the kinetic model into high to low (IH 

to IL, Figure S1) and low to high (IL to IH, Figure S2) to solved for the fHL(τ) and fLH(τ), respectively. In 

each sub-model, the analytical expression of probability density functions f(τ), average transition rate τ-1 

(Section 1.1 and 1.2), and their relative populations Pi([S]) (Section 1.3) were solved by the single-

molecule rate equations.  

 

 

 

1.1 Analytical expression of fHL(τ), τHL-1, PES(t), PE(t), PES*(t) of high(IH) to low(IL) model 
 

 
Figure S1. Proposed IH to IL model. E: enzyme; ES*: intermediate; ES: interacting complex. 

 

  To derive the fHL(τ) in the two-state kinetic model, we focused on the steps involve the transition 

from EES and ES* ES (Figure S1). The single-molecule rate equations for these steps are 

 𝑑𝑃ES(𝑡)

𝑑𝑡
= 𝑘3

o𝑃E(𝑡) + 𝑘2𝑃ES∗(𝑡) 
 (S1) 

 𝑑𝑃E(𝑡)

𝑑𝑡
=  𝑘−1𝑃ES∗(𝑡) − 𝑘1

o𝑃E(𝑡) − 𝑘3
o𝑃E(𝑡) 

 (S2) 

 𝑑𝑃ES∗(𝑡)

𝑑𝑡
=  𝑘1

o𝑃E(𝑡) − 𝑘−1𝑃ES∗(𝑡)  − 𝑘2𝑃ES∗(𝑡) 
 (S3) 

, where the Pi(t)’s are the probabilities of finding the species (i = E, ES*, and ES) in the corresponding 

states at time t. Note that 𝑘1
o
 = 𝑘1[S] and 𝑘3

o
 = 𝑘3[S]. Both 𝑘1

o
and 𝑘3

o
 are treated as pseudo-first-order 

rate constants. 

 

Transitioning from the IL to IH state can occur either through the ES  E or ES  ES* pathways, 

which gives two initial conditions: (1) initial species is E: PE(0) = 1, PES*(0) = 0, PES(0) = 0; and (2) initial 

species is ES*: PE(0) = 0, PES*(0) = 1, PES(0) = 0. The probability function of time t, PES(t), PE(t), PES*(t), 

can be obtained by solving the Eq S1 to S3 with initial conditions: 

 

Inital condition 1: (1) t = 0, PE(0)1 = 1, PES*(0)1 = 0, PES(0)1 = 0. 

 

 𝑃E(𝑡)1 =   𝐼1e(B+A)𝑡 + 𝐼2e(B−A)𝑡 (S4) 

, where 

A = 
√(𝑘−1+𝑘3

o+𝑘2+𝑘1
o)

2
−4(𝑘3

o𝑘−1+𝑘2(𝑘1
o+𝑘3

o))

2
, B = 

−(𝑘3
o+𝑘2+𝑘1

o+𝑘−1)

2
, 

𝐼1 =  
1

2𝐴
(A + B + 𝑘2 + 𝑘−1),  𝐼2 =  

1

2𝐴
(A − B − 𝑘2 − 𝑘−1), 
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𝑃ES∗(𝑡)1 =

 𝑘1
o

2𝐴
[e(B+A)𝑡 − e(B−A)𝑡] 

(S5) 

 
𝑃ES(𝑡)1 =  1 +

1

2𝐴
[(𝑘3

o + B − A)e(B+A)𝑡 − (𝑘3
o + B + A)e(B−A)𝑡] 

(S6) 

 

Initial condition 2: (2) t = 0, PE(0)2 = 0, PES*(0)2 = 1, PES(0)2 = 0. 

 

 
 𝑃E(𝑡)2 =  

𝑘−1

2𝐴
[e(B+A)𝑡 − e(B−A)𝑡]  

(S7) 

  𝑃ES∗(𝑡)2 =  𝐼2e(B+A)𝑡 + 𝐼1e(B−A)𝑡  (S8) 

 
 𝑃ES(𝑡)2 =  1 +

1

2𝐴
[(𝑘2 + B − A)e(B+A)𝑡 − (𝑘2 + B + A)e(B−A)𝑡] 

(S9) 

The total probability function of each interacting species equals to: 

 

 Pi(t) = C1Pi(t)1+ C2Pi(t)2  (i = E, ES*, or ES) (S10) 

 

, where C1 and C2 are the probability coefficients for two different initial conditions. The Pi(t) can be further 

simplified and summarized in Eq S11 to S13. 

