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ABSTRACT: Single-molecule tracking (SMT) of fluorescently
tagged cytoplasmic proteins can provide valuable information on
the underlying biological processes in living cells via subsequent
analysis of the displacement distributions; however, the confine-
ment effect originated from the small size of a bacterial cell skews
the protein’s displacement distribution and complicates the
quantification of the intrinsic diffusive behaviors. Using the
inverse transformation method, we convert the skewed displace-
ment distribution (for both 2D and 3D imaging conditions) back
to that in free space for systems containing one or multiple
(non)interconverting Brownian diffusion states, from which we
can reliably extract the number of diffusion states as well as their
intrinsic diffusion coefficients and respective fractional populations. We further demonstrate a successful application to
experimental SMT data of a transcription factor in living E. coli cells. This work allows a direct quantitative connection between
cytoplasmic SMT data with diffusion theory for analyzing molecular diffusive behavior in live bacteria.

1. INTRODUCTION

Diffusive behaviors of membrane and cytoplasmic molecules in
cells carry valuable information on the underlying biological
processes, such as membrane protein oligomerization,1

protein−membrane interactions,2 protein−DNA interactions,3

DNA repair,4 cytokinesis,5 and chromosome diffusion.6 Because
these processes fulfill many cellular functions, quantifying the
diffusive behaviors of these molecules is important for
understanding the underlying mechanisms.
A number of techniques have been developed to study the

diffusive behaviors of membrane and cytoplasmic molecules.
Fluorescence recovery after photobleaching (FRAP),7 fluo-
rescence correlation spectroscopy (FCS),8 and single-molecule
tracking (SMT)9 are the three most common fluorescence-
based methods.10 Both FRAP and FCS probe molecular
diffusive behaviors within a small volume defined by the laser
focus; however, the slow time resolution and potential DNA
damage caused by photobleaching in FRAP,11 the susceptibility
to optical aberrations in FCS,12 and the diffraction-limited
spatial resolution constrain the application of FRAP and FCS to
molecular diffusions in live cells. On the other hand, recent
technological advances in camera, fluorescent protein (FP)
reporters, and super-resolution imaging algorithm13 made it
possible to track individual molecules with high spatial (few
nanometers) and temporal (microseconds) resolution14 in live
cells.15 Imaging one molecule at a time typically is through
imaging a fluorescent tag, which is often a regular or
photoconvertible FP. Even though the photobleaching of the
fluorescent tag limits the observation time, recent studies have
shown that SMT is particularly powerful in dissecting the

mechanisms of biophysical processes.16,17 Using probes such as
quantum dots or plasmonic nanoparticles can further extend
SMT trajectories in time.18

Through real-time SMT, one directly obtains the diffusive
behavior of each fluorescently labeled protein molecule in the
cell reflected by its location versus time trajectory. Quantitative
methods to analyze the SMT trajectories include mean-squared
displacement (MSD), hidden Markov modeling (HMM),19−22

and probability distribution function (PDF) or cumulative
distribution function (CDF) of displacement length analyses.
MSD analysis, the most popular method, reliably determines
the diffusion coefficient for molecules moving in free space with
a single diffusion state.23 For molecules having transient
diffusive behaviors or those containing multiple diffusion states,
MSD method is less ideal due to its requirement of averaging
over all displacements.24 HMM analysis, a probabilistic
maximum-likelihood algorithm, can extract the number of
diffusion states and their interconversion rate constants (with
certain assumptions);21,22,25 it provides a mathematically
derived routine and unbiasedly analyses SMT trajectories, but
the resulting multistate diffusion model often lacks a definitive
number of states.26 The HMM analysis of SMT trajectories is
further constrained by the complex computational algorithm
and the difficulty in incorporating the photophysical kinetics of
the fluorescent probe. Analysis of the PDF or CDF of
displacement length on the basis of Brownian diffusion model
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is known to be a robust way to quantify the diffusion
coefficients and fractional populations of multistate systems, as
demonstrated both in vitro and in vivo,3−5,27−29 even though it
requires more control experiments and elaborate analysis based
on a defined kinetic model to extract the minimal number of
diffusion states and their interconversion rate constants.
One factor that significantly affects the PDF or CDF analysis

of cytoplasmic diffusion displacement is the confinement by the
cell volume, especially for bacterial cells, which are less than a
few microns in size. This confinement distorts and compresses
the displacement length distribution, especially for molecules
with large diffusion coefficients. SMT trajectories obtained from
cells with different geometries can give significantly biased
displacement length distributions, even though the underlying
diffusion coefficient is the same. As a result, fitting the
distribution of displacement length with PDF or CDF derived
from the Brownian diffusion model (or any other model) only
reports apparent diffusion coefficients, which are typically
smaller than the intrinsic diffusion coefficients.
For membrane protein diffusion, it is a two dimension (2D)

