Final Exam Review (4/28/11)

Lecture note excerpt covering all lectures

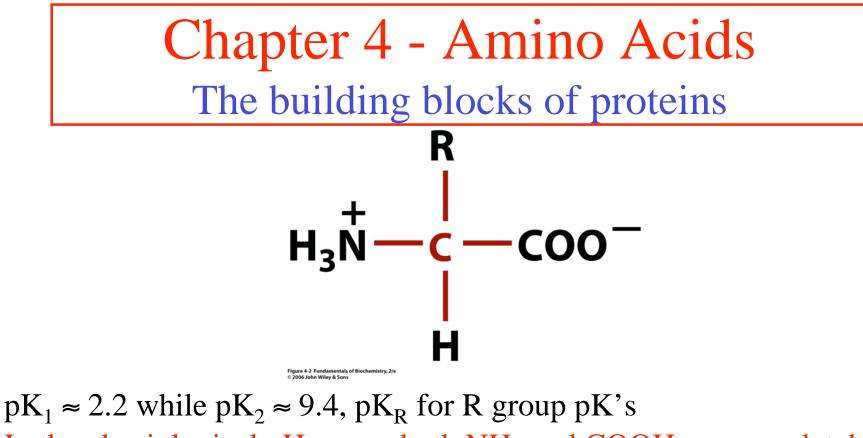
Gibbs Free Energy (G)

The Free Energy (G) change of a spontaneous process is negative

Free energy is defined as follows: G = H - TSNormally, we are interested in the change in free energy so the following equation is more useful: $\Delta G = \Delta H - T\Delta S$ For a spontaneous process, $\Delta G < 0$.

If the ΔG is < 0, the process is called exergonic If the ΔG is > 0, the process is called endergonic If the ΔG is = 0, the process is called equilibrium

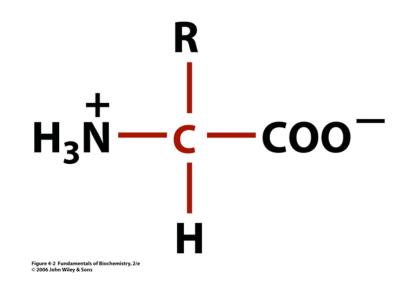
ΔS	ΔΗ	$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$	
+	-	All favorable	
		at all temperatures	
		spontaneous	
-	-	Enthalpy favored.	
		Spontaneous at	, , ,
		temperatures <u>below</u>	
		$T = \Delta H$	
		ΔS	
+	+	Entropy driven,	
		enthalpy opposed.	
		Spontaneous at	
		Temperatures <u>above</u>	
		$T = \Delta H$	
		ΔS	
-	+	Non-spontaneous	\mathbf{X}


Equilibrium Constants

- Relationships between concentration and free energy
- $\Delta G^0 = -RT \ln Keq$, where ΔG^0 is the free energy change in the standard state, R is the gas constant 8.3145 J/K-mol

$$aA + bB \iff cC + dD$$
$$\Delta G = \Delta G^0 + RT \ln \left(\frac{[C]^c [D]^d}{[A]^a [B]^b} \right)$$

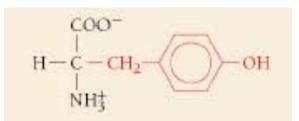
At equilibrium, $\Delta G=0$ so $\Delta G^0 = -RT \ln Keq$


$$K_{eq} = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}} = e^{-\Delta G^{0}/RT} \quad \bigstar$$

In the physiological pH range, both NH_2 and COOH are completely ionized.

They can act as either an acid or a base.

They are Zwitterions, molecules having charged groups of opposite polarity.


- Please carefully note the charged ends (termini).
- At physiological pH, the ends of an amino acid are charged.
- Certain "R" groups will also be charged at pH 7.

- Backbone of an amino acid is composed of the N, $C\alpha$, and C.
- Amino acid structures and sequences are written from left to right, starting with the Nterminus (amino) and finishing with the C-terminus (carboxyl)
- The thing that differentiates each amino acid is the "R" group
- C α is chiral, except in Gly

Amino Acids

You must know:

Their names Their structure Their three letter code Their one letter code

Tyrosine, Tyr, Y, aromatic, hydroxyl

Classification and Characteristics of Amino Acids

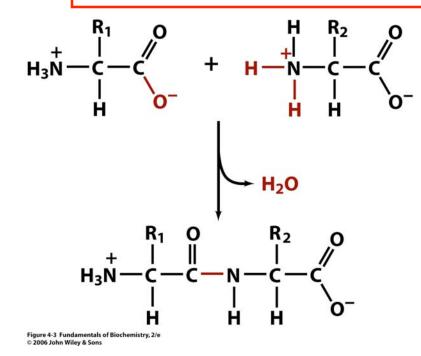
R polarity: three main categories to describe amino acids:

 Non polar "hydrophobic" nine in all Glycine, Alanine, Valine, Leucine, Isoleucine, Methionine, Proline, Phenylalanine and Tryptophan

 2) Uncharged polar, six in all Serine, Threonine, Asparagine, Glutamine, Tyrosine, Cysteine

3) Charged polar, five in all Lysine, Arginine, Glutamic acid, Aspartic acid, and Histidine

Key to structure Name, Residue Average pK₂ Structural pK 1 pK_R Three-letter Symbol, Mass Occurrence in Proteins (%)^c α -COOH^d α -NH $\frac{+d}{3}$ and One-letter Symbol **Formula**^a (D)b Side Chain^d (1) Non-polar Amino acids with nonpolar side chains 7.2 2.35 Glycine 57.0 9.78 COO-Gly Glycine (Gly, G) H-C-H G NH: 71.1 7.8 2.35 9.87 Alanine CO0-Ala Alanine (Ala, A) H-C-CH3 A NH[‡] CO0 CH3 99.1 6.6 2.29 9.74 Valine Val Valine (Val, V) H-C-CH v CH₃ NH: 113.2 9.1 2.33 9.74 Leucine COO CH₃ Leu Leucine (Leu, L) H-C-CH2-CH L CH 2 NH: COO- CH3 113.2 5.3 2.32 9.76 Isoleucine lle C*-CH2-CH3 Isoleucine (Ile, I) H-C NH: H Methionine (Met, M) Methionine coo-131.2 2.2 2.13 9.28 Met C-CH2-CH2-S-CH3 н-M NH 97.1 5.2 1.95 Proline 10.64 Proline (Pro, P) Pro Ρ H₂ Phenylalanine (Phe, F) C00-Phenylalanine 147.2 3.9 2.20 9.31 Phe H-C CH F. NH⁺ Tryptophan (Trp, W) Tryptophan coo-186.2 1.4 2.46 9.41 Trp H-C-CH2 w NHT:


(2) Polar

	Name, Three-letter Symbol and One-letter Symb		Residue Mass (D) ^b	Average Occurrence in Proteins (%) ^c	₽ К 1 α-COOH [₫]	ρΚ₂ α-NH ᡱ ^d	рК _R Side Chain ^d
Serine (Ser, S)	Amino acids with ur	ncharged polar side chains					
	Serine Ser S	$H - C - CH_2 - OH $ $H_{1} + H_{3}$	87.1	6.8	2.19	9.21	
Threonine (Thr, T)	Threonine Thr T	$H - C - H = C H_3 = H + H_3 $	101.1	5.9	2.09	9.10	
Asparagine (Asn, N)	Asparagine ^e Asn N	H = C = C = C = C = C = C = C = C = C =	114.1	4.3	2.14	8.72	
Glutamine (Gln, Q)	Glutamine ^e Gln Q	H = C = C + C + C + C + C + C + C + C + C	128.1	4.3	2.17	9.13	
Tyrosine (Tyr, Y)	Tyrosine Tyr Y	СОО ⁻ H- <mark>C -CH₂-ОН</mark> I NH ⁺ ₃	163.2	3.2	2.20	9.21	10.46 (phenol)
Cysteine (Cys, C)	Cysteine Cys C	$H = COO^{-1}$	103.1	1.9	1.92	10.70	8.37 (sulfhydryl)

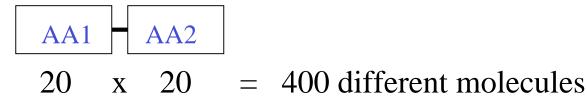
(3) Charged

	Name, Three-letter S and One-letter		Structural Formula ^a	Residue Mass (D) ⁶	Average Occurrence in Proteins (%) ^c	pΚ ₁ α-COOH ^d	pK 2 α-NH 3 ^d	pK _R Side Chain ^d
	Amino acids w	ith charged p	olar side chains					
Lysine (Lys, K, +1)	Lysine Lys K	$H - C - CH_2 - CH_2 - CH_3 - CH_3 - CH_2 - CH_2 - CH_3 -$	-CH ₂ -CH ₂ -CH ₂ -NH ₃ +	128.2	5.9	2.16	9.06	10.54(ε-NH ⁺ 3)
Arginine (Arg, R, +1)	Arginine Arg R	COO ⁻ H-C-CH ₂ -	-CH ₂ -CH ₂ -NH-C	156.2	5.1	1.82	8.99	12.48 (guanidino)
Histidine (His, H, +1)	Histidine ^r His H	CO 	-CH2-512	137.1	2.3	1.80	9.33	6.04 (imidazole)
Aspartic acid (Asp, D, -1)	Aspartic acid ^e Asp D	NH	CH ₂ -C	115.1	5.3	1.99	9.90	3 .90 (β-COOH)
Glutamic acid (Glu, E, -1)	Glutamic acid ^e Glu E	CO -C 	0 ⁻ 0 •CH ₂ -CH ₂ -C	129.1	6.3	2.10	9.47	4.07 (γ-COOH)
Orutanne acia (Oru, E, -1)								

Amino acids can form peptide bonds CO-NH linkage

•Amino acid residue

•Dipeptides, tripeptides, oligopeptides

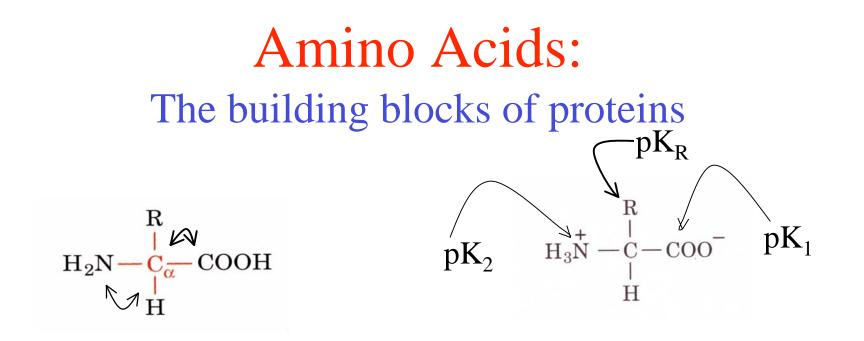

•Polypeptides

•Proteins consist of one or more PP

Peptides are linear polymers that range from 8 to 4000 amino acid residues Twenty (20) different naturally occurring amino acids

Linear arrays of amino acids can make a huge number of molecules

Consider a peptide with two amino acids



20 x 20 x 20 = 8000 different molecules

For 100 amino acid protein the # of possibilities are:

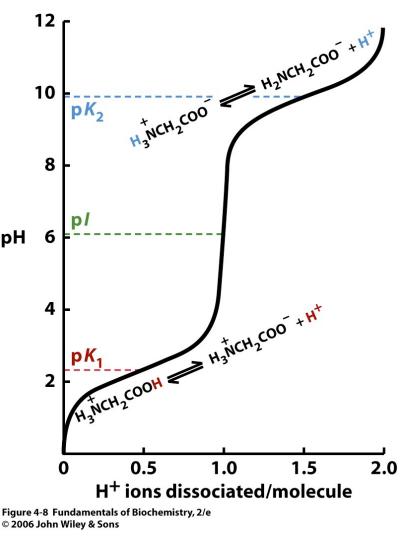
$$20^{100} = 1.27 x 10^{130}$$

The total number of atoms in the universe is estimated at $9x10^{78}$

 α -amino acids because of the α -carboxylic and α -amino groups pK_1 and pK_2 respectively pK_R is for R group pK's

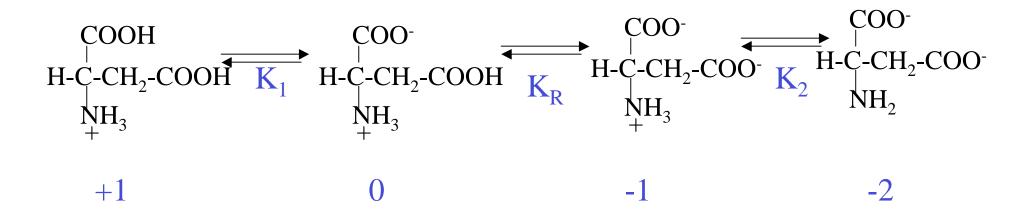
Remember these values for the $pK_1 \approx 2.2$ while $pK_2 \approx 9.4$ pKa's of the termini for ALL AA's

In the physiological pH range, both carboxylic and \checkmark amino groups are completely ionized!!

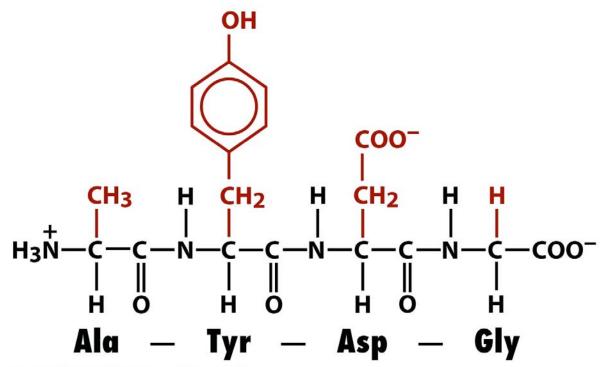

Hint: draw the structures of an amino acid at several pH values

Acid - Base properties of amino acids

$$pH = pK + \log\left(\frac{[A^{-}]}{[HA]}\right)$$


Isoelectric point: the pH where a protein carries no net $pI = \frac{1}{2}(pK_i + pK_j)$ electrical charge

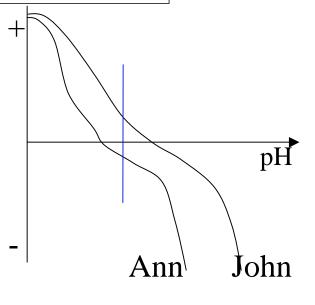
For a monoamino-monocarboxylic residue $pKi = pK_1$ and $pKj = pK_2$; For D and E, $pKi = pK_1$ and $pKj = pK_R$; For R, H and K, $pKi = K_R$ and $pKj = pK_2$



The observed pKa of an amino acid side chain is dependent on its environment in the protein standard pKa's can be substantially shifted by the protein environment!!