    𝑃E(𝑡) =    𝐽1e(B+A)𝑡 + 𝐽2e(B−A)𝑡 (S11) 

, where 

𝐽1 =  
𝑘−1𝑘−2+2𝐴𝐼1𝑘−3

2𝐴(𝑘−2+𝑘−3)
  , 𝐽2 =  −

𝑘−1𝑘−2+2𝐴𝐼2𝑘−3

2𝐴(𝑘−2+𝑘−3)
 , 

  𝑃ES∗(𝑡) =  𝑀1e(B+A)𝑡 + 𝑀2e(B−A)𝑡 (S12) 

, where 

𝑀1 =  
 𝑘1

o
𝑘−3+2A𝐼2𝑘−2

2𝐴(𝑘−2+𝑘−3)
, 𝑀2 =  −

 𝑘1
o

𝑘−3+2A𝐼1𝑘−2

2𝐴(𝑘−2+𝑘−3)
  

  𝑃ES(𝑡) =  1 + 𝑁1e(B+A)𝑡 − 𝑁2e(B−A)𝑡  (S13) 

, where 

𝑁1 =  
(B−A+𝑘2)𝑘−2+(B−A+𝑘3)𝑘−3

2𝐴(𝑘−2+𝑘−3)
, 𝑁2 =  

(A+B+𝑘2)𝑘−2+(A+B+𝑘3)𝑘−3

2𝐴(𝑘−2+𝑘−3)
. 

  τHL is the time needed to complete steps involving k1
o, k3

o, k-1, and k2. The probability of finding a 

particular 𝜏 is equal to the probability for the enzyme switch from E or ES* to the ES state between t = 𝜏 

and 𝜏 + 𝛥𝜏. Mathematically,  this probability is equal to ΔPES(τ). In the limit of infinitesimal 𝛥𝜏, the 

probability density function of dwell time τHL,  fHL(τ), can be obtained from fHL(τ) = 
𝑑𝑃ES(𝜏)

𝑑𝜏
. Because of 

the presence of two ES formation pathways, we can first derive the fHL(τ)i for each pathway. 

 

 
𝑓HL(𝜏)1  =

𝑑𝑃ES(𝜏)1

𝑑𝜏
=  𝑄1e(B+A)𝜏 + 𝑄2e(B−A)𝜏 

(S14) 

, where  𝑄1 =  
𝑘3

o(A+B+𝑘2+𝑘−1)+𝑘1
o𝑘2

2A
,  𝑄2 =  

𝑘3
o(A+B+𝑘1

o+𝑘3
o)−𝑘1

o𝑘2

2A
  

 
𝑓HL(𝜏)2  =

𝑑𝑃ES(𝜏)2

𝑑𝜏
=  𝑅1e(B+A)𝜏 + 𝑅2e(B−A)𝜏  

(S15) 

, where    𝑅1 =  
𝑘2(A+B+𝑘1

o+𝑘3
o)+𝑘3

o𝑘−1

2A
, 𝑅2 =  

𝑘2(A+B+𝑘2+𝑘−1)−𝑘3
o𝑘−1

2A
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The analytical expression of overall probability density function fHL(τ) can be obtained as follows: 

 

 𝑓HL(𝜏) = 𝐶1𝑓HL(𝜏)1 +   𝐶2𝑓HL(𝜏)2 (S16) 

 

Here, C1 and C2 are the coefficients representing the likelihoods of the initial species of E and ES*, 

respectively. Since C1 and C2 include all possible ways to generate E and ES*, we can write C1 + C2 = 1. 

The ratio of C1 to C2 is equal to the ratio of respective rate constant through path involved k-3 to path 

involved k-2  as shown in Figure S2 (i.e., 
𝐶1

𝐶2
=  

𝑘−3

𝑘−2
). Therefore, we got 𝐶1 =

𝑘−3

𝑘−3+𝑘−2
, 𝐶2 =

𝑘−2

𝑘−3+𝑘−2
, and 

Eq S17.  