diffusion on a surface curved in three dimension (3D) space,
and it does not actually have boundary confinement, as the cell
membrane is a continuous boundary-less surface; however,
SMT trajectories are generally obtained in 2D, where only the
x, y movements in the imaging plane are tracked, thus
projecting the boundary-less movements of membrane protein
diffusion into a 2D diffusion confined by the cell boundary.
This confinement effect from 2D projection of membrane
diffusion distorts and compresses the displacement length
distribution as well. To address this projection-induced
confinement effect, Peterman and coworkers introduced the
inverse projection of displacement distribution (IPODD)
method30 in analyzing simulated one-state membrane diffusion
in bacterial cells (e.g., E. coli). In short, they first created a
projected displacement distribution (PDD) matrix for a given
cell geometry by projecting the simulated membrane displace-
ment vectors onto the 2D imaging plane. For each displacement
length that could occur anywhere on the membrane surface,
they determined the resulting distribution of displacement
length after projection. The PDD matrix thus quantifies the
relationship from the displacement distribution before projec-
tion to that after projection. Using inverse transformation, they
could then convert the 2D-projected displacement length
distribution (which is often the one determined experimen-
tally) into a most probable displacement length distribution on
the cell membrane, which is readily analyzed to give the
intrinsic diffusion coefficient.
Here we report an extension of the inverse transformation

method for membrane diffusion to analyze cytoplasmic
molecular diffusions. Using simulated diffusion trajectories in
free and confined spaces, we demonstrate this inverse
transformation method in analyzing 1-state cytoplasmic
Brownian diffusions in both 2D and 3D and with varying
diffusion coefficients and cell geometries. We further extend
this method to multistate cytoplasmic diffusions, containing
noninterconverting or interconverting states, to effectively
extract the minimal number of diffusion states as well as their
respective diffusion coefficients and fractional populations.
Finally, we demonstrate a successful application to experimental
SMT data of a transcription factor in living E. coli cells, which
shows interconverting multistate diffusive behaviors.

2. METHODS

2.1. Simulations of Single-Molecule Diffusion Trajec-
tories. On the basis of the Brownian diffusion model, we used
home-written Matlab codes to simulate 3D single-molecule
diffusion trajectories that contained one, three noninterconvert-
ing, or three interconverting diffusion states in both free space
and confined space. Each simulation condition contained at
least 100 000 diffusion trajectories to ensure statistically
saturated data for analysis. The 2D diffusion trajectories were
generated from the 3D ones by discarding the z-component.

Diffusion Trajectories in Free Space. The 3D diffusion
trajectories in free space containing one diffusion state were
simulated via the following steps. First, we randomly sampled
the initial position (x, y, z) in free space, where the values of x,
y, and z are each from a randomly generated number. Second,
with the input diffusion coefficient D we generated the
distribution of displacement vector ( ⃗ri, where i = x, y, or z)
following Brownian diffusion in free space as described by eq 1,
where n = 1, for each of the three dimensions (i.e., x, y, and z)
and using a time resolution t = 4 or 60 ms. Third, we randomly
chose a ⃗ri from the distribution of the displacement vector,
together with the initial position, to calculate the subsequent
position, which also served as the new initial position for the
next simulation step. The procedure was then repeated until the
length of the final moving trajectory contained 10 positions for
analysis. Trajectories for three noninterconverting states were
generated as that in single diffusion state case but with D of
0.036, 0.7, and 11 μm2 s−1, separately.
The 3D diffusion trajectories that contained three

interconverting diffusion states were simulated with three
input diffusion coefficients Di (i = 1, 2, or 3) and their
associated interconversion rate constants (e.g., rate constant γij
for interconversion from state i to j; i ≠ j and i, j = 1, 2, or 3). A
sequence of residence time on the diffusion state i was built,
where each residence time ti sampled the residence time
distribution exp(−∑jγijt), where Σj was a sum of all competing
processes leaving from state i to state j (j ≠ i), each with a rate
constant γij. The transition from state i to a particular state j
followed the relative probability (γij/∑jγij). The residence time
sequence was terminated by tbl, which equaled the sum of all
residence times in the sequence, and tbl samples the distribution
exp(−kbl(Tint/Ttl)t), which was limited by the photobleaching
and photoblinking of the fluorescence tag, where kbl is the tag’s
intrinsic photobleaching and photoblinking rate constant. Tint
and Ttl are the laser exposure time and stroboscopic imaging
lapse time, respectively. During each state, the generation of
displacements was the same as described in the one diffusion
state case. Here we first generate the primary diffusion
trajectories with Tint and Ttl of 4 ms. For trajectories with
longer Ttl, the primary diffusion trajectories were resimulated
and sampled at every lapse time Ttl to give the eventual
simulated diffusion trajectory, which is analyzed.

