BCHS 6229 Protein Structure and Function

Lecture 1 (October 11, 2011)

Introduction

Basic Structural Principles PDB

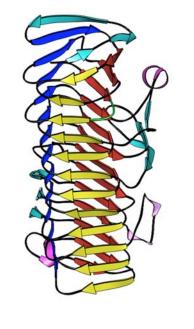
Overview

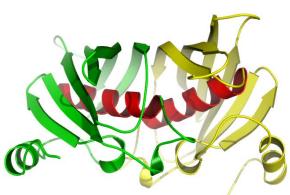
Main Goals:

- Carry out a rapid review of the essentials of protein structure & function
- Provide a basis for evaluating current structural biology literature
- Cover selected important topics in protein science
- Include literature as much as possible

Suggested Textbooks:

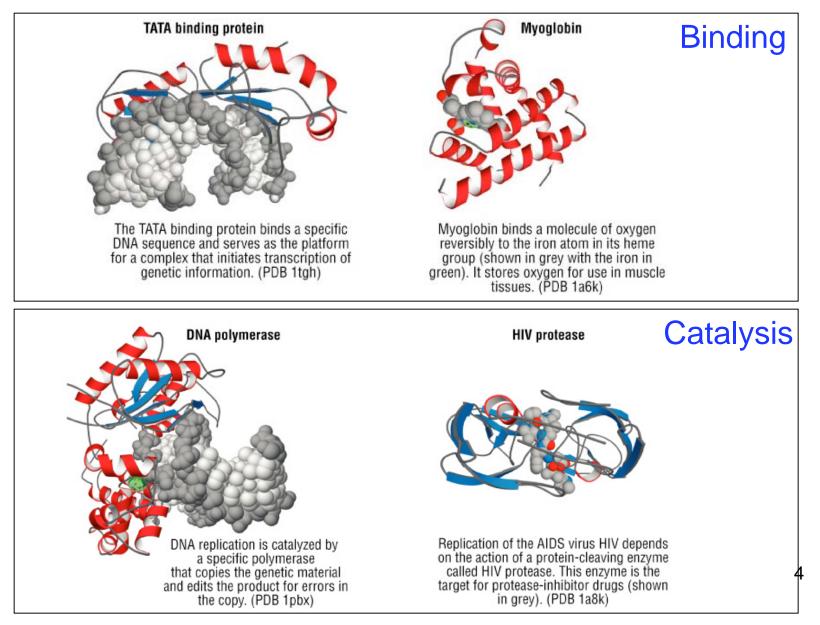
- Introduction to Protein Structure, 2nd Ed., Branden and Tooze, 1999
- Protein Structure and Function, Petsko and Ringe, 2004
- Fundamentals of Biochemistry, Voet, 2ndEd, 2005

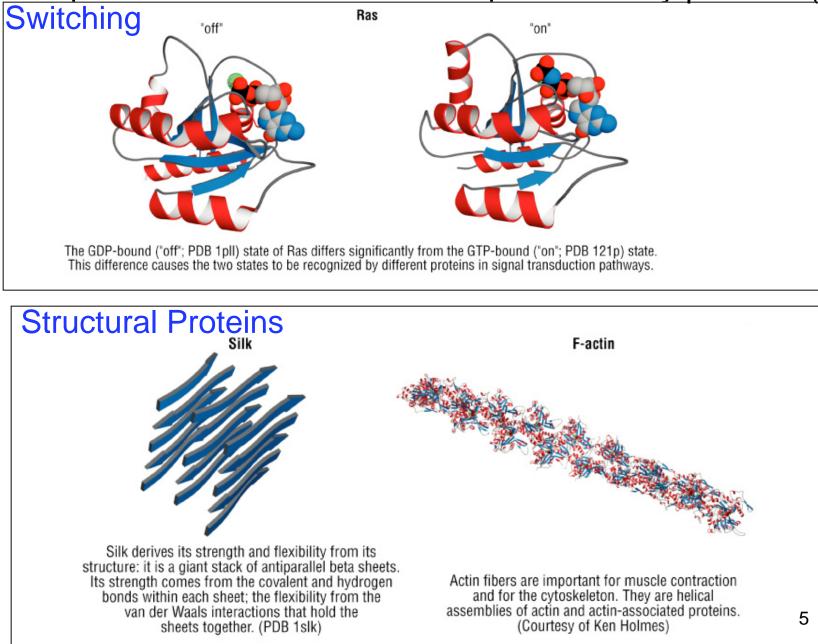

Grade:


- One short in-class exam (20 %)
- Two homework assignments (40 %)
- One project presentation (40 %)

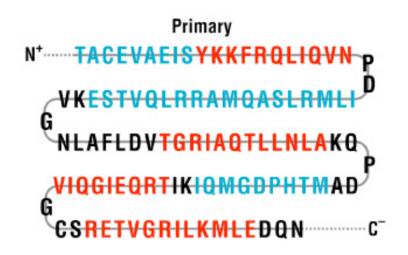
Yeo Laboratory – Research Interests

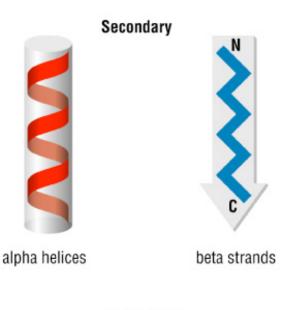
• Type V Secretion in *Haemophilus influenzae*