Name, Three-letterS and One-letter	ymbol,	Structural Formula ^a		Residue Mass (D) ^b	Average Occurrence in Proteins (%) ^c	p <i>K</i> 1 α-COOH ^d	pK ₂ α-NH ^{+ d}	рК _R Side Chain ^d
Amino acids w	ith charged	l polar side chains						
Lysine Ly s K	COO- H-C-C+ NH ⁺ 3	2-CH2-CH2-CH	2-NH3	128.2	5.9	2.16	9.06	10.54 (ɛ-NH ᠯ)
Arginine Arg R	COO ⁻ H-C-CH NH ⁺ ₃	2-CH2-CH2-NH	-C NH ₂ NH ₂	156.2	5.1	1.82	8.99	12.48 (guanidino
Histidine ^f His H	н—с	COO ⁻ - CH ₂		137.1	2.3	1.80	9.33	6.04 (imidazole)
Aspartic acid ^e Asp D	(н-с	00 ⁻ 0 		115.1	5.3	1.99	9.90	3.90 (β-СООН)
Glutamic acid ^e Glu E		оо о сн ₂ сн ₂ с ін ⁴	-	129.1	6.3	2.10	9.47	4.07 (γ-COOH)

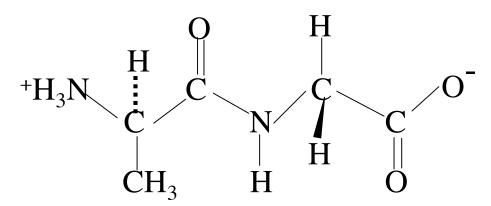
Nomenclature


Unnumbered figure pg 85 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

The tetrapeptide Ala-Tyr-Asp-Gly or AYDG

Chapter 5 - part 2 (protein purification)

Characteristic	Procedure					
Charge	1. Ion exchange, 2. Electrophoresis,					
	3. Isoelectric focusing					
Polarity	1. Adsorption chromatography					
	2. Paper chromatography					
	3. Reverse phase chromatography					
	4. Hydrophobic interaction					
Size	1. Dialysis and ultrafiltration, 2. Gel electrophoresis,					
	3. Gel filtration, 4. Ultracentrifugation					
Specificity	1. Affinity chromatography					
	2. Immunopurification					
Solubility	1.Salt precipitation					
	2. Detergent solubilization					

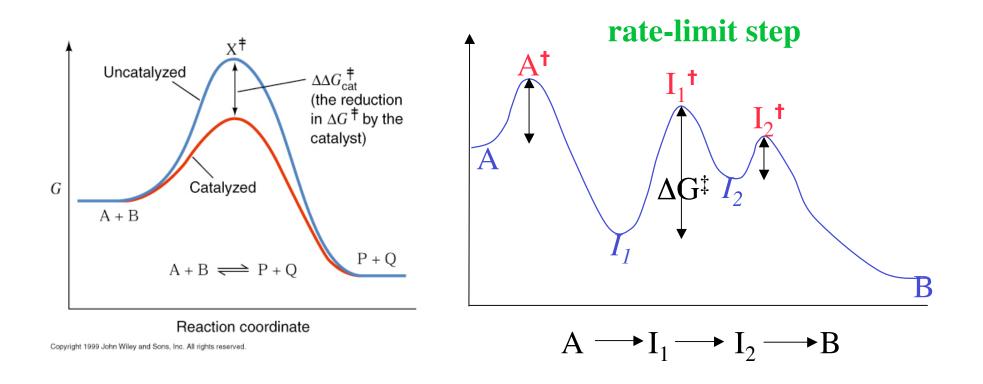

*The most frequently used anion exchanger is: **DEAE** Matrix-CH₂-CH₂-NH(CH₂CH₃)₂+ \overrightarrow{A} *The most frequently used cation exchanger is: **CM** Matrix-CH₂-COO⁻ $\overrightarrow{A^+}$

•You must understand well peptide bond and definitions.

Companion Book #2

In the dipeptide below, indicate which bonds are described by ϕ and ψ .

•Secondary structural element definition and tertiary structure.


Hb Structure & function relationship

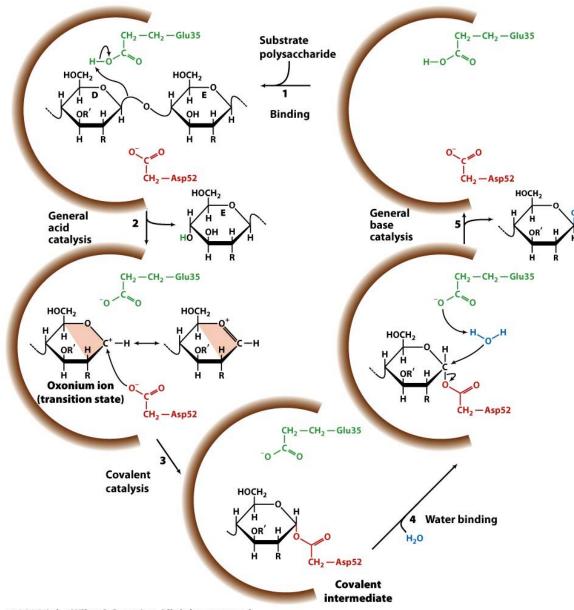
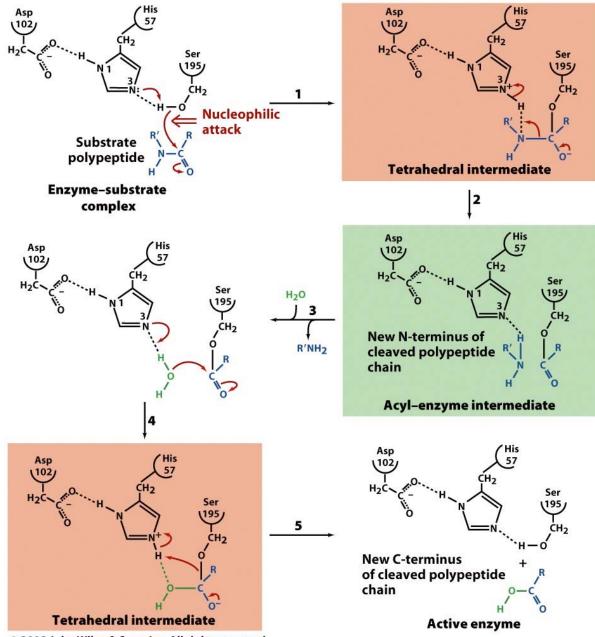


Figure 7-14 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

What do enzymes do to increase rates of enzymatically catalyzed reactions?

