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We report the synthesis of a new ferrocenophane, 1,1′-(1-tert-
butyl-1,3-butadienylene)ferrocene (1), and its successful polym-
erization to yield the first soluble conjugated polymer that contains
repeat units of ferrocenylenein the backbone. Conjugated
polymers that contain transition metals in the backbone have been
targeted since the late 1950s because of their potential use as
conducting, semiconducting, and/or optoelectronic materials.1-9

Previous synthetic efforts have led, however, either to oligomeric
materials that have poor electrical properties or to polymeric
materials that are insoluble and intractable.10-12 Oligomeric
materials are less likely to exhibit the mechanical properties
displayed by high molecular weight polymers,13 and insoluble
polymers cannot be readily processed because of difficulties in
casting the materials into useful shapes and films. The approach
reported here provides convenient solutions to both of these
problems.
Scheme 1 shows the synthesis of ferrocenophane1 in two steps

from 1,1′-(4-oxo-1-butenylene)ferrocene14 (2). Alkylation of 2
with tert-butyllithium followed by dehydration afforded1 in 43%
overall yield.14 Purification by column chromatography followed
by recrystallization from hexane gave large red needles of1 that
are stable in air and soluble in common organic solvents such as
benzene, hexane, CH2Cl2, and THF.
Ring-opening metathesis polymerization (ROMP)16 of ferro-

cenophane1 by the tungsten-based metathesis catalyst W(dNPh)-
(dCHPh(2-OMe))(OC(CF3)2(CH3))2)(THF)17 readily generated
the conjugated polymer4 (eq 1).18 During the polymerizations,

the initially red solutions became noticeably darker and more
viscous. The resultant deep red polymers are soluble in common
organic solvents such as benzene, CH2Cl2, and THF. These

polymers are stable to the atmosphere and can be stored for long
periods of time under ambient conditions without detectable
degradation. Polymers havingMw e 100 000 are brittle and
amorphous, while those withMw g 300 000 are flexible and can
be readily peeled from glass slides.19 Thermogravimetric analysis
(TGA) of a high molecular weight sample (Mw ≈ 240 000)
showed the onset of degradation at ca. 300°C with substantial
mass loss occurring above 550°C (see the Supporting Informa-
tion), which suggests remarkably high thermal stabilities for this
new class of materials.11

We attempted to vary the molecular weight of polymer4 by
adjusting the ratio of monomer to catalyst in a series of
polymerizations. Figure 1 shows that the molecular weights
increased qualitatively as we increased the ratio; the values of
PDI ranged from 1.6 to 2.3.19 These preliminary results dem-
onstrate that a moderate degree of control over the molecular
weight can be achieved. More importantly, the high molecular
weights obtained here are unprecedented for soluble conjugated
materials with ferrocenylene units in the backbone.
We measured the UV/vis spectra of both1 and4 in the range

200-900 nm in an effort to explore the degree of electron
delocalization in polymer4. For monomer1, theπ-orbitals of
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Scheme 1.Synthesis of Ferrocenophane1 from
1,1′-(4-Oxo-1-butenylene)ferrocene214,15
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the olefinic groups are perpendicular to those of the Cp groups
(see Figure 2); thus, extended overlap is not possible. For polymer
4, however, these two sets ofπ-orbitals have the potential to be

coplanar; thus, extended overlap is possible. Analysis of the UV/
vis spectra for1 and4 revealed a bathochromic shift ofλmaxupon
polymerization: λmax for 1 ) 240 nm;λmax for 4 ) 320 nm (see
the Supporting Information). Furthermore, while the monomer
exhibited moderately intense absorptions (ε ) 4.5 × 103 M-1

cm-1), the polymeric samples showed stronger absorptions (ε )
1.2 × 104 M-1 cm-1). These results are consistent with a
moderate degree of conjugation for polymer4.20 The spectra for
1 and4 also revealed broad absorptions near 360 and 470 nm
resulting from symmetry-forbidden excitations of electrons from
the d orbitals of iron. These absorptions, which are red-shifted
relative to those of ferrocene, are characteristic of conjugated
ferrocenyl moieties.21

We characterized the structure of1 by single-crystal X-ray
diffraction.22 As expected, thetert-butyl group stands adjacent
to one of the Cp groups (Figure 2). Interestingly, the Cp groups
are eclipsed with respect to each other and only slightly tilted
(i.e., nearly planar parallel to each other). In the X-ray structure
of the parent unsubstituted 1,4-(1,1′-ferrocenediyl)-1,3-butadiene,23

the Cp groups are staggered and substantially more tilted with
respect to each other. Accordingly, the torsion angle of the
butadiene bridge in1 is ca. 2°, while that of the parent compound
is substantially larger (ca. 42°).
The strained geometry in1 likely results from the steric bulk

of thetert-butyl group, which forces the molecule to adopt a rigid
conformation. Support for this hypothesis is provided from the
X-ray analysis of 1,1′-(1-methoxy-1,3-butadienylene)ferrocene,15

which, like 1, is unsaturated with a sole substituent adjacent to
one of the Cp groups. In this derivative, however, the Cp rings
are staggered and the torsion angle of the butadiene bridge is
similar to that of the parent unsubstituted ferrocenophane. The
relatively small size of the methoxy substituent apparently allows
this unsaturated ferrocenophane to adopt a more relaxed confor-
mation than that which we observe for1.
The apparent strain in1 coupled with the increased solubility

afforded by the incorporation of thetert-butyl group24 permits
the generation of conjugated polymers having remarkably high
molecular weights. We are currently further exploring the
thermal, mechanical, electrical, and structural properties of this
promising new class of materials.
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Figure 1. Molecular weights of the polymer can be adjusted by varying
the ratio of monomer to catalyst.

Figure 2. ORTEP drawings (40% probability level) for1.
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