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Imbalanced copper homeostasis and perturbation of membrane trafficking
are two common symptoms that have been associated with the pathogenesis
of neurodegenerative and neurodevelopmental diseases. Accumulating evi-
dence from biophysical, cellular and in vivo studies suggest that membrane
trafficking orchestrates both copper homeostasis and neural functions—
however, a systematic review of how copper homeostasis and membrane
trafficking interplays in neurons remains lacking. Here, we summarize cur-
rent knowledge of the general trafficking itineraries for copper transporters
and highlight several critical membrane trafficking regulators in maintaining
copper homeostasis. We discuss how membrane trafficking regulators may
alter copper transporter distribution in different membrane compartments
to regulate intracellular copper homeostasis. Using Parkinson’s disease
and MEDNIK as examples, we further elaborate how misregulated traffick-
ing regulators may interplay parallelly or synergistically with copper
dyshomeostasis in devastating pathogenesis in neurodegenerative diseases.
Finally, we explore multiple unsolved questions and highlight the existing
challenges to understand how copper homeostasis is modulated through
membrane trafficking.
1. Introduction
Imbalanced copper (Cu) homeostasis has been associated with the pathogenesis
of neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s
disease (PD) and familial amyotrophic lateral sclerosis (ALS) [1–3]. Multiple
studies have suggested that Cu influences the regulation and aggregation of
the AD hallmark protein, amyloid-β and tau, as well as interacts with α-synu-
clein to produce toxic oligomers in PD. On the other hand, perturbation of
membrane trafficking, such as lysosomal failure or impaired endocytic recy-
cling, has also emerged as a common symptom in many neurodegenerative
diseases [4,5]. The concurrent observation of perturbations in both pathways
in diseases raises an interesting question: how can membrane trafficking
machinery and Cu homeostasis interplay in the nerve system?

From the circulation perspective, the blood–brain barrier (BBB) is the pri-
mary route for Cu uptake into the brain’s central nervous system (CNS). Cu
is associated with soluble Cu-carriers and transported across membrane com-
partments of endothelial cells to prevent oxidative damage from free Cu ions.
The uptake, efflux and distribution of Cu across cell membranes are mediated
by membrane-integrated Cu transporters, including Cu transporter 1 (CTR1),
divalent metal transporters (DMTs) and P-type ATPases, ATP7A and ATP7B,
respectively. These transporters further distribute Cu to different organelles
via their corresponding chaperones in a Cu-dependent manner.
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Since these Cu transporters reside in different cellular com-
partments, the trafficking between membrane compartments
serves as the regulatory mechanism to balance Cu uptake
and Cu excretion [6–8]. Many cellular proteins, including
coat proteins, adaptor and effector proteins, and cytoskeletons,
coordinate with each other, forming complex and sophisticated
regulatory machineries that determine the travelling fates of
intracellular membrane compartments carrying Cu transpor-
ters. Dysregulation of membrane trafficking could result in
misplacement of Cu transporters, imbalance between Cu
uptake and exclusion and immaturity of functional cupropro-
teins, thus perturbing Cu distribution [7–10]. These findings
highlight the importance of membrane trafficking in modulat-
ing Cu homeostasis. It is well known that neural cells are the
most polarized cells and have the heaviest membrane traffick-
ing activity, contributing to the high demand for long-range
transport and neuronal excitability [11–13]. It may not be sur-
prising to see a close relationship between Cu homeostasis and
membrane trafficking in neural cells.

This review aims to provide a general view of the current
understanding of Cu distribution in mammalian brains. We
outline the importance of membrane trafficking machinery
in maintaining proper Cu distribution and cellular Cu
homeostasis, with particular attention to the key regulators
responsible for distributing and recycling Cu transports
across different membrane compartments in cells. We also
use diseases showing both neuropathy and Cu-dysregulation
symptoms as examples to delineate how membrane traffick-
ing and Cu homeostasis may interplay to further exacerbate
the symptoms in the nerve system. Considering the majority
of current understanding about the trafficking regulation of
Cu transporters is done in the non-neuronal system, we
explore multiple unsolved questions and highlight the exist-
ing challenges. The molecular picture of interplaying
pathways between membrane trafficking machinery and Cu
homeostasis could help understand Cu transporters’ physio-
logical configurations, signalling and behaviour dynamics in
maintaining neuronal Cu balance.
2. Copper transport regulation in the brain
As a catalytic and structural cofactor, Cu constitutes the active
sites of many metalloproteins to enable electron transfer,
removal of reactive oxygen species (ROS), production of
neurotransmitters and neuronal differentiation [14–17].
Although essential, Cu’s redox properties also make it
detrimental when dysregulated [18,19]. The BBB and the
blood–cerebrospinal fluid (CSF) barrier (BCB) are the essential
gatekeeping structures for Cu’s entrance or exit from the brain.
After passing the BBB, Cu eventually enters the neurons.
Neurons require timely adjustment of intracellular redox
status and distribution of Cu for proper neuron-chemical
activities and general metabolism [16,17,20]. Following the
entry into neurons via plasma membrane (PM) transporters
[21–23], Cu+ is transferred by chaperones to distinct intracellu-
lar compartments for redox activity, protein maturation and
Cu efflux, or sequestered to metallothionein and abundant
Cu-binding tri-peptide glutathione for Cu storage. Here, we
summarize the working principles of Cu-binding proteins in
the uptake, distribution and storage and secretory pathways,
as well as their connections to the neuronal functions.
2.1. Cu circulation in and out of the brain: BBB and BCB
Next to the liver, the brain is the second most Cu-abundant
organ in the body (approx. 5 µg g−1 wet tissue weight). The
Cu concentration in CSF (approx. 0.02 µg ml−1) is much
lower than in blood (approx. 0.9 µg ml−1), indicating Cu circu-
lation to the brain is strictly regulated [24–26]. Humans acquire
Cu from their diet and re-distribute it to different organs
through the circulation except for the brain. The microenviron-
ment of the brain is separated from peripheral circulation by
the BBB and the BCB [27]. Studies suggest BBB and BCB are
the primary routes for Cu to enter and export to and from
the brain, respectively, to maintain Cu homeostasis in CNS
from the circulation [28]. The form of Cu transferring across
the BBB is still unclear. In blood, Cu is mainly bound to ceru-
loplasmin, albumin, transcuprein and amino acids [29].
Ceruloplasmin-bound and albumin-bound Cu are likely not
the forms transporting through the brain since their transgenic
null models show no significant difference in brain Cu content
compared to the wild-types [27,30,31]. Even though it has been
demonstrated that free Cu transport into the brain is much
faster than ceruloplasmin or albumin-bound Cu [27], there is
still no consensus if free Cu is the species that enter the BBB,
especially considering most Cu-binding proteins have pico-
molar Cu-binding affinity.

The BBB comprises the endothelial cells of the cerebral
capillary, pericytes embedded in the capillary basement
membrane and perivascular feet of astrocytes (figure 1).
This unique structure makes the BBB a highly selective semi-
permeable barrier that controls Cu transport from blood
circulation to the interstitial fluid of the brain and distributes
throughout the brain. By contrast, the BCB separates blood
from the CSF produced in the choroid plexuses of the ventri-
cles of the brain. The structural basis of the BCB includes the
tight junctions between choroidal epithelial cells,
the capillary basement membrane and endothelium cells con-
taining fenestrations. To enter the brain, Cu needs to pass
across these barriers through Cu transporter proteins. High-
affinity CTR1, antioxidant 1 (ATOX1) and P-type ATP7ases
copper-transporting alpha/beta (ATP7A/B) mediate Cu traf-
ficking within the BBB and BCB. The postulated model starts
with Cu uptake from the blood by CTR1 in capillary endo-
thelial cells. Once Cu is obtained from Cu chaperones,
ATP7A translocates to the abluminal membrane and releases
Cu into brain interstitial fluid for neuronal activities. Under
Cu excess conditions, Cu may flow to the CSF where exces-
sive Cu can be removed by CTR1 in the BCB and released
back into the bloodstream by ATP7B. Both ATP7A and
ATP7B are present in brain capillary endothelial cells and
choroidal epithelial cells but have different relative mRNA
levels. Compared to ATP7B, the mRNA expression of
ATP7A is 13-times higher in the BBB but four-times lower
in the BCB, suggesting that ATP7A plays a major role in
transporting Cu from the blood to the brain [32]. For choroi-
dal epithelial cells of the BCB, ATP7A appears to locate
toward the apical microvilli while ATP7B toward the basolat-
eral membrane under exposure to excessive Cu [32]. These
results are opposite to the observations in placental and intes-
tinal epithelial cells [33,34]. However, the mechanisms
involved in the differential allocation of ATP7A and ATP7B
in the brain and the discrepancy of dispatch direction
between the choroidal epithelia and epithelium outside the
brain region are still unclear.
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Figure 1. Copper transportation across brain barriers BBB and BCB. Cu is uptake from the systemic circulation via BBB endothelial cell CTR1 and released to the
parenchyma by ATP7A/B. Excess Cu flow to the CSF where it can be removed by CTR1 in BCB choroidal epithelial cells and released back into the blood by ATP7A/B.
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2.2. Cellular Cu homeostasis