 
𝑓HL(𝜏) =

𝑘−3

𝑘−2 + 𝑘−3
𝑓HL(𝜏)1 +   

𝑘−2

𝑘−2 + 𝑘−3
𝑓HL(𝜏)2 

(S17) 

The 𝑓HL(𝜏) was further simplified as  

 

 𝑓HL(𝜏) = 𝐷1e(B+A)𝑡 + 𝐷2e(B−A)𝑡 (S18) 

, where  𝐷1 = 
(𝑘2(A+B+𝑘1

o+𝑘3
o)+𝑘3

o𝑘−1)𝑘−2+(𝑘1
o𝑘2+𝑘3

o(A+B+𝑘2+𝑘−1))𝑘−3

2A(𝑘−2+𝑘−3)
,  

 

𝐷2 = 
(𝑘2(A+B+𝑘2+𝑘−1)−𝑘3

o𝑘−1)𝑘−2+(−𝑘1
o𝑘2+𝑘3

o(A+B+𝑘1
o+𝑘3

o))𝑘−3

2A(𝑘−2+𝑘−3)
   

 With 𝑓HL(𝜏), we calculated the average transition time τHL through τHL= ∫ 𝜏𝑓HL(𝜏)𝑑𝜏
∞

0
. The 

reciprocal of τHL gave the average transition rate, τHL-1, which is expressed as Eq S19: 

 

  
〈𝜏HL〉−1 =  (

𝑘−3(𝑘2+𝑘−1+𝑘1[S])+𝑘−2(𝑘−1+(𝑘1+𝑘3)[S])

(𝑘−2+𝑘−3)(𝑘1𝑘2+𝑘3(𝑘2+𝑘−1))[S]
)

−1
  

=
(𝑘−2 + 𝑘−3)(𝑘1𝑘2 + 𝑘3(𝑘2 + 𝑘−1))[S]

𝑘−3(𝑘2 + 𝑘−1 + 𝑘1[S]) + 𝑘−2(𝑘−1 + (𝑘1 + 𝑘3)[S])
 

 (S19) 

  

 

 

1.2  Analytical expression of fLH(τ), τLH-1, PES(t), PE(t), PES*(t) of low(IL) to high(IH) model 
 

 
Figure S2. Proposed IL to IH model. E: enzyme; ES*: intermediate; ES: interacting complex. 

 

To derive the fLH(τ) in the two-state kinetic model, we focused on the steps involve the transition from 

ESE and ES ES* (Figure S2). The single-molecule rate equations for these steps are 

 

 𝑑𝑃ES(𝑡)

𝑑𝑡
= −𝑘−3𝑃ES(𝑡) − 𝑘−2𝑃ES(𝑡) 

(S20) 
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 𝑑𝑃E(𝑡)

𝑑𝑡
=  𝑘−3𝑃ES(𝑡) 

(S21) 

   

 𝑑𝑃ES∗(𝑡)

𝑑𝑡
=  𝑘−2𝑃ES(𝑡) 

(S22) 

 

 

Here, the initial condition is: t = 0, PE(0) = 0, PES*(0) = 0, PES(0) = 1. Thus, the probability function of time 

t, PES(t), PE(t), PES*(t), was obtained by solving the above Eq S20 to S22 with the initial condition: 

 
𝑃E(𝑡) =  

𝑘−3(1 − e−(𝑘−2+𝑘−3)𝑡)

𝑘−2 + 𝑘−3
 

(S23) 

 

 𝑃ES(𝑡) =  e−(𝑘−2+𝑘−3)𝑡 (S24) 

   

 
𝑃ES∗(𝑡) =  

𝑘−2(1 − e−(𝑘−2+𝑘−3)𝑡)

𝑘−2 + 𝑘−3
 

(S25) 

   

 τLH is the time needed to complete steps involving  k-2, and k-3. The probability of finding a particular 

𝜏 is equal to the probability for the enzyme switch from ES to the E or ES* state between t = 𝜏 and 𝜏 + 

𝛥𝜏. Mathematically,  this probability is equal to ΔPE(τ) + ΔPES*(τ). In the limit of infinitesimal 𝛥𝜏, the 

probability density function of dwell time τHL,  fHL(τ), was obtained from fHL(τ) =
𝑑𝑃E(𝜏)

𝑑𝜏
+

𝑑𝑃ES∗(𝜏)

𝑑𝜏
. 