Diffusion Trajectories in Confined Space. To mimic the 3D
SMT data in a bacterium cell, we first modeled the 3D cell
geometry as a cylinder capped by two hemispheres for
simplicity with cell length and width adapted from our
experimental results. The 3D diffusion trajectories in a confined
space (i.e., the cell volume) were generated by similar
procedures as described in free space but with random
selection of initial positions inside the cell volume and the
implementation of confinement effect with the boundary
reflection from the cell surface. Boundary reflection was
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performed when the end point of displacement vector is
outside the cell volume. The intercept of cell boundary and
displacement vector, together with the normal plane, was
calculated for subsequent evaluation of the reflected position.
The corresponding 2D simulated data were then generated
from 3D ones by discarding the diffusion information in the z
direction. The 3D diffusion trajectories for systems with three
interconverting diffusion states in confined space were
simulated in the same way as in free space but with applied
boundary reflection in the displacement generation step.
2.2. Generation of Confinement Transformation

Matrix. Generation of the confinement transformation matrix
([CTM]) was inspired by Peterman’s work on inverse
projection of displacement distributions (IPODD) for analyz-
ing membrane proteins diffusing on the curved surface. In
short, >100 000 displacement vectors (r)⃗ of a given distance
length r were randomly positioned in the cell. If the end point
of displacement vector was outside the cell volume, the

boundary reflection was performed, generating final positions.
We then calculated the output r from the final positions and
created the confined displacement distribution (CDD), which
served as a single column data for the [CTM]. The length of
displacement vector varied from 10 nm to 2.82 μm (i.e., up to
the cell length) with 10 and 30 nm increments for transforming
simulated and experimental data, respectively. Finally, CDDs
for all input displacement vectors were combined to form the
confinement transformation matrix.

2.3. Generation of Probability Density Function of
Displacement Length for Systems with Multi Diffusion
States. All probability density functions (PDFs) of displace-
ment length (PDF(r)) in this study were generated from the
distribution of displacement length of moving trajectories
normalized by the area of distribution. For example, for systems
with a single diffusion state, displacements were calculated from
the moving trajectory and used to generate the histogram of
displacement length for a given bin size (i.e., 10 and 30 nm for

Figure 1. Illustration of inverse transform of confined displacement distribution (ITCDD) using simulated Brownian diffusions. (A) Schematic
overview of ITCDD. Single-molecule diffusion trajectories are first generated in 3D in free or confined space (black trajectories) with t = 60 ms.
Removing the z component from 3D trajectories results in the corresponding projected 2D trajectories (red trajectories). Converting the
displacement length distribution in confined space to that in free space is achieved via inverse transformation of confined displacement distribution
using the confinement transformation matrix ([CTM]). Here all confined diffusion simulations were performed within a cell having width (W) and
length (L) of 1.15 and 2.82 μm, respectively. (B) [CTM] for the 3D output displacements in confined space given 3D input displacements in free
space. The input r is from 10 to 2820 nm with 10 nm increment. (C) CDD from B at 3D input displacement with length of 2.5 μm. (D) Overlay of
simulated displacement length distributions in 3D free space (PDFFS, blue shade) and in confined space (PDFCS, green shade). Apply ITCCD on
PDFCS recovers the displacement length distribution (red symbols) that agrees well with that in free space. Both the simulated PDFFS and ITCDD
match the theoretical displacement length distribution (black line) of the Brownian diffusion model. All distributions are normalized with the
integrated area being one. (E,F), same as panels B and D but for 2D case. (G, H) Same as panels B and D but the [CTM] is from 3D input
displacement to 2D output displacement. ITCDD (red dots) clearly deviates from the theoretical displacement length distribution from the
Brownian diffusion model (black line).
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simulated and experimental data, respectively). The displace-
ment histogram was then divided by its area to create the PDF
of displacement length, PDF(r).
PDF(r) for systems with static three diffusion states was

obtained as follows. We combined displacements from the
respective diffusion states with given weighting coefficients to
generate the displacement length histogram, which was then
normalized by its area to create the PDF(r) for analysis. For
example, after simulating 100 000 trajectories (with trajectory
length of 10 positions) in a given cell geometry for each of
three different Dinput, we randomly chose trajectories from each
diffusion state and combined them with chosen fractional
populations for subsequent analyses.
Finally, for system with three interconverting diffusion states,

the PDF(r) was generated from moving trajectories based on
procedures as described in the Methods section. Because the
moving trajectories were simulated with three interconverting
diffusion states built-in, the PDF(r) was simply the resulting
displacement histogram normalized by the histogram area.
2.4. Transformation of Distribution of Displacement