2.2.1. Cu uptake pathways

CTR1 is responsible for about 70% Cu uptake in human cells
[35]. Biochemical analysis and electron microscopic crystallo-
graphy have revealed that CTR1 subunits assemble into a
multimeric complex [36–38]. CTR1 forms a functional trimeric
channel in the Cu uptake pathway with a lowmicromolar affi-
nity (i.e. 0.1–13 µM depending on the tissue type) [21]. Ag+

inhibited and reducing agent ascorbate enhanced Cu uptake
suggests that CTR1 transports Cu+ species. Cu+ import into
cells is mediated in an energy-independent manner and
enhanced by the extracellular acidic environment (low pH)
and high K+/Na+ concentrations [39,40]. Cu uptake is regu-
lated through Cu-dependent vesicular trafficking. At
elevated Cu levels, CTR1 undergoes endocytosis from the
PM to early endosomes and returns to the PM when normal
Cu levels are restored [41–43]. At the molecular level, the relo-
cation of CTR1 is also mediated by Cu transporter 2 (CTR2)
[38]. CTR2 is structurally similar to CTR1 and localizes at intra-
cellular vesicular compartments such as endosomes and
lysosomes (figure 2). CTR2 stimulates cleavage of the ectodo-
main of CTR1, implying that it may play a regulatory role in
the Cu-dependent mobilization of CTR1 [38].

Ctr1-deficient cells from transgenic mice show about 30%
residual Cu transport, suggesting other Cu acquisition path-
ways. The divalent metal transporters 1 (DMT1), also known
as the ferrous iron (Fe2+) transporter, transports other metal
ions such as manganese, cadmium and Cu across the PM.
The partial knockdown of DMT1 resulted in reduced Cu trans-
port and intracellular Cu level in Caco2 cells. Competition
studies between iron and Cu uptake indicate DMT1 also selec-
tively transports Cu+ [44]. The study from the rat’s brain
showed that loss of Dmt1 function significantly decreased
iron levels but interestingly promoted Cu accumulation in
the striatum and hippocampus and upregulated Ctr1 and
Atp7A in the hippocampus. This observation implies that
altered iron metabolism affects brain Cu transport, even
though the molecular mechanism is still largely unknown
[45]. Similar crosstalk between Cu and Zn were also observed.
Zinc strongly inhibits CTR1-independent Cu transport,
suggesting the possibility of the Zrt/IRT-like protein (ZIP)
familymembers involved in Cu uptake, but no direct evidence
has been reported [46].
2.2.2. Cu trafficking and storage

Cytosolic Cu is routed to the target destination through
specific protein–protein interactions between Cu chaperones
and target proteins. ATOX1 is responsible for transporting
Cu to ATP7A and ATP7B that supply Cu to the secretory
pathway [8]. It interacts and exchanges Cu with the N-term-
inal Cu-binding domain of ATP7A/B and can transfer up to
six Cu ions [47,48]. Furthermore, ATP7A immunofluores-
cence results between Atox1+/+ and Atox1−/− mouse
embryonic fibroblasts (MEFs) suggest that ATOX1 is essential
in modulating the Cu-dependent movement of ATP7A from
the TGN to the cell surface and determining the threshold
for Cu-dependent trafficking of ATP7A [49].

CCS is another chaperone that delivers Cu to and
involves the maturation of superoxide dismutase 1 (SOD1).
CCS and SOD1 primarily reside in the cytosol but also in
the mitochondria and nucleus [50,51]. Excessive Cu downre-
gulates the CCS protein level through a post-translational
process, as the mRNA level of CCS does not show any Cu-
dependent reduction [52]. The proteasome inhibitor blocking
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CCS degradation under excessive Cu suggests that Cu regu-
lates CCS expression by modulating its protein degradation
[53]. Brady et al. identified that CCS is a mediator of Cu deliv-
ery to the X-linked inhibitor of apoptosis (XIAP), and XIAP is
the E3 ubiquitin ligase of CCS. The study proposes that
XIAP-mediated ubiquitination of CCS enhances the ability
of CCS to acquire Cu and activate SOD1 under the basal
Cu level. Under the elevated Cu level, the Cu-bound CCS
transfers Cu to XIAP and is ubiquitinated for proteasomal
degradation [54]. Cytochrome c oxidase (CCO), a respiratory
energy-transducing enzyme, is the main Cu protein complex
in mitochondria. COX17, the Cu chaperone for CCO, is impli-
cated in shuttling Cu from cytosolic to mitochondria due to
its dual subcellular localization in the cytosol and intermem-
brane space of mitochondria [55]. It transfers Cu to SCO1,
SCO2 and COX11, which is involved in the insertion of Cu
into CCO [56–58]. The mammalian phosphate carrier
SLC25A3, located in the inner membrane of mitochondria,
is also found to transport Cu to CCO [59].

Glutathione (GSH) is a predominant tri-peptide bio-thiol
involved in antioxidative defense against ROS and signal
transduction [60]. Regarding intracellular Cu homeostasis,
Cu–GSH complexes are considered the major exchangeable
cytosolic Cu pool and vital in connecting Cu’s uptake and
cellular trafficking. From the comparison of Cu-binding affi-
nities across major Cu-binding proteins [61] and the fact
that GSH transfers Cu to metallothionine [62], ATOX1 [63]
and SOD1 [64], GSH has been implicated as the intermediator
of the Cu source to other proteins. Chen et al. [65] demon-
strated that an increased GSH level depletes the
exchangeable pool of Cu and upregulates Ctr1 expression
in SR3A cells. Maryon et al. [66] showed depletion of GSH
decreases cellular Cu uptake by CTR1 while depletion of
the Cu chaperone ATOX1 and CCS has no effects in
HEK293 cells. These studies collectively support GSH as an
intermediator of the Cu source and its involvement in Cu
uptake. It has been reported that GSH also mediates the
export of Cu. GSH regulates the glutathionylation condition
of Cu transporters ATP7A and ATP7B [67]. The depletion of
GSH affects the vesicular trafficking of ATP7A and leads to
Cu accumulation [67].

Metallothioneins (MTs), a family of small (approx. 7 kDa)
cysteine-rich proteins that bind zinc and Cu in high stoichi-
ometries (up to 12) [68], are responsible for cellular Cu
storage and detoxification [69]. Four MT isoforms, MT-1 to
MT-4, were found in mammals. MT-1 and MT-2 exist ubiqui-
tously in the liver, kidney, intestine and brain. MT-3 is mainly
located in the brain, and MT-4 in the stratified epithelium [70].
Either Cu overload or Cu deficit has been reported to induce
the expression of MTs, indicating MTs must be involved in
at least two bio functions [69,71,72]. It is known that the pres-
ence of MTs is essential for the survival of cells when ATP7A is
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deficient [73]. An increased MT level was found in the liver
and kidney of Wilson’s disease (WD) patients and mouse
models [74]. These results collectively suggest the MTs seques-
ter excess Cu to mask Cu toxicity [75]. On the other hand, MTs
have been proposed to store Cu to ensure supply for cuproen-
zymes as MT-null cells show less Cu content and are more
sensitive to Cu depletion than wild-type cells [72,76].

2.2.3. Cu-secretory pathways

ATP7A and ATP7B are the essential Cu exporters in balancing
intracellular Cu levels. Genetic defects of ATP7A and ATP7B
connect to the aetiology of Menkes’ diease (MD) and WD,
respectively [77,78]. ATP7A/B are responsible for transport-
ing Cu from ATOX1 in the cytoplasm to the Golgi lumen
for Cu incorporation into cuproenzymes. The two cuproen-
zymes that are largely expressed in the nervous system and
rely on ATP7A Cu delivery for activation are the peptidyl-
α-monooxygenase (PAM) and dopamine-β-hydroxylase
(DBH), both belong to the monooxygenase family and
require two Cu atoms in each monomer to be functional.
Their neuro-specific property provides a connection between
Cu homeostasis and the neurological symptoms in diseases
with ATP7A/B dysregulation.