•Answer: They decrease the energy of the transition state (i.e. the activation free energy for the reaction, (ΔG^{\ddagger})) by preferentially stabilizing the transition state.



Glu35: acid catalyst Asp52: covalent catalyst

The reaction is facilitated by the distortion of residue D to the planar half-chair conformation

© 2008 John Wiley & Sons, Inc. All rights reserved.

© 2008 John Wiley & Sons, Inc. All rights reserved.

Enzyme Kinetics, Inhibition, and Regulation Chapter 12

Enzyme Kinetics

• When the concentration of reactant (substrate, S) is much higher than the concentration of enzyme, E, the rate of the enzyme is independent of substrate concentration and the kinetics are zero order. k_1 k_2

$$E + S \stackrel{k_1}{\underset{k_{-1}}{\longrightarrow}} ES \stackrel{k_2}{\underset{k_{-2}}{\longrightarrow}} E + P$$

• Where E=enzyme, S=substrate, ES=enzyme/substrate complex, P=product, k_1 is the forward rate constant, k_{-1} is the reverse rate constant, k_2 is the forward rate constant from ES to E + P, and k_{-2} from E + P to ES

Michaelis-Menten Kinetics

- Some simplifying assumptions are required in order to evaluate enzyme kinetics in a meaningful way
 - 1. Assumption of equilibrium: $k_{-1} >> k_2$ so that the first step of the reaction (i.e. the formation of the ES)

 $K_{S} = \frac{k_{-1}}{k_{1}} = \frac{[E][S]}{[ES]}$, where K_{S} is the dissociation const. for 1st step

ES is known as the Michaelis complex

Assumption of steady state: ES maintains a steady state since
 [S]>>[E] so the concentration of [ES] is constant

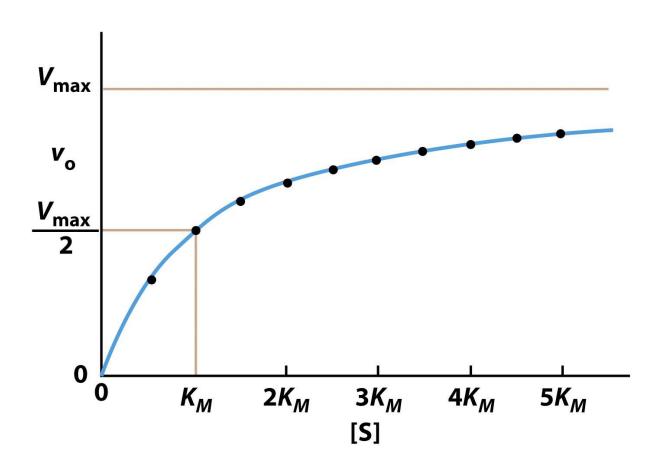
$$\frac{d[\text{ES}]}{dt} = 0$$

Michaelis-Menten Equation

• The Michaelis constant is defined as:

$$K_M = \frac{k_{-1} + k_2}{k_1}$$

• The maximal velocity of an enzymatic reaction is:


$$V_{\text{max}} = k_2 \begin{bmatrix} E \end{bmatrix}_{\Gamma}$$

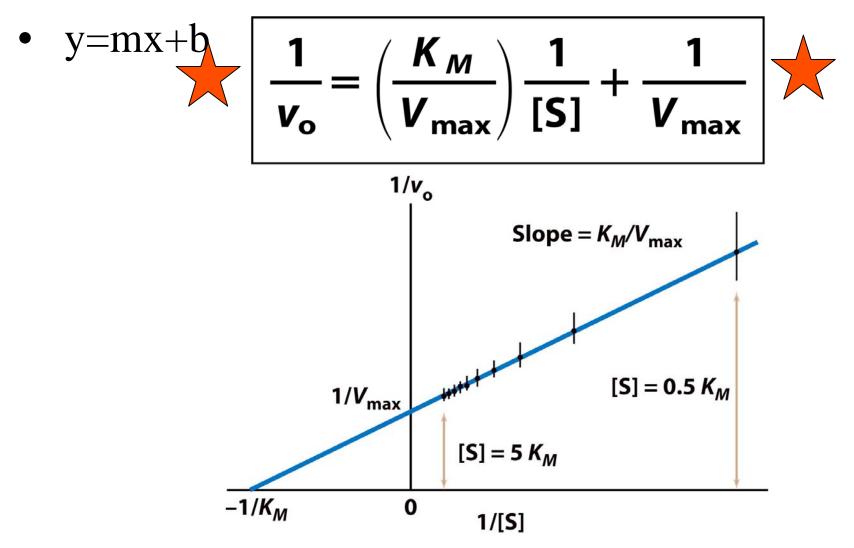
• The initial velocity (Michaelis-Menten Equation) is:

$$\mathbf{v}_0 = \frac{\mathbf{V}_{\max}[\mathbf{S}]}{\mathbf{K}_{\mathrm{M}} + [\mathbf{S}]} \mathbf{v}$$

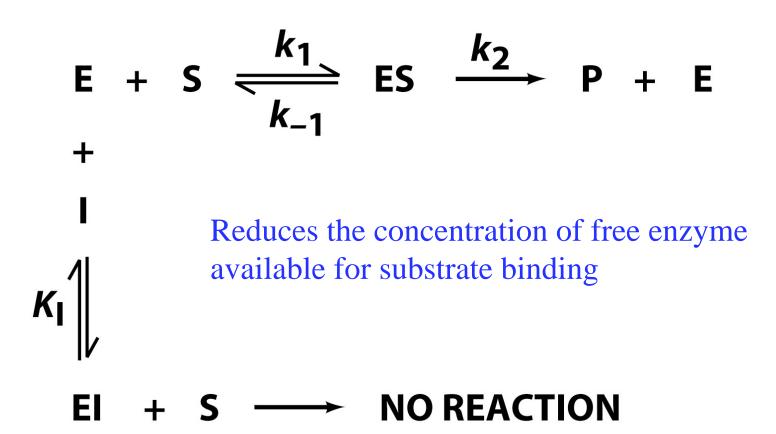
Plot of Michaelis-Menten Kinetics

- Here is another VERY useful expression (you can see it on the figure and below)
- K_M is the substrate concentration at which the velocity of the reaction is half maximal