Length between Free and Confined Spaces. Trans-
formation of distribution of displacement length between free
and confined spaces was achieved via the confinement
transformation matrix ([CTM]). Forward converting the 2D
or 3D distribution of displacement length in free space to that
in confined space was via direct multiplication of the 2D or 3D
distribution in free space with [CTM]. As for the inverse
transformation (i.e., distribution in confined space to that in
free space) process, the inverted [CTM] (i.e., [CTM]−1) was
first obtained using Gaussian elimination; multiplication of the
distribution of displacement length in confined space with the
[CTM]−1 (i.e., eq 4) then resulted in the corresponding
distribution in free space. Note that in the [CTM]−1 obtaining
step we first diagonalized the [CTM] and back-substituted the
known variables to solve for [CTM]−1 rather than simply
transpose the [CTM].

3. RESULTS AND DISCUSSIONS

3.1. Inverse Transform of Confined Displacement
Distribution for Cytoplasmic Molecules. The diffusive
motions of cytoplasmic molecules in a bacterial cell are
significantly confined by the small cell size (Figure 1A, right) (a
typical E. coli cell is about 0.5 × 0.5 × 2 μm3 in size (e.g., ∼ 1.5
fL)), and for a small protein with a diffusion coefficient of 10
μm2 s−1, its diffusion can traverse the cell length in ∼100 ms.
This confinement effect distorts the molecule’s displacement
distribution, hindering the quantification of its diffusion
coefficient. For heterogeneous diffusion where multiple
diffusion states are present, this confinement effect also hinders
the determination of the (minimal) number of diffusion states.
Here we present an inverse transform method to analyze
displacement distributions of confined diffusions to obtain
displacement distributions that are well-described by Brownian
diffusion in free space. The feasibility of the method is
examined by diffusion simulations in free and confined spaces.
For 3D Brownian diffusion in free space, the probability

density distribution of displacement vector r ⃗ within time t
follows a Gaussian function

π
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where D is the diffusion coefficient and n = 1, 2, or 3 for 1D,
2D, or 3D diffusion, respectively. The second moment of r ⃗
follows the well-known relationship ⟨r ⃗2⟩ = 2nDt. The PDF of
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The blue shade in Figure 1D shows the distribution of
displacement length r from a simulation of 3D Brownian
diffusion in free space with D = 1 μm2 s−1 and t = 60 ms
(simulation details in the Methods section), which is well-
described by eq 2 (Supplementary Figure S1). As most of the
SMT experiments are done in 2D imaging mode, the blue
shade in Figure 1F presents the distribution of the
corresponding displacement length r in 2D, which is again
well-described by eq 3) (Supplementary Figure S1). When the
same Brownian diffusion is simulated inside a confined space
(e.g., inside a bacterial cell, Figure 1A, right), the distributions
of displacement length r in both 3D and 2D are significantly
distorted due to reflections by cell boundaries (Figure 1D,F), as
expected. These confined displacement length distributions do
not follow eqs 2 and 3, and attempted fitting gives the diffusion
constant of 0.76 ± 0.32 μm2 s−1, underestimated from the
expected diffusion coefficient of 1 μm2 s−1.
To numerically mimic the confinement effect on the

displacement length distribution, we followed Peterman et
al.30 to generate a confinement transformation matrix ([CTM];
e.g., Figure 1B) for a given cell geometry, which is readily
measured for bacterial cells. For each column of this matrix, a
3D displacement vector in free space of a given length is
randomly sampled within the cell volume and applied boundary
reflections when the vector impinges on the cell boundary. In
this way, it generates a distribution of corresponding 3D
displacement in the confined space. Normalizing this
distribution gives the CDD, which represents the probability
distribution for finding a 3D-confined displacement length
given a 3D displacement of a particular length in free space
(Figure 1C). Varying the length of the 3D displacement vector
in free space and repeating the random sampling process
generates the data for all other columns in [CTM] (Figure 1B).
The utility of this confinement transformation matrix can be
seen by applying it to the distribution of displacement length
from the simulated 3D Brownian diffusion in free space as
[CTM]·PDFFS = PDFCS, where PDFFS and PDFCS are PDFs of
displacement length in free and confined spaces, respectively.
The resulting distribution from this forward transformation
reproduces that from the simulations in the confined space
(Supplementary Figure S2A).
More useful is the inverse transformation of the confined

displacement distribution (ITCDD), as the CDD is what is
directly measured in experiments