PAMis the onlyenzyme that catalyses theC-terminalα-ami-
dation of neuropeptides and contributes tomore than half of all
neuropeptides’ activities. Its expression is widespread in the
CNS,with the highest level in the hypothalamus, hippocampus
and neocortex [79]. The relationship between PAM and Cu
homeostasis is bidirectional. Transgenic mice with their
ATP7A inactivated show decreased levels of several amidated
peptides (i.e. decreased PAM function) despite normal PAM
protein expression. Thus, compromised PAM functions likely
contribute to the neuronal-specific symptoms of patients with
ATP7A mutation [80]. On the other hand, PAM is also implied
to play a role in Cu metabolism. The transcriptional levels of
Atox1 and Cox17 are lower in the pituitary of PAM+/− mice
compared to WT mice. While mice lacking PAM do not live
past mid-gestation, PAM+/− mice show behaviour and physio-
logical defects that can be mimicked by WT mice under Cu
restricted diet. Most of these defects in PAM+/− mice can be
reversed using a dietary Cu supplement. However, the peptide
amidation level does not showacorresponding increase in these
mice, indicating a role for Cu itself in mediating the effects of
PAM+/− heterozygosity [19,81,82].

DBH converts dopamine to norepinephrine, a stress hor-
mone and neurotransmitter, in noradrenergic neurons of the
locus coeruleus and sympathetic nerve terminals. These neur-
ons send direct and indirect projections throughout the body,
including the brain and innervate nearly all the cerebral
cortex. It is thus not surprising that dysfunction of DBH links
to a wide range of neurological disorders, including neurode-
generative diseases (reviewed in [83]). Current evidence
suggests that DBH acquires Cu from ATP7A in the lumen of
the trans-Golgi network (TGN) [84] and forms tetramers in
human cells [85]. Upon functional maturation, there are two
pathways for DBH to exit the cells. The majority of DBH is
directed to secretory granules, where it catalyses the synthesis
of norepinephrine from dopamine. This soluble form of DBH
is secreted outside the cell along with norepinephrine in
response to neuronal activation. On the other hand, a small
population of soluble functional Cu-bound DBH is constantly
being secreted out of the cell under resting conditions (without
neuronal activation). Although the mechanism of this resting
state secretion of DBH is not well understood, Schmidt et al.
[86] demonstrated that this process is Cu-dependent and differ-
entially regulated by ATP7A and ATP7B. It is unclear whether
the cell uses this process to partially handle intracellular Cu bal-
ance. Regardless, the study clearly shows that the resting state
secretion of DBH is sensitive to Cu balance, indicating Cu
homeostasis plays a role in catecholamine metabolism.

ATP7A/B dysregulation affects the activity of cuproen-
zymes like PAM and DBH, which may account for the
neurological symptoms seen in diseases with ATP7A/B
mutations. Excessive Cu that is not incorporated into cuproen-
zymes will be carried by ATP7A/B and expelled from the cell
through vesicle trafficking. ATP7A and ATP7B dynamically
cycle between TGN, vesicles and PM. Under basal Cu level,
ATP7A and ATP7B both reside in TGN to accept Cu from
ATOX1 and shuttle it to cuproenzymes in the secretory path-
way. It is worth noting that although ATP7A and ATP7B both
mediate Cu exclusion, the intracellular destinations (i.e. basolat-
eral and apical membrane) are opposite and vary in different
cell types (e.g. choroidal epithelial cells versus hepatocyte)
[6,34,87]. In the cerebellum, ATP7A and ATP7B have been pro-
posed to have distinct roles based on their cell-specific
distribution, distinct enzymatic characteristics, and only
ATP7B colocalized with the Cu-requiring enzyme, ceruloplas-
min. With faster transportation, ATP7A is suggested to have a
homeostatic role in maintaining intracellular Cu levels. By con-
trast, ATP7Bhas a biosynthetic role inmediating the synthesis of
Cu-dependent enzymes [88].
2.3. Distributions of Cu and Cu transporters in the brain
and neurodegenerative disease

Cu is unevenly distributed in the brain (figure 3a), and its dis-
tribution is altered in AD, PD and ALS patients. In a healthy
brain, the grey matter has a higher Cu concentration than
white matter, with the highest level in the substantia nigra
(figure 3b and table 1). For different cell types, histochemical
studies with brain slices revealed that glial cells show higher
Cu levels than neurons under both physiological and patho-
logical conditions [94].

Davies et al. quantified expression levels of CTR1, ATOX1,
ATP7A andATP7B in the human brain (table 1). CTR1 is ubiqui-
tously expressed in all brain regions except for the Purkinje cells
in the cerebellum. There is a similar level among the substantia
nigra, anterior cingulate cortex, visual cortex, putamen, the
body of caudate and the cerebellum. CTR1 is enriched in the
apical surface of ependymal cells in the choroid plexus. In the
human visual cortex, anterior cingulate cortex, caudate nucleus
andputamen,CTR1 is primarily in the neurons,while in the cer-
ebellum, it is restricted to Bergmann glia [90]. ATP7A and
ATP7B protein levels did not show a significant correlation
with Cu levels in the brain (table 1). ATP7A protein levels are
most prominent in the cerebellum and substantia nigra;
ATP7B is dominant in neuronal cells of the hippocampus, glo-
merular cell layer of the olfactory bulb, granular cell layer of
the cerebellum.ATP7AandATP7B have comparable expression
and share a similar cellular distribution in both neuronal soma
and proximal fibres in the anterior cingulate cortex. ATP7A and
ATP7B are expressed in the striosomes of the caudate nucleus,
putamen and cerebellar Purkinje neurons but not in Bergmann
glia [90].
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Figure 3. Cu distribution in the brain. (a) Fluorescence intensity of Cu normalized to the incident X-ray intensity in mouse brain. Copper is localized to areas
surrounding the corpus callosum, the linings of the third ventricle and the choroid plexus. (Figure reprinted with permission from [89]; published by MDPI,
2019.) (b) Anatomical regions of human brain for table 1.

Table 1. Abundance of Cu and Cu transporters.

anatomical region
(figure 3b) Cu levela Cu (relative abundance)b CTR1c ATOX1c ATP7Ac ATP7Bc

visual cortex 4.14 0.93 0.65 ± 0.07 1.08 ± 0.21 0.67 ± 0.12 0.58 ± 0.19

anterior cingulate cortex 4.04–57 0.9–1.0 0.68 ± 0.09 1.34 ± 0.25 0.88 ± 0.18 0.47 ± 0.19

body of caudate 5.09–18.46 1.14–1.26 0.74 ± 0.08 1.26 ± 0.20 0.72 ± 0.15 0.84 ± 0.32

putamen 4.47–62 1 0.71 ± 0.12 1.39 ± 0.22 0.70 ± 0.28 0.61 ± 0.20

substantia nigra 11.4–17.42 1.19–2.55 0.73 ± 0.16 2.05 ± 0.60 1.00 ± 0.22 0.33 ± 0.15

cerebellum 4.85–47 0.5–1.08 0.68 ± 0.07 0.92 ± 0.12 2.00 ± 0.45 0.78 ± 0.27
aUnits are μg g−1 wet tissue or dry tissue [90–93].
bNormalized to Cu content in the putamen [90–93].
cAnalysis of western blotting band normalized to β-actin.
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Genetic defects on anyof theseCu transporters directly cause
severe Cu disorder diseases. For example, mutations in ATP7A
and ATP7B cause acute defects in early development and are
responsible forMDandWD, respectively. In addition, the imbal-
ance of Cu homeostasis in the brain is thought to play an
important role in the pathogenesis ofmanyprogressive neurode-
generative diseases. Cu levels have been found to be reduced in
the substantia nigra and locus coeruleus of the brain from PD
patients [90]. In AD, Cu is found in high concentration in Aβ pla-
ques and linked to their deposition [95,96], while decreased Cu
levels are found in the hippocampus, amygdala and cerebral
cortex [97,98]. ALS patients have elevated Cu levels in the frontal
lobe grey matter tissue [99] but reduced intraneuronal Cu levels
in the spinal cord [100]. Age-dependent alterations in Cu level
are not likely impacted directly by the functional defects of Cu
transporters per se. Instead, theymay be related to the accumulat-
ive impacts caused by trafficking dysregulation of Cu
transporters CTR1, ATP7A and ATP7B.
3. Membrane compartments and their
communications involved in regulating
intracellular Cu homeostasis