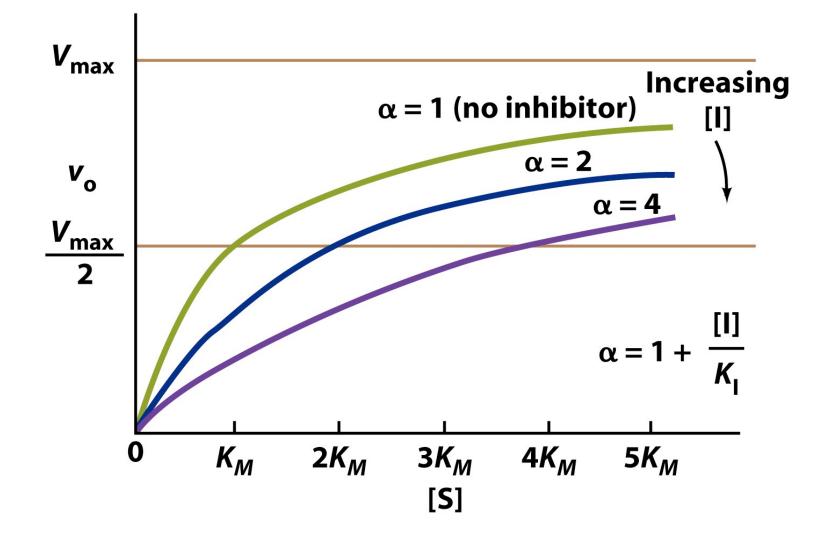
Catalytic Turnover and Efficiency

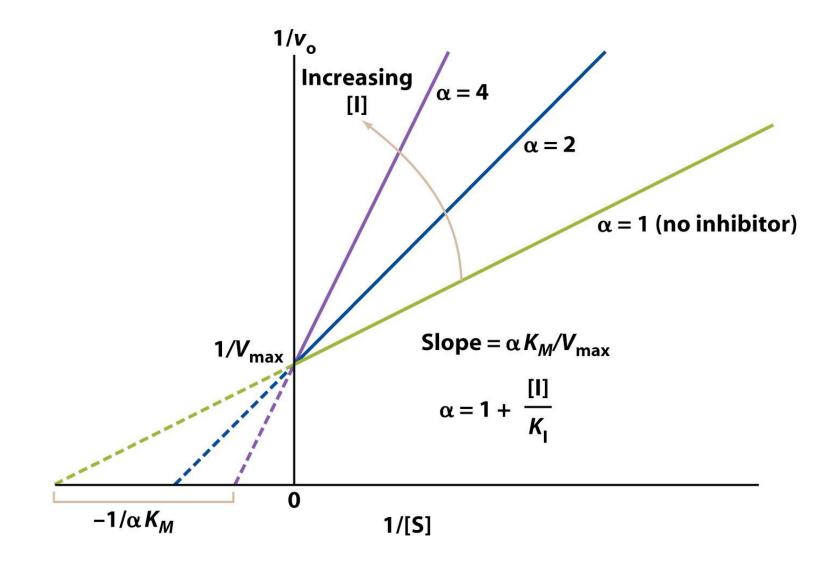

- The catalytic constant, k_{cat} , is defined as:
- This is also known as the turnover number because is it the number of catalytic reactions per active site per unit time
- The catalytic efficiency is defined as k_{cat}/K_{M}

Enzyme	Substrate	<i>К_м</i> (М)	$k_{\rm cat}({ m s}^{-1})$	$k_{\rm cat}/K_M \ ({\rm M}^{-1}\cdot{\rm s}^{-1})$
Acetylcholinesterase	Acetylcholine	9.5 × 10 ⁻⁵	1.4 × 10 ⁴	1.5 × 10 ⁸
Carbonic anhydrase	CO ₂	1.2×10^{-2}	1.0 × 10 ⁶	8.3 × 10 ⁷
	HCO 3	2.6×10^{-2}	4.0×10^{5}	1.5×10^{7}
Catalase	H ₂ O ₂	2.5×10^{-2}	1.0×10^{7}	4.0×10^{8}
Chymotrypsin	N-Acetylglycine ethyl ester	4.4×10^{-1}	5.1 × 10 ⁻²	1.2×10^{-1}
	N-Acetylvaline ethyl ester	8.8×10^{-2}	1.7×10^{-1}	1.9
	N-Acetyltyrosine ethyl ester	6.6×10^{-4}	1.9×10^{2}	2.9 × 10 ⁵
Fumarase	Fumarate	5.0×10^{-6}	8.0×10^{2}	1.6 × 10 ⁸
	Malate	2.5×10^{-5}	9.0×10^{2}	3.6×10^{7}
Urease	Urea	2.5×10^{-2}	1.0 × 10 ⁴	4.0 × 10 ⁵


© 2008 John Wiley & Sons, Inc. All rights reserved.

Analysis of Kinetic Data

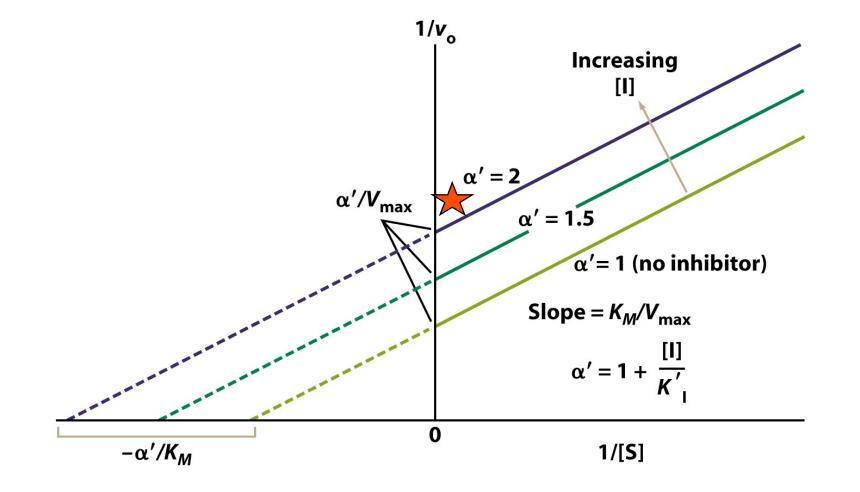

• Lineweaver-Burk or double-reciprocal plot


Competitive inhibition

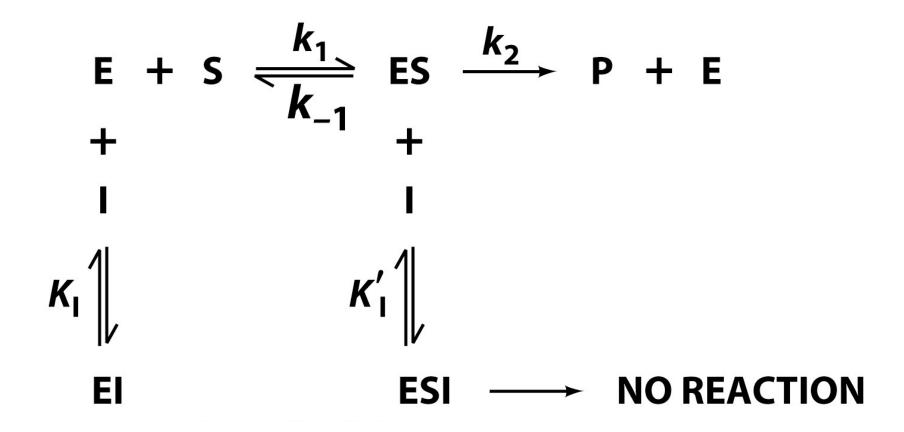
Plot of v_0 vs. [S] for a Michaelis-Menten rxn. with diff. [I]