= ·−PDF [CTM] PDFFS
1

CS (4)

where [CTM]−1 can be obtained by Gaussian elimination
(Section 2.4). Applying ITCDD on the simulated results in the
confined space deconvolutes the confinement effect and
effectively reproduces the theoretical distribution of displace-
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ment length r in free space (Figure 1D). Fitting the inverse
transformed distribution gives D = 1.04 ± 0.01 μm2 s−1, reliably
recovering the expected diffusion coefficient (D = 1 μm2 s−1).
All fittings of the ITCDD were done via least-squares fitting in
MATLAB program using PDFs with single or three diffusion
states (e.g., eqs 3 and 5, respectively, for the 2D diffusion cases)
The forward transformation, and more importantly, the

inverse transformation using the confinement transformation
matrix are equally applicable between the 2D displacement
length distribution in free space and that in confined space
(Figure 1E,F and Supplementary Figure S2B).
It is important to point out that these forward and inverse

transformations only work well when the confinement
transformation matrix is generated when the input and output
displacements match in dimension. Figure 1G shows the
[CTM] generated between 3D displacement in free space and
the 2D displacement in confined space. Using this [CTM] or
[CTM]−1 for forward or inverse transformation cannot
reproduce the expected distributions (Figure 1H and
Supplementary Figure S2C). It is worth noting that the original
Peterman’s work on membrane diffusion is between 2D
diffusion in curved surface and its 2D projection onto a flat
surface,30 where the displacement dimensions are matching. A
likely reason for the inapplicability of transformation between
different dimensions is that the lower dimension displacements
are missing information about the third dimension; this missed
dimension cannot be created during the transformation to the
higher dimension displacements.
3.2. Analysis of One Diffusion State in Cells: Variation

in Diffusion Coefficient and Cell Geometry. The diffusion
coefficient (D) of cytosolic molecules in bacteria typically
ranges from 10−2 to 10 μm2 s−1.31 To probe whether the
magnitude of the diffusion coefficient may affect the perform-
ance of the inverse transformation method, we simulated
diffusion trajectories with variable D values. Because most of
SMT experiments are done in 2D, we focus discussions and
analyses on the 2D displacements generated from simulated
diffusions that are always done in 3D; the results apply equally
to the 3D displacements.
Figure 2A shows the simulated 2D PDF(r) values in free

space and in a confined cell volume with the input D of 11 μm2

s−1, a typical diffusion coefficient for a fast-diffusing small
protein in bacterial cytoplasm, for which the confinement effect
is more significant than those with smaller diffusion coefficients.
The corresponding ITCDD closely mimics that in free space
(Figure 2A); fitting it with eq 3 gives Dfit of 12.5 ± 0.2 μm2 s−1,
within 14% of the input D. With the input D varying from 0.01
to 11 μm2 s−1, the fitted D from ITCDD is always within 0.1−
14% of the input D (Figure 2B), smaller than or comparable to
typical experimental uncertainties (8−25%).3,27 Therefore, the
inverse transformation method allows for direct and reliable
extraction of the intrinsic diffusion coefficients of Brownian
diffusions in confined space.
Using a fixed input D (e.g., 11 μm2 s−1), we further evaluated

how the cell geometry, which the [CTM] is dependent on,
might affect the performance of the inverse transformation
method. We examined Brownian diffusions in cells with width
of 1.15 μm and lengths of 2.32, 2.82, and 3.32 μm,
corresponding to aspect ratios of 2.0, 2.5, and 2.9, respectively.
These geometries cover the range of E. coli cell shapes typically
observed in minimum growth medium.3 Regardless of the cell
geometry, the fitted D from ITCDD stays at 12.4 ± 0.5 μm2

s−1, within 13% of the input D (Figure 2C). To further test the

insensitiveness of the inverse transformation method to cell
geometry within this range, we combined the simulated
distributions of displacement lengths from these three different
geometries but applied merely the [CTM] from the cells of
length = 2.82 μm, which is about the average of the three cell
lengths; fitting the ITCDD with eq 3 again gives an Dfit of 12.3
± 0.2 μm2 s−1, close to the input D. Therefore, even when
diffusion trajectories are collected from a population of cells
that differ in geometry (within the range evaluated here), it is
sufficient to use the [CTM] for the average cell geometry to
perform ITCDD to extract the intrinsic diffusion coefficient.