Change of subcellular distribution of membrane proteins,
including Cu transporters CTR1 and ATP7A/B, is a pivotal
mechanism for regulating their functions. In eukaryotes, the
relocation of membrane proteins is governed by a sophisti-
cated membrane network communicated through vesicular
trafficking. The trafficking network starts from the membrane
protein synthesis pathway, which delivers newly synthesized
membrane proteins from the endoplasmic reticulum (ER) via
the Golgi apparatus to the PM.When the proteins are removed
from the cell surface, the trafficking network delivers interna-
lized surface proteins either for endosomal–autophagy–
lysosomal degradation or recycling to other membrane
compartments. This vesicular membrane trafficking machin-
ery is coordinated by multiple regulators, including coat
proteins, adaptor protein complexes, GTPases, vesicle sorting
factors, motor proteins/cytoskeletons, etc., which dictate the
identities and destinations of vesicles (figure 4). Dysregulation
of membrane trafficking has been shown to misplace
Cu transporters, which leads to intracellular Cu imbalance.
Concomitantly, dysfunctional metal ion homeostasis may
result in neurodegeneration and neuroinflammation, contri-
buting to the development of several neurodegenerative
diseases [101]. Numerous membrane trafficking regulatory
proteins have been identified to be closely associated with
neuronal dysfunction when mutations occur [5,102]. There-
fore, it is likely that the regulation of membrane trafficking is
the key to linkCu homeostasis andmaintaining neuronal func-
tions. Although extensive studies have been focused on the
role of membrane trafficking in the neuronal system, only a
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limited number of trafficking regulators are identified as
responsible for the Cu-induced trafficking of Cu transporters,
CTR1 and ATP7A/B. Most of the mechanisms regulating Cu
transporter trafficking were currently identified in non-neur-
onal cells. However, considering that all types of cells share
similar trafficking machinery, the dysfunction of those regula-
tors also impacts the pathogenesis of neurodegenerative
diseases. Therefore, we introduce key membrane compart-
ments and their associated regulatory mechanisms in
regulating the distribution of Cu transporters below.

3.1. Key membrane compartments mediating Cu
homeostasis

3.1.1. Endoplasmic reticulum

After translation, newly synthesized membrane and secretory
proteins, including CTR1 and ATP7A/B, are moved to the ER
for proper folding and assembly. Several molecular chaper-
one families assist this maturation process in ensuring
protein integrity. When errors are detected, the proteins are
retained for repair or ER-associated degradation. Protein dis-
ulfide isomerase (PDI) is a member of the thioredoxin
superfamily of redox proteins. PDI assists the target protein’s
disulfide bond formation and is thus responsible for thiol-
dependent quality control. As a redox enzyme with oxidase
and reductase activity, PDI regulates the expression and
activity of Nox (NADPH oxidase family) proteins, which
dedicate the ROS generation in the ER [103]. PDI’s Cu-
binding ability and catalytical CXXC containing domain a,
which is structurally similar to ATOX1, lead to the
assumption that PDI may also act as a Cu chaperone and
affect Cu disposition although further investigation is
needed [104].

In response to excessive Cu, the ER activates the unfolded
protein response to avoid ER stress in hepatocytes. Several
WD-causing mutations of ATP7B, including the most frequent
H1069Q, while still preserving the ATP7B’s Cu-transporting
activity, result in the protein’s extensive ER retention and
increased degradation [105–107]. Suppression of the down-
stream signalling pathways effectively releases the H1069Q
mutant from ER to TGN, recovers Cu-dependent trafficking
and reduces intracellular Cu levels [108,109]. Electron
microscopy reveals that patientswithWDhave dilated anddis-
organized ER in hepatocytes, suggesting that Cu influences ER
homeostasis, but little is known about this process [110].

In the brain, the toxic effect of Cu is first buffered by astro-
cytes, and it has been suggested that astrocytes might rely on
the ER stress response to protect them from Cu-inducing ROS
[111]. To maintain normal Cu levels in the brain, wild-type
ATP7B in choroidal epithelial cells of BCB translocates to
the basolateral membrane to excrete excess Cu into the
blood. ER retention of ATP7B mutants in WD could result
in Cu accumulation in the brain. In noradrenergic neurons,
where the ATP7A/ATP7B ratio regulates extracellular active
DBH (i.e. Cu-bound DBH), extensive ER retention of ATP7B
may cause catecholamine misbalance in neurological WD.
3.1.2. Golgi apparatus

The Golgi apparatus is a central node at the intersection of the
exocytic and endocytic routes in intracellular membrane
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trafficking. It plays a crucial role in sorting newly synthesized
and recycledproteins and lipids towards their final destinations.
It also serves as a biosynthetic centre for glycoproteins and
lipids and an active signalling hub [112]. For normal Cu homeo-
stasis, the Golgi apparatus functions as the organelle for PM-
targeted cuproenzymes to acquire Cu and become functional
[7,113,114]. The Golgi apparatus, specifically at the TGN, har-
bours ATP7A and ATP7B, which transfer Cu from the cytosol
into the Golgi lumen for incorporation into Cu-dependent
enzymes such as lysyl oxidase, ceruloplasmin, PAM and DBH
[7]. Increases in Cu concentration stimulate the trafficking of
ATP7A/B proteins to the recycling vesicles near the PM,
where ATP7A/B efflux Cu to ensure proper intracellular Cu
fluxes and avoid potentially toxic Cu accumulation. Mutations
inATP7A/B or themembrane trafficking regulators could affect
ATP7A/B’s exit fromor subsequent retrieval to theGolgi appar-
atus [115–119]. This disturbed trafficking, in turn, disrupts the
homeostatic Cu balance, resulting in Cu deficiency (MD) or
Cu overload (WD).

At the molecular level, the Golgi apparatus is the location
where the transmembrane and secretory proteins undergo
O-linked glycosylation, a key process that is linked to
protein stability and subcellular allocation. CTR1 is a highly
glycosylated membrane protein. Glycosylation impairment
significantly compromises protein stability and PM abundance
of CTR1. Mutation at the glycosylation site (Thr-27) or
expression of CTR1 in O-glycosylation deficient cells both
resulted in proteolytic cleavage of CTR1 [120,121]. Reciprocally,
studies in mouse intestinal epithelia demonstrated that Cu
availability alters the glycosylation levels of the glycosylated
form of Ctr1 in a dose- and time-dependent manner [122].
Glycosylation also has been associated with the stabilization
of ATP7A on PMs [123–125]. It has been demonstrated that
ATP7A is highly expressed in hippocampus neurons, specifi-
cally in the late Golgi [126]. However, unlike CTR1, where
glycosylation plays roles in cellular allocation, the role of
glycosylation for ATP7A/B function is still unclear.

In neurons, the Golgi apparatus is essential for develop-
ing axons and dendrites and maintaining their highly
complex polarized morphology. Early occurrence of Golgi
pathology is one of the characteristic symptoms of neurode-
generation [127]. Fragmentation of the Golgi apparatus has
been reported in numerous pathological non-infectious con-
ditions, including neurodegenerative disorders [128]. The
altered organization/function of the Golgi apparatus may
impact the secretory performance of the cell and trigger the
Golgi stress response, affecting cell survival [112,129]. An
interactome study identified several neurodegenerative
related gene products, including subunits of Golgi-localized
conserved oligomeric Golgi (COG) complex co-isolated
with ATP7A [130]. COG is a multisubunit tethering complex
that controls membrane trafficking and ensures Golgi homeo-
stasis by orchestrating retrograde vesicle targeting within the
Golgi. Cells lacking the COG complex show increased surface
levels of ATP7A and display decreased Cu content [130].
Studies on the Drosophila neuromuscular junction further
revealed that ATP7-mediated Cu homeostasis perturbation
led to alterations of mitochondria distribution in synapses
and synaptic activities. The downregulation of COG complex
subunits can rescue the altered synaptic phenotypes.
These results collectively support the critical role of Golgi
and Cu in neurodegeneration and neurodevelopmental
disorders [131].
3.1.3. Endo-lysosomal system