Lineweaver-Burke plot of <u>competitively</u> inhibited M-M reaction

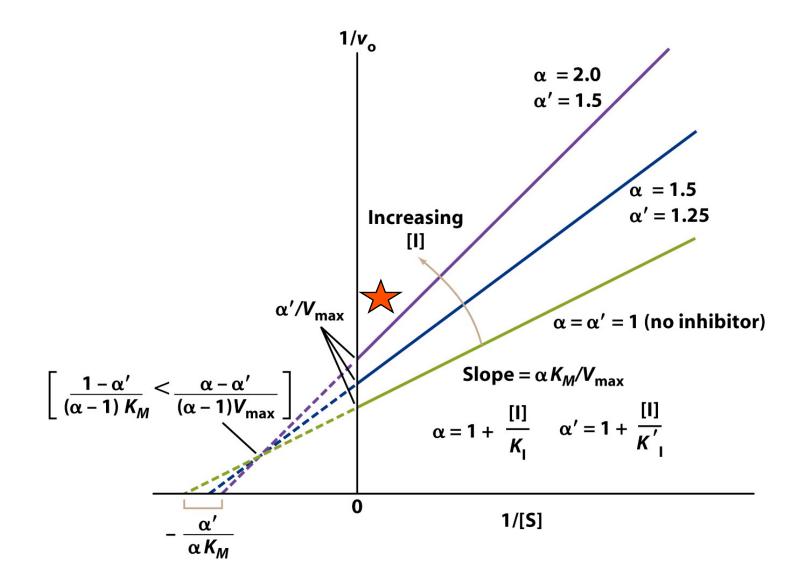
Uncompetitive inhibition


$$E + S \stackrel{k_1}{\longrightarrow} ES \stackrel{k_2}{\longrightarrow} P + E$$

$$+ I$$


$$K'_1 ||_{i}$$

$$ESI \longrightarrow NO REACTION$$


Lineweaver-Burke plot with <u>uncompetitive</u> inhibition

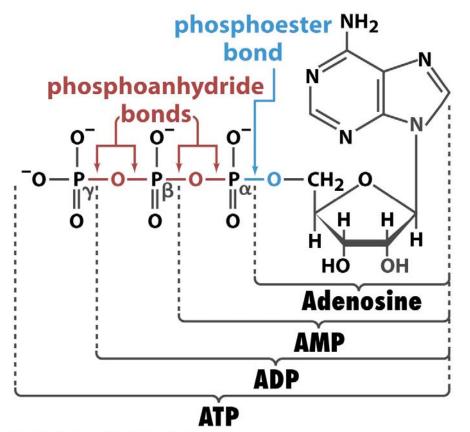
Mixed inhibition

Lineweaver-Burke plot with mixed inhibition

Effects of inhibitors on Michaelis-Menten reactions

Table 12-2

Type of inhibition	Michaelis-Menton equation	Lineweaver-Burke equation	Effect of inhibition
None	$v_0 = \frac{V_{max}[S]}{K_M + [S]}$	$\frac{1}{v_0} = \frac{K_M}{V_{max}} \frac{1}{[S]} + \frac{1}{V_{max}}$	None
Competitive	$v_0 = \frac{V_{max}[S]}{\alpha K_M + [S]}$	$\frac{1}{v_0} = \frac{\alpha K_M}{V_{max}} \frac{1}{[S]} + \frac{1}{V_{max}}$	Increases K _M
Uncompetitive	$v_0 = \frac{V_{max}[S]}{K_M + \alpha'[S]}$	$\frac{1}{v_0} = \frac{K_M}{V_{max}} \frac{1}{[S]} + \frac{\alpha'}{V_{max}}$	Decreases K_M and V_{max}
Mixed (non- Competitive)	$v_0 = \frac{V_{max}[S]}{\alpha K_M + \alpha'[S]}$	$\frac{1}{v_0} = \frac{\alpha K_M}{V_{max}} \frac{1}{[S]} + \frac{\alpha'}{V_{max}}$	Decreases V_{max} ; \uparrow or $\downarrow K_M$

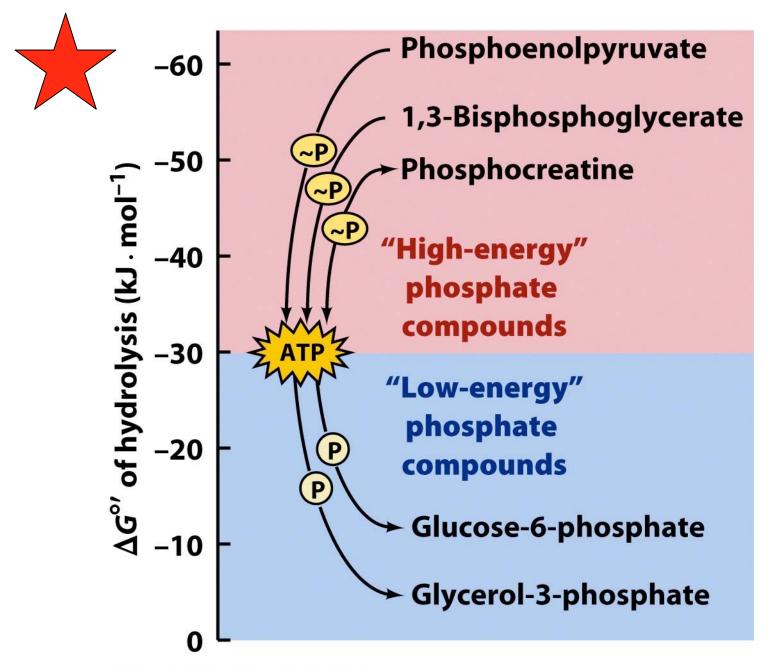

$$\bigstar \alpha = 1 + \frac{[I]}{K_{I}}; \alpha' = 1 + \frac{[I]}{K_{I'}} \bigstar$$