 

 
𝑓LH(𝜏) =

𝑑𝑃E(𝜏)

𝑑𝜏
+

𝑑𝑃ES∗(𝜏)

𝑑𝜏
= (𝑘−2 + 𝑘−3)e−(𝑘−2+𝑘−3)𝜏 

S(26) 

 

With 𝑓LH(𝜏), we calculated the average transition time τLH through τLH= ∫ 𝜏𝑓LH(𝜏)𝑑𝜏
∞

0
. The reciprocal 

of τLH gave the average transition rate, τLH-1, which is expressed as Eq S27: 

 

 τLH-1= 𝑘−2 + 𝑘−3 (S27) 

   

 

 

1.3 Analytical expression of PES([S]), PE([S]),PES*([S]) of two-state model 
Subploplution of each interaction species (i.e., 𝑃E, 𝑃ES, 𝑃ES∗) is a function of substrate concentration 

and time, denoted as 𝑃E([S], 𝑡), 𝑃ES([S], 𝑡), 𝑃ES∗([S], 𝑡). The single-molecule rate equations for the two-

state kinetic model are: 

 𝑑𝑃E([S], 𝑡)

𝑑𝑡
= 𝑘−1𝑃ES

∗([S], 𝑡) + 𝑘−3𝑃ES([S], 𝑡)

− (𝑘1 + 𝑘3)[S]𝑃E([S], 𝑡) 

(S28) 

 

 𝑑𝑃ES∗([S], 𝑡)

𝑑𝑡
= 𝑘1[S]𝑃E([S], 𝑡) + 𝑘−2𝑃ES([S], 𝑡) − (𝑘−1 + 𝑘2)𝑃ES

∗([S], 𝑡) 
(S29) 
 

 𝑑𝑃ES([S], 𝑡)

𝑑𝑡
= 𝑘3[S]𝑃E([S], 𝑡) + 𝑘2𝑃ES

∗([S], 𝑡) − (𝑘−3 + 𝑘−2)𝑃ES([S], 𝑡) 
(S30) 

 

The boundary condition is that the sum of the relative subpopulations of all species is 1: 
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 𝑃E([S], 𝑡) + 𝑃ES
∗([S], 𝑡) + 𝑃ES([S], 𝑡) = 1 (S31) 

When 𝑡 → ∞, the system reaches equilibrium. The subpopulations of  𝑃E([S], 𝑡), 𝑃ES([S], 𝑡), 𝑃ES∗([S], 𝑡) 

no longer change with t, and were simplified to 𝑃E([S]), 𝑃ES([S]), 𝑃ES∗([S]).  Eq S28 to S31 at 𝑡 → ∞ were 

rewritten as: 

 

 𝑘−1𝑃ES
∗([S]) + 𝑘−3𝑃ES([S]) − (𝑘1 + 𝑘3)[𝑆]𝑃E([S]) = 0 (S32) 

   

 𝑘3[S]𝑃E([S]) + 𝑘2𝑃ES
∗([S]) − (𝑘−3 + 𝑘−2)𝑃ES([S]) = 0 (S33) 

   

 𝑘1[S]𝑃E([S]) + 𝑘−2𝑃ES([S]) − (𝑘−1 + 𝑘2)𝑃ES
∗([S]) = 0 (S34) 

   

 𝑃E([S]) + 𝑃ES
∗([S]) + 𝑃ES([S]) = 1 (S35) 

 

   

By solving Eq S32 to Eq S35, the relative population of each species is expressed in term of rate 

constants and substrate concentration [S]: 

 

 𝑃E([S]) =
𝑘2𝑘−3+𝑘−1(𝑘−2+𝑘−3)

𝑘2(𝑘−3+(𝑘1+𝑘3)[S])+𝑘3𝑘−2[S]+𝑘1(𝑘−2+𝑘−3)[S]+𝑘−1(𝑘−2+𝑘−3+𝑘3[S])
   (S36) 

 𝑃ES
∗([S]) =

(𝑘3𝑘−2+𝑘1(𝑘−2+𝑘−3))[S]

𝑘2(𝑘−3+(𝑘1+𝑘3)[S])+𝑘3𝑘−2[𝑆]+𝑘1(𝑘−2+𝑘−3)[S]+𝑘−1(𝑘−2+𝑘−3+𝑘3[S])
    (S37) 

 𝑃ES([S]) =
(𝑘1𝑘2+𝑘3(𝑘2+𝑘−1))[S]

𝑘2(𝑘−3+(𝑘1+𝑘3)[S])+𝑘3𝑘−2[S]+𝑘1(𝑘−2+𝑘−3)[S]+𝑘−1(𝑘−2+𝑘−3+𝑘3[S])
   (S38) 

 

 

 

2. Computation cost for SMIS simulation and fittings 

All simulations and fitting were performed on the commercially available desktop (CPU: Intel® CoreTM 

i7-8700 CPU @ 3.20GHz 3.19 GHz, RAM:  32.0 GB, OS: Win 10 64 bit). For the five reaction species 

associating with a three FRET level system (total eight rate constants), the time to generate one set of 

simulated dwell-time distributions, average dwell time, and relative populations is around 1s. Regarding 

the extraction of reaction rate constants using SMIS, the computation time will depend on the grid size of 

choice. Using a grid size of 5 different values for each rate constant and the number of transition set to 

100,000, it will take ~7 hr to obtain the %RSD and corresponding rate-constant distribution. For a four-

round optimization search, it will take ~28 hr. 