Endo-lysosomes are a series of discontinuous membrane
networks involving the sorting and delivery of membrane
compartments and their protein cargo to/from the PM, TGN
and lysosomes. Early endosomes, the first membrane compart-
ments invaginated from the PM, play a crucial role in sorting
internalized cargos to different intracellular destinations. On
entering the endosomal system, the internalized protein
cargo is either delivered to the late endosomes/lysosomes
for degradation or sorted to recycling endosomes for recycling
back to the PM or retrieving back to the TGN. Besides protein
degradation, lysosomes also function as a central hub for other
organelles [132]. They continuously interact with endosomes,
phagosomes, autophagosomes, mitochondria and PMs.
Lysosome–mitochondria contacts were recently proposed
to aid mitochondria fission and facilitate the transfer of
lysosome-derived metabolites into the mitochondrial matrix
to assist metabolic reactions in mitochondria [133,134]. Lyso-
somes also fuse with the PM to discharge their contents
outside the cell [135]. These interconvertible membraneous
compartments constitute the endo-lysosomal system, which
is critical in maintaining cellular Cu homeostasis. Recent
studies suggest their Cu storage and regulatory role to prevent
cytotoxicity when the intracellular Cu supply is in excess
[134,136,137]. When Cu exceeds the safe intracellular level in
hepatocytes, ATP7B is exported from the Golgi to endo-lysoso-
mal compartments, suggesting the involvement of
lysosomes in mediating Cu efflux [136–141]. Studies in Cu2+

overloaded hepatocytes showed that Cu accumulated in the
lysosomes and generated ROS, collectively causing a loss of
lysosomal membrane integrity. Considering that the release
of lysosomal proteases and phospholipases contribute to cyto-
toxicity, this collective evidence suggests lysosomes are likely
to be the major site of endogenous cytotoxic ROS formation
[142].

The cell surface abundance of CTR1 is tightly regulated
through the endo-lysosomal system [143]. Upon Cu stimu-
lation, CTR1 internalizes through endocytosis and rapidly
enriches in early endosomes [41,144]. Once the normal Cu
level is restored, CTR1 is sorted to the recycling endosomes
and resupplied to the cell surface [41]. Recent studies by
non-biased proteomic screening found that CTR1 also takes
a retromer-dependent recycling route [145]. This finding
links endosomes to the TGN for regulating intracellular Cu
homeostasis and platinum-based drug uptake [141,145]. How-
ever, prolonged high Cu stress also leads to CTR1 degradation,
presumably in the lysosome [144]. It is worth noting that
CTR2, a highly conserved CTR1 homologue, is also located
at the late endosome and lysosome. CTR2 mediates the for-
mation of CTR1 ectodomain truncation and modulates CTR1
distribution to the cell surface, which prevents Cu accumu-
lation in the endosomal compartment. The involvement of
lysosomes in Cu homeostasis is not just for degrading CTR1.
Studies on ATP7B showed that lysosomes could also serve as
intermediate compartments for dispersing ATP7B from TGN
under Cu stress [118,136,146]. Taken together, accumulating
evidence supports the role of lysosomes in modulating Cu
homeostasis [38,147].

Abnormalities in both endosomes and lysosomes, or dys-
regulation in their trafficking, have been associated with AD,
PD and Lewy body dementia (reviews in [102,148,149]). The
dysfunction of the endo-lysosomal system likely leads to
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the failure of clearance for amyloid proteins in the brain and
the accumulation of toxic protein aggregates over time [149].
Concomitantly, Cu precipitation is often observed in patient
brain lesions, and the association of Cu with amyloid pro-
teins has been shown to accelerate senile plaque formation.
Therefore, trafficking in the endo-lysosomal system has
emerged as a common biological pathway affecting amyloid
protein clearance and intracellular Cu balance in the neuronal
system [5,102,150].
/journal/rsob
Open

Biol.11:210128
3.1.4. Autophagosomes

Autophagosomes are another group of degradation compart-
ments that continuously engulf organelle waste and deliver it
to lysosomes for degradation. The dysfunctional autophagic
flux (i.e. a measure of autophagic degradation activity) con-
tributes to the deficient elimination of abnormal and toxic
protein aggregates and is commonly seen in several major
neurodegenerative disorders [134].

Several factors, including ER stress, oxidative stress and
aging, affect autophagic flux. For example, Cu-induced oxi-
dative stress can initiate the autophagy process in different
tissues such as the kidney, liver and brain [151–153]. A
recent study revealed that Cu-induced autophagy in MEFs
is through the binding of Cu to autophagic kinases ULK1/2,
which leads to an increase in autophagy flux in a dose-depen-
dent manner [154]. Similar phenomena were also observed in
dopaminergic cells, which show increase autophagic flux and
protein ubiquitination under Cu stress [153].

Interestingly, autophagy impairment has been shown to
impact intracellular Cu distributions and induce Cu toxicity
[153]. It is known that autophagic activity decreases with
age. Masaldan et al. identified Cu accumulation as a universal
feature of senescent cells, whose enrichment is considered a
hallmark of ageing. Elevated Cu in senescent MEFs was
accompanied by elevated levels of Ctr1, diminished levels of
Atp7a and enhanced antioxidant defense. They also found
that rapamycin treatment, an mTOR inhibitor that activates
autophagy in senescent cells, can prevent and reverse Cu
accumulation, suggesting the protective role of autophagy in
defending Cu-mediated damage [155]. These results suggest
a close link between Cu homeostasis and the autophagic–lyso-
somal pathway [156,157]. In fact, several anti-cancer drugs
have been developed based on this connection. For instance,
Cu compound Casiopeina III-ia significantly inhibited the pro-
liferation of glioma cells (i.e. tumour cells originated from glial
cells) by simultaneously inducing autophagy and apoptosis
[158]. However, the detailed mechanisms about how autopha-
gosome counterbalance Cu dyshomeostasis are still unclear
and need further investigation.
3.2. Regulators for Cu transporters trafficking between
membrane compartments

Newborn Cu transporters CTR1 and ATP7A/B, like other
integral membrane proteins in the cell, are synthesized and
matured along the secretory pathway and further allocated
to the PM or resided in the secretory pathway’s endocytic
branches, respectively, at a steady state. In response to Cu
changes, Cu transporters travel in cells via vesicular net-
works, called endosomal networks, to change their cellular
distribution (figure 4). Under Cu excess, cell surface CTR1
is reduced to minimize Cu uptake with concurrent ATP7A/B
sequestering from the TGN to the PM to efflux the excessive
Cu [125,159]. When Cu level resumes normal, CTR1 and
ATP7A/B are sorted back to the PM and TGN via recycling
and retrieval pathways, respectively. Endosomal networks
are composed of dynamically interconnected trafficking com-
partments coordinated by multiple proteins responsible for
phospholipid modification, cargo sorting, coat proteins assem-
bly and motor protein tethering.

Numerous trafficking regulatory proteins have been
identified to be closely associated with neuronal dysfunction
when mutations occur [5,102]. Dysfunctional metal ion
homeostasis may result in neurodegeneration and neuroin-
flammation, contributing to the development of several
neurodegenerative diseases [101]. However, so far, only a lim-
ited number of trafficking regulators are identified to be
responsible for the Cu-induced trafficking of Cu transporters,
specifically CTR1 and ATP7A/B. Here, we review current
knowledge about the known regulators involved in both
Cu-transport trafficking and neurodegenerative diseases.

3.2.1. Membrane trafficking regulators from internalization to
degradation

Cells control the Cu influx by modulating the abundance and
surface distribution of CTR1 [144]. CTR1 is distributed to the
cell surface when cellular Cu is on-demand and internalized
under Cu stress [42,122,160,161]. The internalized CTR1 can
take the recycling endosome route when the Cu level is
back to normal or the endo-lysosomal degradation route for
permanent removal if cells encounter prolonged high Cu
stress. CTR1 surface abundance seems to be cell-type specific
[162,163]. Cells decrease the surface abundance of CTR1
under elevated extracellular Cu levels through clathrin-
mediated endocytosis. It has been shown that blockages of
clathrin-coated pit formation or pinch-off from the PM
caused accumulation of CTR1 at the PM under a high Cu
environment [41,144]. The initiation of clathrin-coated ves-
icles for CTR1 internalization is likely mediated by
recruiting the adaptor protein complex AP-2 to the PM. It is
known that the μ2 or β2 subunits of AP-2 recognize YXXØ
or di-leucine motifs on the cytoplasmic domain of trafficking
cargos [164,165]. It is also found that CTR1 contains a poten-
tial μ2-binding motif, YNSM, in its cytoplasmic loop.
Mutations in this motif of CTR1 showed decreased CTR1
internalization, suggesting that the YNSM motif in CTR1
might be the site for μ2 binding [166]. However, attempts to
detect direct interactions between CTR1 and adaptor sub-
units have not been successful, probably due to weak,
transient interactions or a lack of other unknown interaction
partners [166].