Metabolism

Chapter 14

High-Energy Compounds

ATP and Phosphoryl Group Transfeer

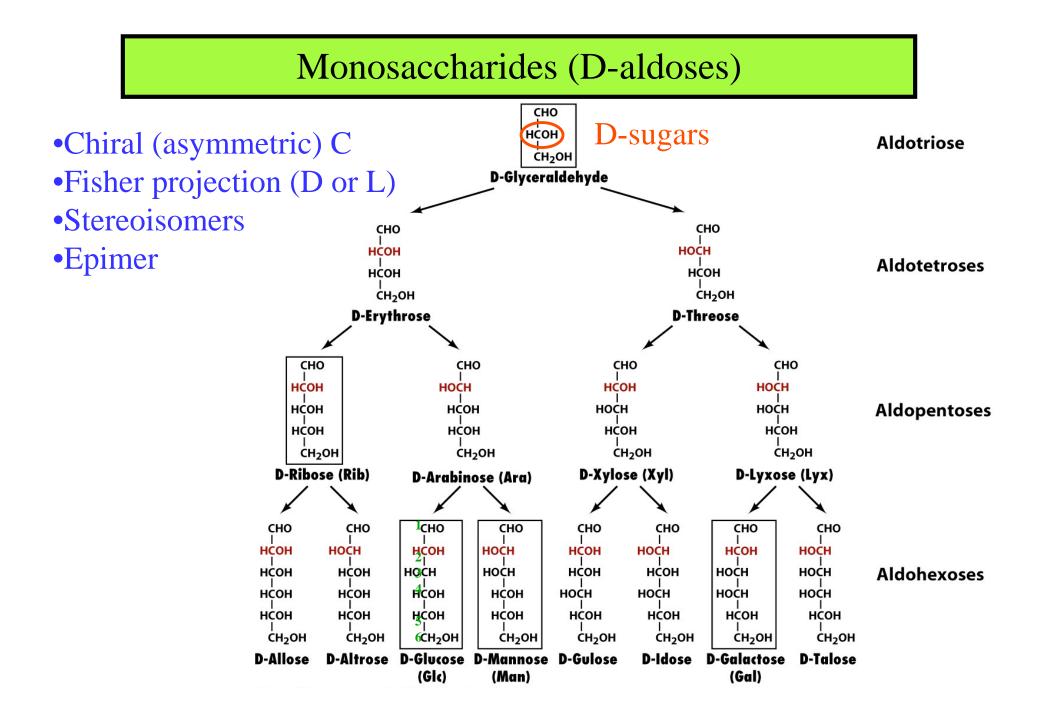


Adenosine diphosphate, one phosphoester bond and one phosphoanhydride bond

Adenosine monophosphate one phosphoester bond.

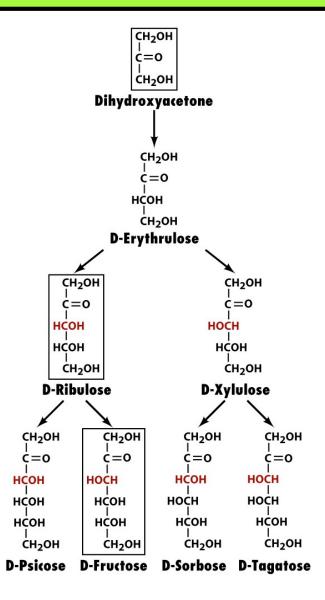
Which bonds are exergonic?

Figure 13-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

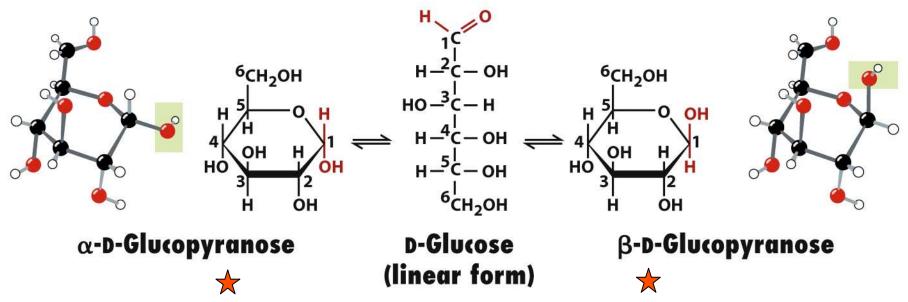


© 2008 John Wiley & Sons, Inc. All rights reserved.

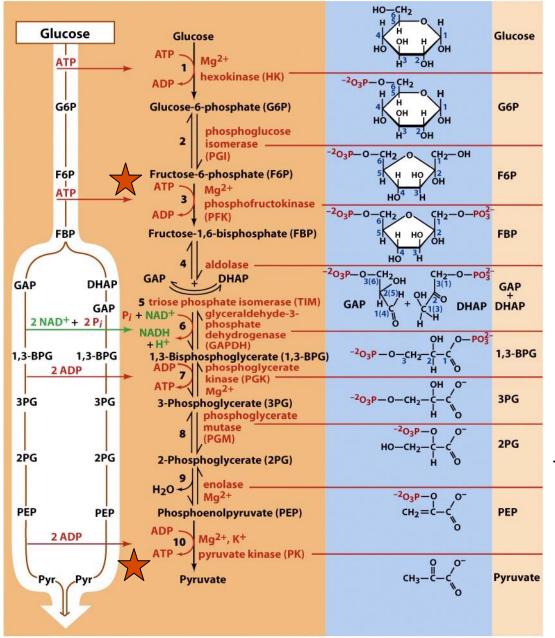
Carbohydrates (Chapter 8)


Carbohydrates

- Monosaccharides are aldehyde or ketone derivatives of straight-chain polyhydroxyl alcohols continuing at least three carbon atoms
- Aldoses: The carbonyl group is an aldehyde
- Ketoses: The carbonyl group is a ketone
- Trioses: three carbon atoms
- Tetroses: four carbon atoms
- Pentoses: five carbon atoms
- Hexoses: six carbon atoms
- Epimers: sugar molecules differing in stereochemical configuration at one carbon atom
- D-sugars are those that have the same stereochemical configuration at the asymmetric center farthest from their carbonyl group as does D-glyceraldehyde


D-ketoses

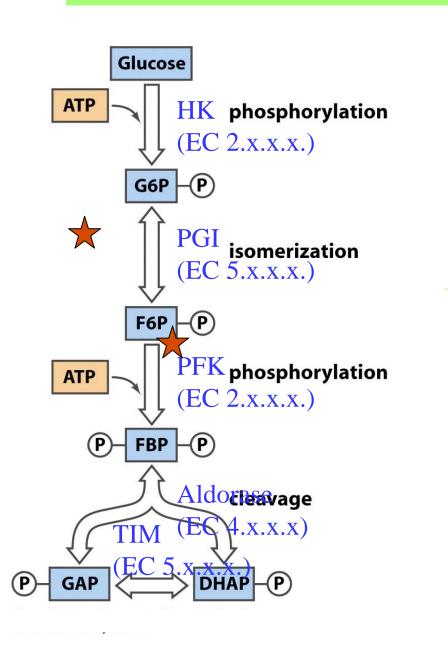
Chiral (asymmetric) C
Fisher projection (D or L)
Stereoisomers
Epimer