3.3. Analysis of Noninterconverting Multistate Dif-
fusions in Cells. Inside a cell, a protein molecule may have a
few different diffusive behaviors depending on its interactions
with other proteins, RNA, or DNA. We thus evaluated the
inverse transformation method in analyzing diffusion trajecto-
ries that contain multiple (i.e., three) Brownian diffusion states.
We first examined the case that these states do not interconvert,
that is, a static mixture of diffusive behaviors. We again focus on
the analysis of the 2D displacements here from 3D simulations.
The diffusion coefficients (Dinput) of diffusion states were set to
11 (D1), 0.7 (D2), and 0.036 (D3) μm

2 s−1, respectively, close to
those we previously measured for a transcription factor in E. coli
cells,3 and the fractional population (A3) of the D3 state was
varied from 5 to 33% while the other two fractional populations
were set as A1 = A2 = (1 − A3)/2.
Figure 3A shows the 2D PDF(r) from such a three-state

simulation in a cell volume. The corresponding ITCDD can be
fitted using a linear combination of PDF(r) (eq 5), each
accounting for one diffusion state with its corresponding
fractional population (A) as a weighting coefficient

Figure 2. Analysis of one diffusion state inside a cell with ITCDD. (A)
Simulated PDF(r) data of diffusion trajectories in free (blue shade)
and confined (green shade) spaces with Dinput of 11 μm

2 s−1 and t = 60
ms. Multiplication of PDF(r) of diffusion trajectories in confined space
with [CTM]−1 resulted in the corresponding ITCDD (red circles),
which reproduces the theoretical distribution (black curve) based on
the Brownian model. (B) Fitted diffusion coefficients of ITCDD at
various input diffusion coefficients. (C) Fitted diffusion coefficients of
ITCDD (Dinput of 11 μm2 s−1) with cell lengths varying from 2.32 to
2.82 μm. The fit result of the combined ITCCD with the average cell
length of 2.82 μm is also plotted for comparison.
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The fitted D values of all three states are all within 10% error of
Dinput (Figure 3B). The fitted fractional populations are also in
agreement with input ones (within 7% error), showing a clear
trend of increasing A3 and decreasing A1 and A2, as expected.
Therefore, the inverse transformation method can effectively
extract the intrinsic diffusion coefficients and their fractional
populations of noninterconverting multistate diffusions.
3.4. Analysis of Interconverting Multistate Diffusions

in Cells. Following the above section, we further evaluated the
inverse transformation method in analyzing diffusion trajecto-
ries that contain three interconverting Brownian diffusion
states. We simulated the 3D diffusion trajectories with 4 ms
time resolution in a cell volume using a set of interconversion
kinetic rate constants (Methods section) from our previous
SMT study of the transcription factor CueR, which was tagged
by a photoconvertible FP mEos3.2.32 Table 1 gives input
parameters of this simulation, including diffusion coefficients
(Di, i = 1−3) and interconverting rate constants (γij; i, j = 1, 2,
or 3); the interconversion rate constants also determine the
fractional populations of the respective states. We further
included a photobleaching rate constant (kbl) to account for the
fact that FP’s photobleaching limits the length of tracking
trajectories. Note that no interconversion was allowed between
the D2 and D3 states because it was kinetically negligible for
CueR.3

Focusing again on the analysis of 2D displacements, we first
tested the inverse transformation method on the simulated
trajectories at 60 ms time resolution (i.e., sample the

displacement from the simulated diffusion trajectories with t
= 60 ms). Figure 4A shows the ITCDD of the 2D PDF(r) in

confined space from the simulation. Fitting it with eq 5 gives
D1, D2, and D3 of 7.4 ± 3.1, 0.82 ± 0.09, and 0.037 ± 0.013
μm2s−1 and A1, A2, and A3 of 29 ± 6, 55 ± 6, and 16 ± 8.5%,
respectively. Compared with the simulation inputs, the ∼10%
error in the fitted diffusion coefficients and fractional
populations again support that the inverse transformation
method can effectively deconvolute the confinement effect.
One possible reason for the ∼10% error in the fitted values of

diffusion coefficient and fractional population of each state is
the insufficient time resolution in sampling the simulated
diffusion trajectories. t of 60 ms corresponds to a sampling rate
of 16.7 s−1, which is comparable to the interconversion rate
constant γ13 between D1 and D3 state (Table 1). We therefore
also analyzed the PDF(r) by sampling the simulated diffusion
trajectories at t = 4 ms (Figure 4B). Fitting the ITCDD of this
higher time resolution results with eq 5 gives D1, D2, and D3 of