Upon internalization, CTR1 works closely with the con-
ventional endocytic trafficking system. However, the
molecular mechanisms directly regulating CTR1 trafficking
are still less understood. Rab GTPases, the master regulators
in orchestrating the identities and destinations of intracellular
membrane vesicles, are likely to play an important role in
CTR1 trafficking. The conversion of specific Rabs on traffick-
ing vesicles determines the cargos’ fate throughout the
secretory and endocytic pathways [167–171]. For example,
Rab5 is enriched on the PM upon receptor activation to
initiate the formation of early endosomes. Under Cu treat-
ment, CTR1 is highly enriched in Rab5-positive endosomes
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[41]. Once internalized, Rab5-positive CTR1 vesicles are later
either bound for the Rab7-dependent degradation pathway
under high Cu dose or routed to the Rab11-dependent slow
recycling pathway under transient Cu stimulation [41].
Despite knowledge about Rab GTPases, due to the lack of
identified Cu-sensing regulators, it is still a mystery how
the trafficking machinery responds to cellular Cu levels and
delivers CTR1 accordingly.

ATP7A/B functions as Cu pumps responsible for
cuproenzymes maturation in the secretory pathway and
excessive cellular Cu efflux. Modulating the intracellular traf-
ficking of ATP7A/B, instead of changing their expression
levels, plays a prominent role in tuning ATP7A/B’s functions
[6]. Under the basal Cu condition, ATP7A/B mainly reside at
the TGN and constitutively cycle between the TGN and PM
[6]. The internalization of ATP7A from the PM can be
mediated by clathrin/AP-2 complex-dependent and -inde-
pendent pathways [115,172]. Under excessive Cu stress,
most ATP7A is re-distributed to the PM and/or PM-adjacent
vesicles [6,113,172]. The Cu-induced peripheral translocation
of ATP7A requires reorganization of both actin and microtu-
bule [9,172]. However, this translocation is independent of the
integrity of the Golgi since Cu-induced ATP7A dispersing be-
haviour is still maintained in Golgi-fragmented cells [10,173].
Interestingly, although experimental results elucidating Cu-
induced ATP7A/B degradation are scarce, ATP7A has been
reported to be colocalized with Rab7, the landmark of the
late endosome–lysosome system, under excessive Cu stress
[174]. A recent study also showed that transient Cu exposure
induces translocation of ATP7B to lysosomes followed by exo-
cytosis [146], indicating that lysosomes have a distinct role in
regulating Cu homeostasis. When the Cu level returns to
normal, the dispersed ATP7A/B are internalized back to
the endosomes and further retrieved back to the TGN.
Some trafficking regulatory machinery for ATP7A/B has
been nicely reviewed recently [9,175]. However, how the
endocytic machinery senses Cu levels and modulates traffick-
ing routes decision is still a mystery.

3.2.2. Membrane trafficking regulators for recycling

Besides the internalized-degradation pathway, protein retrie-
val is another transient regulatory mechanism to re-distribute
CTR1 and ATP7A/B when a normal Cu level is restored.
Clifford et al. [41] demonstrated that CTR1 is sorted to the
Rab11-dependent slow recycling pathway when cells are
under low-dose Cu stimulation and relocate to the cell sur-
face when the environmental Cu level returns to normal.
Recently, unbiased systematic protein interactome studies
further revealed that another retromer-mediated recycling
pathway is involved in sorting CTR1 from degradation fate
[141,145]. In retromer subunit-depleted cells, CTR1 fails to
restore cell surface distribution after Cu wash-out. However,
due to the lack of known sorting motif identified on CTR1,
detailed mechanisms of how CTR1 is recognized by the retro-
mer complex and sorted from endosomes need further
investigations.

When cells restorednormal Cu levels, the surfaceATP7A/B,
outbound through the secretory pathway, are internalized and
further subjected to retrograde transport from endosomes to
the TGN. The retromer and its associated protein complexes
are themainplayers inmediating endosome-to-Golgi transport.
The core of the retromer is the cargo-selective complex (CSC)
VPS26A–VPS29–VPS35 heterotrimer, which works in concert
with other cellular proteins to recycle CTR1 and ATP7A/B.
The recycling is accomplished first through CSC recruitment
to the endosomal membrane by sorting nexin 3 (SNX3) and
Rab7. Once CSC binds to cargo, it further recruits membrane-
deformation and tubulation proteins for the generation of the
nascent cargo-loaded vesicles [176]. This process is coordinated
with accessory proteins, including the Wiskott–Aldrich syn-
drome protein and SCAR homologue (WASH) and/or the
COMMD/coiled-coil domain-containing (CCDC) 22/CCDC93
(CCC) complexes, to pack and transport cargo from endosomes
to theGolgi. Although several retromer complexeswere found to
be involved in Cu-responsive retrieval of ATP7A/B, none of
these retromer complexes and accessory proteins has been
reported to bind to Cu, except COMMD1 [177,178].

COMMD1, previously called MURR1, is a membrane traf-
ficking associate protein that specifically binds Cu in a 1 : 1
ratio with one methionine and two histidine residues [179].
COMMD1 directly interacts with ATP7A and ATP7B and is
suggested as a regulator for Cu homeostasis [106,177,178,180].
COMMD1 is required for intracellular ATP7A/B trafficking
through cooperation with the evolutionarily conserved WASH
and retromer complex [181]. Deletion, mutation or depletion
of COMMD1 or the CCC complex components abolishes Cu-
dependent movement of ATP7A/B from endosomes, resulting
in massive lysosomal Cu accumulation in livers and further
leads to biliary excretion failure in dogs [182,183]. These obser-
vations indicate COMMD1plays a critical role in the endosomal
trafficking of ATP7A/B [181].

In addition to COMMD1, other general retrograde trans-
port machinery regulators are also required to mediate
ATP7A/B escape from degradation and proper relocation to
the Golgi to restore intercellular Cu balance. These regulators
include, but are not limited to, Rab22, clathrin coat protein,
adaptor protein complexes AP-1/AP-2, retromer complex
subunit VPS35, the WASH complex, sorting nexin, ADP-ribo-
sylation factor 1 (ARF1) and the COG complex (see summary
in table 2). These regulators play essential roles in cargo sort-
ing and the formation of shuttling vesicles between
endosomes and Golgi complex as well as Golgi tethering
[115–118,130,131,141,181]. It is worth noting that none of
these regulators has been reported to possess Cu-responsive
motifs. It is still unclear how they recruit and dissociate
ATP7A/B containing vesicles in response to cellular Cu
changes. One possible explanation for the Cu-dependent traf-
ficking is that the conformational changes on Cu transporters
expose trafficking regulatory motifs upon Cu binding.
Another possibility could be simply attributed to the involve-
ment of un-identified Cu-sensing regulators.
3.3. Dysfunction of Cu trafficking regulators links neural
pathology

Patients with Cu transporter gene mutations showing neuro-
pathological symptoms underline the involvement of Cu
homeostasis in neurodegeneration. In addition to removing
pathogenic protein aggregates, restoring proper Cu distri-
bution is currently an important area for potential
therapeutic interventions for neurodegeneration diseases
[185]. Interestingly, the distribution of Cu transporters and
the biosynthesis/clearance of pathogenic proteins are both
subject to trafficking regulation. Mutations or dysfunctions of
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trafficking regulators have a broad-range impact on the intra-
cellular distribution of overall membrane proteins, including
Cu transporters and related Cu-required substrates, as well
as organelle integrity and cellular behaviours and functions.
Synergistically, perturbed trafficking could exacerbate Cu dys-
regulation and further devastate the symptoms by increasing
the cytotoxicity of misfolded protein aggregates. Interactome
studies have shown that multiple cytosolic trafficking-related
molecules for Cu transporters are associated with diseases
with neurological and/or neurodevelopmental phenotypes,
emphasizing the collaboratory roles between membrane traf-
ficking and Cu homeostasis in maintaining neural function
[130,175]. Here, we take vacuolar protein sorting 35 (VPS35)
and adaptor protein complex 1 (AP-1) as examples to discuss
the interplay between Cu homeostasis and membrane traffick-
ing regulation that potentially contributes to the pathogenesis
of neurodegenerative diseases.