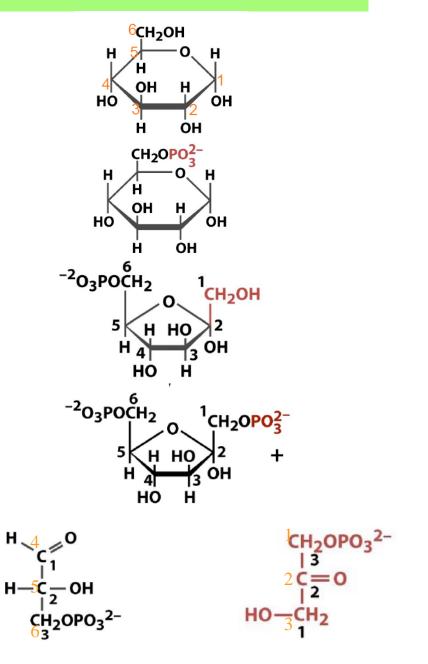

α - and β -anomers

anomeric carbon: carbonyl C

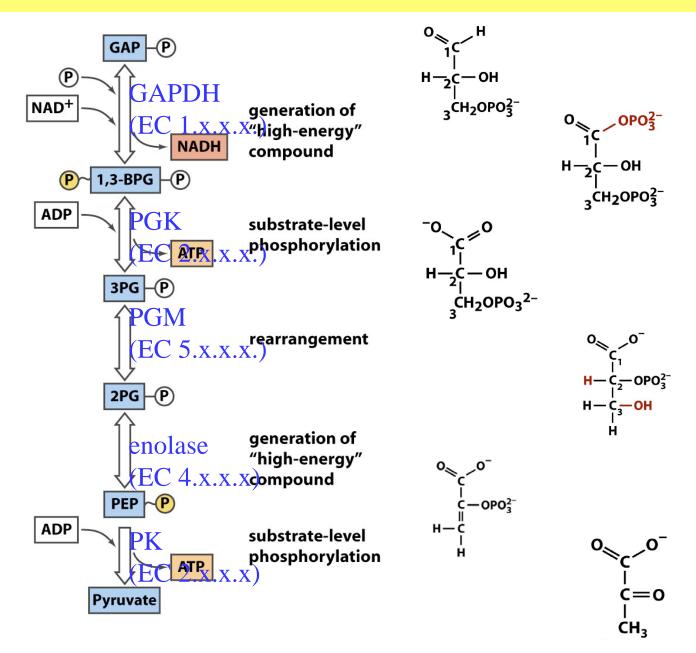
- On going from linear to cyclic, two forms are possible
- anomers: α (down opposite side of ring from CH₂OH)or β (up same side of ring from CH₂OH): They differ only by their **configuration** about the anomeric C
- anomers freely interconvert in aqueous solution: at equilibrium, β anomer (63.6%) + α anomer (36.4%)

Glucose Catabolism (Chapter 15)


Stage I: Energy investment (rxns. 1-5), glucose
phosphorylated and cleaved
to yield 2 G3P and
consumes 2 ATP

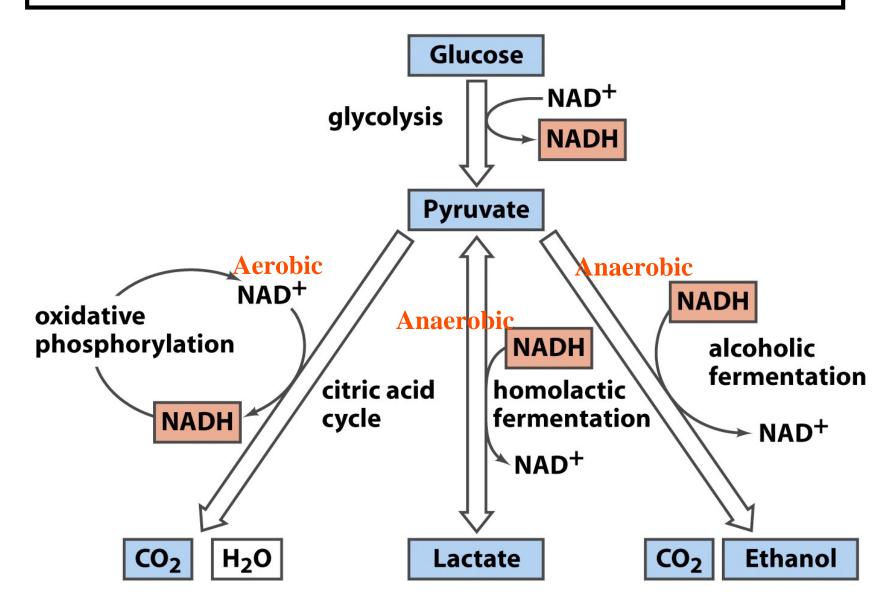

- **State II**: Energy recovery (rxns. 6-10), G3P converted to pyruvate with generation of 4 ATP
- Net profit of 2 ATP per glucose

Glucose + 2NAD⁺ + 2ADP +2P*i* \rightarrow 2NADH + \bigstar 2pyruvate + 2ATP + 2H₂O + 2H⁺

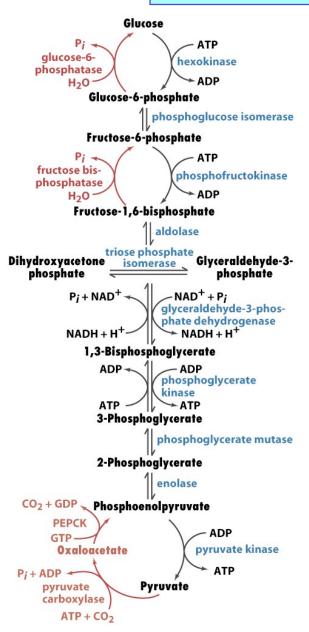

© 2008 John Wiley & Sons, Inc. All rights reserved.

Summary of Stage I of glycolysis pathway

Summary of Stage II of glycolysis pathway

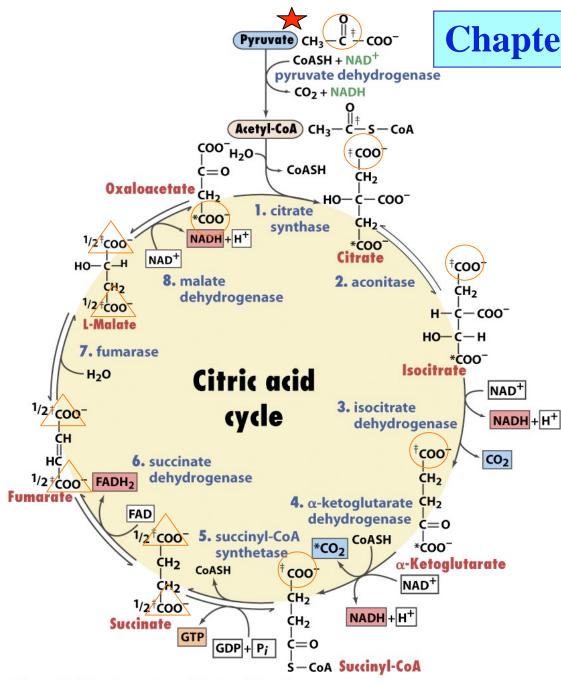


Products of glycolysis


- ATP: The initial investment of 2ATP's per glucose in Stage I of glycolysis is paid back by the generation of 4ATP's in State II of the pathway for a net generation of 2ATP's
- NADH: Two NAD+'s are reduced to 2NADH's. The oxidation of NADH to NAD+ is accomplished via electron transport of other processes resulting in the synthesis of ATP
- **Pyruvate:** Under aerobic conditions pyruvate is oxidized to CO₂ via the citric acid cycle. In anaerobic metabolism, pyruvate is metabolized to regenerate NAD+.
- Overall reaction of glycolysis

Glucose + 2NAD⁺ + 2ADP +2P_i \rightarrow 2NADH + 2pyruvate + 2ATP + 2H₂O + 2H⁺

Metabolic fate of pyruvate



Chapter 16 - Gluconeogenesis

Glycolysis and Gluconeogenesis pathways.

They differ and are regulated in three places (colored in red). Recall that these are the three irreversible steps in glycolysis.

Chapter 17 - Citric Acid Cycle

You MUST know this entire figure, including molecules, enzymes, and cofactors.

- •In eukaryotes, all of the enzymes in the TCA are located in the mitochondria, so all substrates including NAD+ and GDP must be generated or transported there
- •The carbon atoms of the 2CO₂ molecules generated in one turn of the cycle do not come from the acetyl group of acetyl-CoA but from oxaloacetate