Figure 3. Analysis of noninterconverting multistate diffusions inside a
cell with ITCDD. (A) ITCDD (magenta dots) from the simulated
PDF(r) of diffusion trajectories in confined space (cell width and
length of 1.15 and 2.82 μm) with three noninterconverting diffusion
states with Dinput of 11 (D1), 0.7 (D2), and 0.036 (D3) μm2 s−1 and
fractional populations of 33.3, 33.3, and 33.3%, respectively, and t = 60
ms. The overall fit with eq 5 (black curve) and corresponding
deconvoluted three diffusion states (blue, green, and red shades for D1,
D2, and D3 states, respectively) were overlaid. (B) Fitted diffusion
coefficients of the three diffusion states from ITCDD (blue, green, and
red circles are for D1, D2, and D3 states, respectively) when A3 varies
from 5 to 33%. Note that the Dfit of each diffusion state was plotted in
different y scales for clarity. (C) Fitted fractional populations of A1
(blue circles), A2 (green circles), and A3 (red circles) from ITCDD at
various A3 inputs. Note the blue and green circles are on top of each
other.

Table 1. Simulation Input Parameters of Three
Interconverting Brownian Diffusion States in a Cell of 1.15
× 1.15 × 2.82 μm3 in Size

Figure 4. Analysis of interconverting multistate diffusions inside a cell
with ITCDD. (A) ITCDD (magenta dots) of the simulated PDF(r) of
diffusion trajectories with 60 ms time resolution in confined space with
three interconverting diffusion states with Dinput in Table 1. The overall
fit result (black curve) with eq 5 and corresponding three diffusion
states (blue, green, and red shades for D1, D2, and D3 states,
respectively) were overlaid. (B) Same as panel A but with 4 ms time
resolution. (C) Fitted fractional populations (i.e., A1, A2, and A3) from
ITCCD with 4 (blue circles) and 60 (red squares) ms time resolution,
along with the input A1, A2, and A3. (D) (SSE)

1/2 of fitted fractional
populations from ITCCD at various time resolutions.
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12.1 ± 2.5, 0.74 ± 0.05, and 0.04 ± 0.01 μm2 s−1 and A1, A2,
and A3 of 24 ± 3, 50 ± 2, and 26 ± 4% respectively, which now
has ∼3.6% error, significantly improved compared with those in
analyzing the 60 ms time resolution results. Figure 4C
compares the fractional populations from fitting ITCDD of 4
and 60 ms 2D displacement lengths with Ainputs. The results at 4
ms resolution can perfectly recover the correct fractional
populations. Therefore, as long as the displacement is obtained
at sufficient time resolution in SMT measurements, the inverse
transformation of CDD is effective.
What time resolution (i.e., sampling rate) would then be

sufficient? To address this, we systematically varied t from 4 to
60 ms in sampling the displacements in the simulated diffusion
trajectories. Figure 4D shows the square root of the sum of
square error (i.e., SSE) of fractional populations (SSE = ∑ΔA2,
ΔA = Afit − Ainput) as a function of sampling time t. As t gets
longer, (SSE)1/2 gets larger. Assuming (SSE)1/2 (= (∑ΔA2)1/2)
< 10% as being a good fit, t of 40 ms would be a minimum time
resolution here for sampling the displacements so that the
inverse transformation method would give the correct fractional
populations of diffusion states. This t = 40 ms, corresponding
to a rate of 25 s−1, is about 2.2 times faster than the fastest
interconversion rate constant γ13 of 11.4 s−1 in the simulation.
3.5. Application to Transcription Regulator Dynamics

in Live E. coli Cells. After validating the inverse transform
method using simulated diffusion trajectories, we applied this
method on the SMT data of CueR (in its apo form, i.e., apo-
CueR), a Cu+-responsive MerR-family transcription regulator,
in living E. coli cells to extract the diffusion coefficient and
fractional population of each diffusion state. Details of
obtaining the SMT data were described in our previous
work.3 In short, we tagged the nonmetallated apo-CueR with
the photoconvertible FP mEos3.2, generating CueRapo

mE. We
then used time-lapse stroboscopic imaging to track the 2D
motions of individual photoconverted CueRapo

mE in a cell at a
sampling rate of every 60 ms until the mEos3.2 tag
photobleached.
CueR can interact with DNA specifically at recognition sites

or with DNA nonspecifically.33 Three effective diffusion states
are thus expected for CueRapo

mE in an E. coli cell: (1) specifically
bound (SB) to chromosomal recognition sites, whose diffusion
coefficient should be very small and largely reflect the
chromosome conformational flexibility in the cell; (2) non-
specifically bound (NB) and moving along the chromosome;
and (3) freely diffusing (FD) in the cytoplasm. Figure 5A
shows the ITCDD from the measured 2D PDF(r) of CueRapo