3.3.1. VPS35/retromer in Parkinson’s disease

Mutation of the VPS35 gene, encoded the core subunit of ret-
romer, has emerged as a cause of late-onset familial PD [186–
188] (summarized in review [189]). The effect of mutated
VPS35, specifically the D620N variant, is attributed to the dis-
ruption in the formation of retromer transport carriers [190].
Such perturbations cause abnormal PM retrieval and endo-
lysosomal trafficking after Cu depletion, which prevent
CTR1 and ATP7B from trafficking back to the PM and TGN
in non-neuron systems, respectively [118,145]. Although cur-
rent results were obtained from non-neuron cells, it is
reasonable to expect that the D620N mutant may cause Cu
deficiency in the neuronal system. This perturbed Cu
supply is reminiscent of Parkinson-like symptoms in WD
and could explain the widespread cerebral Cu deficiency in
PD dementia [191]. Further investigation using an appropri-
ate neuronal model will provide valuable insight into these
observations.

Paralleled with synaptic morphology, transmission and
plasticity alterations, mitochondria fragmentation is a pheno-
type commonly observed in neurodegenerative diseases.
From a membrane trafficking perspective, such mitochondria
fragmentations can occur through abnormal mitofusin-2
(MFN2)-mediated fusion or dynamin-like protein 1 (DLP1)-
mediated fission processes. Tang and colleagues showed
that mutant VPS35 dysregulates the trafficking and mini-
mizes the degradation of the E3 ubiquitin ligase MUL1,
thus promoting MUL1-mediated MFN2 degradation and
decreased mitochondrial fusion activity [192]. Similarly,
mutant VPS35 also causes mitochondrial dysfunction by
recycling DLP1 complexes, thus increases mitochondrial fis-
sion activity [193]. In both cases, mutant VPS35 causes
mitochondrial fragmentation and dopamine neuron loss.
On the other hand, dysregulated supply of Cu also devastates
the destruction of mitochondria in MD and WD models
[175,194–196]. Mitochondria from Atp7b–/– rat liver shows
progressive ultrastructure changes as Cu accumulates and
eventually fragmented. [195] Such fragmentation is likely
due to Cu overload stimulating hydroxyl radicals production
that triggers free-radical damage of the abundant lipoprotein,
cardiolipin [197].

Although both mutant VSP35 and Cu accumulation cause
mitochondria fragmentation, the direct connection between
the two likely happen in the dopamine signalling. Dopamine
plays a key role in regulating various brain physiological
functions by binding to its receptors for surface recycling
and signalling. Studies in hippocampus neurons have
demonstrated that axonal trafficking of mitochondria
could be manipulated by dopamine receptor D2 (DRD2)
agonists [198]. Cu is required for the activity of dopamine
biosynthesis enzymes, including tyrosine hydroxylase and
DBH. Cu deficiency leads to a shortage of dopamine
supply and likely results in abnormal mitochondria traf-
ficking. Interestingly, dopamine receptor D1 (DRD1),
another subtype of dopamine receptor in hippocampal
neurons that has the opposite effect to DRD2 on axonal
mitochondrial trafficking, is another cargo of VPS35 and
the associated retromer complex [198]. VPS35/retromer
complex regulates DRD1 plasma membrane recycling and
the downstream cAMP-response element-binding protein
(CREB) and extracellular regulated protein kinase (ERK)
signalling [145,199]. These lines of evidence suggest that
the impact of dysregulated Cu in dopaminergic neurons
can be either mediated by dopamine biosynthesis via
impaired cuproenzymes activity or by affecting dopamine
signalling pathways.

Toxic, misfolded α-synuclein aggregates in Lewy bodies are
another pathological hallmark of PD, which can originate from
elevated synuclein protein expression/aggregation or failure of
cellular protein degradation systems. α-Synuclein possesses
multiple Cu-binding sites, and the presence of Cu initiates oli-
gomerization of α-synuclein and increases α-synuclein toxicities
[200–204]. The overall Cu content does not vary between
healthy and diseased brains. Reduced Cu and CTR1 expression
in the cerebrum and increased Cu in the CSF are key features in
PD, indicating the misdistribution of cellular Cu, rather than
the total Cu content in the brain, is the essential factor for PD
dementia [191]. Misdistribution of cellular Cu potentially
could originate from abnormal cathepsin endo-lysosomal pro-
teases activity, which controls Cu accumulation via cleavage
of the Ctr1 metal-binding ectodomain [205]. Interestingly, the
Vps35 D620N mutation has also been linked to disrupted traf-
ficking of cathepsin D, a protease important for the degradation
of α-synuclein, suggesting potential pathways of how Vps35
may affect Cu homeostasis and synergistically contribute to
α-synuclein pathogenesis [206].

The lysosomal system is another major pathway for α-
synuclein degradation and is considered a hub for maintaining
Cu homeostasis [136,207,208]. Cu is significantly associated
with lysosomes in primary cortical neurons. [209] The uptake
and storage of Cu into lysosomes can be regulated by CTR2,
a CTR1 homologue [38,147]. Under Cu overload, ATP7B
enables lysosomes to undergo exocytosis for Cu clearance
through the interaction with the p62 subunit of dynactin that
allows lysosome translocation toward the canalicular pole of
hepatocytes [136,137]. On the other hand, lysosomal vesicular
sorting and trafficking can be modulated by VPS35 (D620N)
mutation through enhancing the leucine-rich repeat kinase 2
(LRRK2)-mediated Rab protein phosphorylation [210–213].
Considering that LRRK2 regulates lysosomal protein traffick-
ing and morphology [214,215] and VPS35 also cooperates
with LRRK2 to regulate synaptic vesicle recycling and dopa-
minergic synaptic release [216], it is likely that mutation in
VPS35 may lead to abnormal lysosomal activity and conse-
quently inefficient α-synuclein degradation [217]. This
collective evidence further supports the systematic role of
VPS35/retromer and Cu homeostasis in α-synuclein
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expression, accumulation and aggregation, which all contribute
to the pathogenesis of PD [201].

3.3.2. AP-1 complex in neuropathological symptoms

MEDNIK (acronym for mental retardation, enteropathy, deaf-
ness, peripheral neuropathy, ichthyosis and keratoderma) and
MEDNIK-like syndromes are rare autosomal recessive neurocu-
taneous diseases that show some similar clinical and
biochemical phenotypes of both MD and WD. For example,
MEDNIK patients showMD-like reduced plasma Cu and ceru-
loplasmin level and WD-like liver Cu accumulation and
increased urinary Cu excretion. MEDNIK-like patients have
low plasma Cu and ceruloplasmin phenotypes but lack hepatic
Cu toxicity evidence [218]. Regarding neuronal-related pheno-
types, MEDNIK, MEDNIK-like, MD and WD patients all
show cerebral atrophy. Still, the symptoms in MEDNIK and
MEDNIK-like patients are typically milder than the MD and
WD patients [175,185,207,218].

MEDNIK and MEDNIK-like syndrome are associated with
mutations in the adaptor protein-1 S1 (AP1S1) and B1 (AP1B1)
gene, respectively. AP1S1 and AP1B1 encode for the small sub-
unit σ1A and large β subunit of the AP-1 complex, which
interact with clathrin and incorporate their cargos into cla-
thrin-coated vesicles. The AP-1 complex is involved in sorting
transmembrane proteins en route for the TGN or endosomes,
somatodendritic sorting in neurons [219,220] and basolateral
sorting in the epithelium [221–223]. Given the similar Cu imbal-
ance phenotypes observed in MEDNIK, MD and WD, the Cu
metabolism defects are reasoned to be the abnormal retrieval
of Cu-ATPases due tomutations of the AP-1 complex. Research
in rat hippocampal neurons has shown that the di-leucine-
based signal motif of ATP7B strongly interacts with the σ1 sub-
unit of AP-1, contributing to the somatodendritic polarize
sorting of ATP7B [116]. Given that ATP7A and ATP7B are struc-
turally similar, AP-1 mutant may lead to aberrant trafficking
and impair both ATP7A and ATP7B functions, resulting in
Cu-related characteristics of MD and WD. Indeed, fibroblasts
from MEDNIK patients display abnormal subcellular distri-
bution of ATP7A, which accumulates at the cell periphery
instead of concentrating in the Golgi region [224]. The MD-
like reduced plasma Cu and ceruloplasmin level and WD-like
liver Cu accumulation phenotypes seen in MEDNIK patients
can be explained by the perturbed polarized distribution of
ATP7A and ATP7B in enterocyte and hepatocytes.