 

 

 

3. SMIS validation for Michaelis-Menten model (other four conditions) 

In this section, we validated the SMIS by comparing the simulation results with the analytical solutions 

of the Michaelis-Menten model. Figure S3, Figure S4, and Figure S5 respectively shows the comparison 

of the dwell-time distribution (Section 3.1), the average transition rates (Section 3.2), and relative 

populations of each species (Section 3.3) between the analytical and simulated results. In all conditions, 

the simulations (blue bar or circle) nicely overlap with the prediction (red line), suggesting the simulation 

successfully reproduced the expected results. 
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3.1 Validation of simulated fHL(τ) and fLH(τ) as a function of k 

 
Figure S3. Comparisons between simulated (blue bar) and analytical (red line) f(τ) for the Michaelis-Menten enzyme kinetic 

model under condition 2-5. (a) Rate constants for the SMIS simulation and analytical solution of the Michaelis-Menten model. 

(b-e) Simulation of the probability density function fHL(τ) and fLH(τ) under condition 2 (b), condition 3 (c), condition 4 (d) and 

condition 5 (e).  

 

 

3.2 Validation of simulated τHL-1 and τLH-1 as a function of k 

 
Figure S4. Comparisons between simulated (blue circle) and analytical (red line) τ-1 for the Michaelis-Menten enzyme 

kinetic model under condition 2-5. (a-d) Simulation of the average transition rate τHL-1 and τLH-1 under condition 2 (a), 

condition 3 (b), condition 4 (c) and condition 5 (d).  
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3.3 Validation of of simulated PHL ([S]) and PLH([S]) as a function of k 

 
Figure S5. Comparisons between simulated (blue circle) and analytical (red line) populations for the Michaelis-Menten 

enzyme kinetic model under condition 2-5. (a-d) Simulation of the relative populations PHL and PLH under condition 2 (a), 

condition 3 (b), condition 4 (c) and condition 5 (d).  

 

 

 

4. SMIS validation using a kinetic model having five reaction species in 3 FRET levels 

We extended the application of SMIS to the kinetic model with two intermediates in three FRET states 

(Figure S6a) whose analytical solution is difficult to obtain. The kinetic model describes an enzyme 

existing as one of the five interacting species (E, ES*, ES, ES2*, and ES2) where E and ES* associates with 

the FRET high (IH) state; ES and ES2* with the middle (IM) state; and ES2 with the low (IL) state. The 

substrate S binds to the enzyme E to form the interacting complex ES through different intermediates ES* 

and ES2* with the forward (k1, k2, k3, and k4 ) and reversed (k-1, k-3, k-5, and k-6) rate constants annotated. We 

randomly selected a set of rate constants as specified in Figure S6b. The simulated PDFHL(τ), PDFLH(τ), 

PHL, and PLH under three substrate concentrations ([S] = 5, 20, and 60 μM), as shown in Figure S6c. To 

search for the most probable rate constants, we applied the repeated bisection method to each rate-constant 

histogram. Figure S6d shows the results for each rate constant after two searches. With this approach, we 

extracted all rate constants that are in agreement with the inputs. 
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Figure S6. SMIS validation using a kinetic model with five reaction species in 3 FRET levels. (a) The kinetic model describes 

five interacting species (E, ES*, ES, ES2*, and ES2) associated with three FRET levels (IH, IM, and IL). (b) Summary of input and 

extracted rate constants obtained from SMIS. (c) SMIS simulation results of PDFHM(τ), PDFML(τ), PDFMH(τ), PDFLM(τ), and [S] 

dependent population (PHM, PML, PMH and PLM) under 3 substrate concentrations ([S] = 5, 20, and 60 μM). (d) Progression of 

identifying correct rate constants. The yellow area highlights the screening range of k in each screening. Bluelines indicate the input 

rate constants for the experimental data. Redlines show the most probable rate constant extracted from SMIS.  