mE

at a low cellular protein concentration of ∼100 nM. (The
cellular protein concentration was quantified for each cell in our
imaging approach; details see our previous work.3) Minimally
three diffusion states are needed to fit the ITCDD satisfactorily.
The three diffusion coefficients are 14.9 ± 7.6, 0.93 ± 0.08, and
0.062 ± 0.005 μm2 s−1, assignable as CueRapo

mE being FD in the
cytoplasm and NB and SB to chromosome, respectively. On the
contrary, at a high cellular protein concentration of ∼1375 nM,
the ITCDD only requires minimally two diffusion states to be
fitted satisfactorily (Figure 5B). The two diffusion coefficients
of 7.0 ± 1.5 and 0.90 ± 0.08 μm2 s−1 are within error to those
of the FD and NB states at the low cellular protein
concentration. Therefore, at this high cellular protein
concentration, the SB state is no longer resolvable; this is not
surprising because the fractional population of the SB state (i.e.,
(number of proteins specifically bound to DNA recognition
sites/(total number of proteins)) should be increasingly smaller

at higher cellular protein concentrations. More importantly,
these results demonstrate that depending on the cellular
protein concentration the experimentally resolvable number of
diffusion states can vary.
To more reliably determine the minimal number of diffusion

states, we propose using a global fit of ITCDD across all cellular
protein concentrations (i.e., four sets of data, each set coming
from a sorted group of cells with a particular cellular protein
concentration3), where the number of diffusion states and their
diffusion coefficients are shared. This global fit on the results of
CueRapo

mE gave three states with diffusion coefficients of 8.2 ±
0.3, 0.92 ± 0.04, and 0.051 ± 0.005 μm2 s−1, corresponding to
the FD, NB, and SB states, respectively. Compared with
literature values,4,17,27,34 they are in excellent agreements with
those expected for freely diffusing in the cytoplasm, nonspecifi-
cally bound to chromosome, and specifically bound to
chromosome. Figure 5C summarizes the extracted fractional
populations as a function of cellular protein concentration.
With increasing protein concentration, the fractional popula-
tion of the SB state decreases while those of NB and FD states
increase, consistent with expectations and our previous study3

and further supporting the effectiveness of globally fitting the
ITCDD.

4. CONCLUSION
High spatial and temporal resolution position trajectories from
SMT of fluorescently tagged cytoplasmic proteins carry
valuable information about the underlying biological processes
in cells, but their analysis is complicated by the confinement
effect from the cell volume, especially for small bacterial cells.
Here we deconvolute out the confinement effect by inverse
transforming the PDF of displacement length (PDF(r)) using

Figure 5. Analysis of diffusive behaviors of apo-CueR in E. coli cells
with ITCDD. (A) ITCDD (magenta dots) from experimental PDF(r)
data of apo-CueR with 60 ms sampling rate in cells with total cellular
protein concentration ([apo-CueR]) of 99 nM. The ITCDD requires a
model with three diffusion states to achieve satisfactory fitting. The
overall fit result (black curve) and corresponding three resolved
diffusion states (blue, green, and red shades for D1, D2, and D3 states,
respectively) were overlaid. (B) Same as panel A but with total [apo-
CueR] = 1375 nM. Two diffusion states are sufficient to fit the
ITCDD satisfactorily. (C) Fitted fractional populations of A1, A2, and
A3 of ITCDD for [apo-CueR] varying from 99 to 926 nM, in which a
global fit across four sets of data of different cellular protein
concentrations was performed. The [CTM] was based on the
experimentally determined cell geometry of cell width and length of
1.15 and 2.82 μm.
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the confinement transformation matrix ([CTM]), building on
the previous work of Peterman30 on simulated single-state
membrane diffusions. Besides treating single-state cytoplasmic
diffusions, we further extended this method to analyze
multistate Brownian diffusions in the cytoplasm, including
both noninterconverting and interconverting three-state
diffusions. We demonstrated the effectiveness of this method
in determining the minimal number of diffusion states, their
diffusion coefficients, and fractional populations as well as how
to choose a sufficient time resolution in analyzing systems
containing interconverting multistates. A successful application
to experimental multistate SMT data of a transcription factor in
live E. coli cell is also demonstrated. Together with Peterman’s
early work on membrane diffusion (whose extension to
multistate systems can readily follow our work on cytoplasmic
diffusion here), our method allows for direct connection
between SMT data with diffusion theory for analyzing
molecular diffusive behaviors in live bacteria.
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