Although adapter protein complexes with mutations on
various subunits are associated with neuropathy (summar-
ized in Guardia et al. [225]), only AP1S1 and AP1B1
mutation showed Cu metabolic perturbation symptoms.
Due to the complexity of intracellular trafficking machinery,
the exact mechanism of AP-1 mediated trafficking of Cu
transporters, leading to preferential Cu metabolic pheno-
types, is still unclear. It is suspected that additional factors
cooperating with the AP-1 complex exacerbate the impact
of misregulated ATP7A. ARF1, the AP-1 complex activator,
is one of the potential candidates due to its involvement in
both retrograde transport to TGN and is required for main-
taining Golgi ribbon integrity and biogenesis of ATP7A
[117,173,226]. Interfering ARF1 function by using RNAi-
mediated ARF1 depletion or ARF1 dominant-negative
mutant overexpression caused the dispersion of the TGN
and ATP7A as well as dissociation of AP-1 complex from
the membrane [173]. Nevertheless, these aligned pieces of
evidence support the importance of the AP-1 complex in
mediating the TGN-bound trafficking of ATPases, specifically
ATP7A, in maintaining Cu balance.

In addition, the AP-1 dysfunction induced abnormal
ATP7A/B distribution may contribute to neuronal-specific
phenotypes by disrupting systematic Cu homeostasis and
neurotransmitter activation. It is known that ATP7A accumu-
lates at the cell periphery in MEDNIK patients, and the
concentration of ATP7A in the Golgi region likely to be
lower. The low ATP7A in the Golgi region provides a possible
explanation for its connection to neuronal-related phenotypes
through disrupted interactions between ATP7 and other
Golgi regulatory machinery such as the COG complex. Evi-
denced by using the Drosophila model, Hartwig et al.
demonstrated that interactions between ATP7 paralogs and
COG complex, a Golgi apparatus vesicular tether, are essen-
tial to maintain Cu homeostasis in neurons. Disruption of
ATP7–COG complex interaction affects COG-mediated TGN
proteins recycling in motor neurons, which is similar to
manipulating the expression level of ATP7 paralogs, leading
to the perturbation of Cu homeostasis, decreased synaptic
mitochondria content and altered synapse plasticity [131].

Another important protein that may contribute to the
neurological symptoms of MEDNIK and also encompass Cu
homeostasis is PAM. AP-1 has been shown to regulate
the endocytic trafficking of PAM in neuroendocrine cells.
Co-immunoprecipitation of the AP-1 and a cytosolic-domain
truncated PAM protein suggest that luminal domains of PAM
could be involved in the interaction. The proteins that contribute
to this interaction have not been identified. However, it has been
shown that luminal fragments of ATP7A interact with PAM
while delivering Cu, suggesting that ATP7A is a possible inter-
mediate in this AP-1 and PAM interaction [227,228]. Indeed,
reduced AP-1 level causes PAM’s activity reduction to be
more sensitive to Cu restriction. Since PAM does not bind Cu
tightly, it is also suggested that the cell surface retention of
PAM caused by AP-1 dysfunction leads to their Cu loss and
thus diminished amidation function [229]. ImpairingAP-1 func-
tion in neuroendocrine cells, which leads to the sensitivity of
peptide amidation to Cu availability, could restrict peptidergic
signalling and contribute to the complex phenotype.
4. Conclusion remarks and perspectives
This review summarized current knowledge of the general
trafficking itineraries for Cu transporters under different Cu
conditions and highlighted several critical membrane traffick-
ing regulators in maintaining Cu homeostasis. Yet, a detailed
molecular understanding of the trafficking machinery of Cu
transporters is still beyond reach due to multiple unsolved
questions. One of the unsolved questions is how trafficking
machinery senses Cu levels and modulates the distribution
of Cu transporters through membrane trafficking. Since Cu
is the ligand for Cu transporters, one possible hypothesis is
that Cu transporters may change their protein structure or
oligomerization upon Cu binding to regulate trafficking
routes. Current knowledge learned from surface receptors,
such as GPCRs, showed that ligand binding could induce
receptor dimerization coupled with conformational changes,
which exposes their regulatory motifs to recruit trafficking
machinery to the receptor [230–232]. Manipulation of the oli-
gomeric status of membrane proteins could also modulate the
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turnover of the trafficking regulators and the maturation pro-
gress of vesicles, which eventually affected the overall cell
behaviours [231,233,234]. So far, most of the structural and
conformational studies on Cu receptors have relied heavily
on purified proteins and in vitro biochemical assays, which
may not faithfully reveal the dynamical behaviour of mem-
brane proteins in cells.

Another intriguing question is whether there is Cu-specific
regulatory machinery for Cu-induced membrane trafficking.
Current findings unanimously show that the same trafficking
machinery is shared in distributingmembrane proteins, includ-
ing Cu transporters, in the cells. However, only Cu transporters
are sensitive to Cu levels and subject to Cu-induced redistribu-
tion [41]. It is tempting to speculate that some regulators might
directly associate with Cu and serve as a Cu-specific trafficking
regulator. COMMD1, by far, is the only identified membrane
trafficking regulator with Cu-binding capability that directly
mediates cellular Cu homeostasis [106,179,180]. Recent studies
in tissue-specific knockout mice suggested that, within the
COMMD family, Commd6 and Commd9 might also play a
similar role as Commd1, since mice with liver-specific
deficiency on Commd1, Commd6 or Commd9 shared the
same Cu accumulation phenotype in the liver [235]. Further,
COMMD1 has been reported to regulate the trafficking of
ATP7A andATP7B, whose functions and distributions are simi-
lar but not identical [86]. It suggests that there might be other
unidentified regulators responsible for their respective
membrane trafficking.

Besides these outstanding questions, several challenges
remain to be resolved before understanding the interplaying
mechanisms of Cu homeostasis and membrane trafficking in
human neurons. Current molecular understanding of Cu trans-
porters trafficking ismainly originated fromnon-neuronal cells.
This couldbe a concern sinceCuhomeostasis and the trafficking
of Atp7a show drastic differences between mice intestine and
liver cells [235]. This observation suggests potential differences
in the trafficking of neurons and non-neuronal cells that were
primarily neglected in the past. It is critical to revisit Cu trans-
porters trafficking in proper neuronal models to build a solid
foundation for the field. Recent progress of human embryonic
stem cells (hESCs)/inducible pluripotent stem cell (iPSC)-
derived neurons have shown that they can faithfully recapi-
tulate an individual’s idiosyncratic neural development.
Generations of knock-in stem cell lines expressing fluoro-
phore-tagged Cu-binding proteins could provide an ideal
platform for studying the causality of the mutations of diseases
[236,237]. Furthermore, the recent advance in super-resolution
microscopy enables researchers to approach biophysical
problems like protein kinetics and oligomeric states from a
single-molecule perspective. For example, using single-mol-
ecule tracking, Chen et al. [238] discovered the unbinding
kinetics of MerR-family metalloregulators from operator sites
could bemodulated by their cellular concentration and chromo-
some organization. In combination with single-molecule
diffusion analysis [238], theyalso identified that that CusC3B6A3

complexes, a tripartite RND-family Cu(I) and Ag(I) efflux
pump, are dynamic structures and shift toward the assembled
form in response to metal stress [239]. We recently developed
a new method to quantify oligomeric states of membrane pro-
teins using super-resolution localization [240,241] and can
help understand cellular tasks mediated by the transitions
between different oligomeric states. These new results show
that single-molecule localization microscopy (SMLM) can
follow protein complex formation, interconversion and dis-
sociation in real-time. It also circumvents the general
challenge of studying protein behaviours in vitro, where protein
complex reconstitution is technically demanding and mimick-
ing the cellular environment is almost impossible. Most
importantly, SMLM shifts quantifications of specific protein
behaviours from in vitro to physiologically relevant human
cells for biophysical research.

Being the most polarized, morphologically diverse and
not-dividing cell type, neurons are extremely active in mem-
brane trafficking to maintain proper functions. Perturbation of
trafficking regulation related to Cu transporters’ cellular
distribution and dysfunctional endocytic machinery are often
observed in neurodegenerative neurons [12,242–246]. Ham-
pered by neurons’ compact and complex morphology, the
studies of Cu transporters’ organization and response in live
neurons have not been achieved.We expect the aforementioned
technical challenges to be resolved with the thriving super-res-
olution imaging techniques and neuronal differentiation from
patient-derived stem cells. Information from these studies will
shed light on our understanding ofCu transporters’ physiologi-
cal configurations, signalling and behaviour dynamics in
maintaining neuronal Cu balance.
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