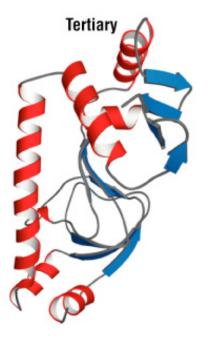

• Virulence factors of *Campylobacter jejuni*

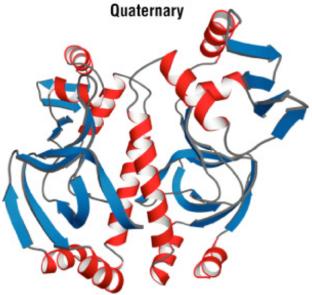


Overview: Basic Structural Principles

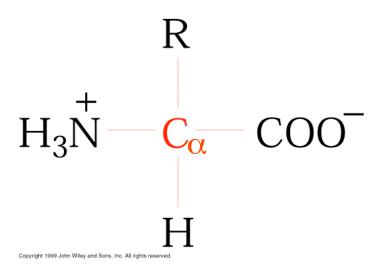

Examples of biochemical functions performed by proteins (I)




Examples of biochemical functions performed by proteins (II)



There are four levels of protein structure



Amino acids

Please carefully note the charged ends (termini). At physiological pH, the ends of an amino acid are charged. Certain "R" groups will also be charged at pH 7.

- Backbone of an amino acid is composed of the N, Cα, and C
- Amino acid structures and sequences are written from left to right, starting with the N-terminus (amino) and finishing with the C-terminus (carboxyl)
- The thing that differentiates each amino acid is the "R" group
- $C\alpha$ is chiral, except in Gly

General properties

- The backbone of individual amino acids are zwitterionic (i.e. has both a positively charged and a negatively charged group)
- In addition, some amino acids have ionizable (i.e. charged) side chains
- Because of these ionizable groups (backbone and some side chains), amino acids can have a number of different charge states
- The "R" group in an amino acid is called the side chain
- An amino acid is often called a "residue" (i.e. an amino acid residue)
- There are 20 standard amino acids they all differ in "R"

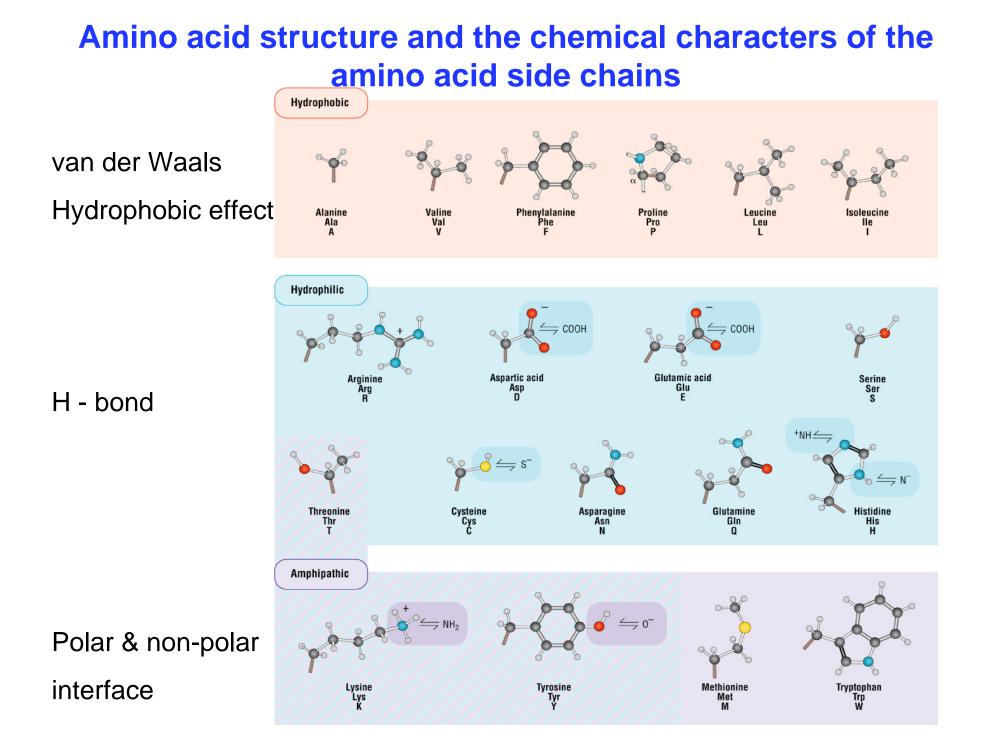
Classification

- Non-polar (9 aa)
 - Glycine (Gly, G), Alanine (Ala, A), Valine (Val, V), Leucine (Leu, L), Isoleucine (Ile, I), Methionine (Met, M), Proline (Pro, P), Phenylalanine (Phe, F), Tryptophan (Trp, W)
- Polar (6 aa)
 - Serine (Ser, S), Threonine (Thr, T), Asparagine (Asn, N),
 Glutamine (Gln, Q), Tyrosine (Tyr, Y), Cysteine (Cys, C)
- Charged (5 aa)
 - Aspartic acid (Asp, D, -1); Glutamic acid (Glu, E, -1)
 - Lysine (Lys, K, +1); Arginine (Arg, R, +1), Histidine (His, H, +1)

Nam Three-letter and One-lette	Symbol,	Structural Formula ^a	Residue Mass (D) ^b	Average Occurence in Proteins (%) ^e	pK1 α-COOH4	pK2 α-NH3 ^{+ 4}	pK _R Side chain ⁴
Amino acids Glycine Gly G	with nonpola COO ⁻ H—C <mark>—H</mark>	r side chains	57.0	7.2	2.35	9.78	
Alanine	['] NH ₃ ⁺ COO [−] H−C <mark>−CH₃</mark> NH ₃ ⁺		71.1	7.8	2.35	9.87	
	NH3 H-C-CH NH3+ COO-CH		99.1	6.6	2.29	9.74	
Leucine	COO ⁻ H-C-CH ₂ NH ₃ ⁺	CH ₃	113.2	9.1	2.33	9.74	
Isoleucine Ile I	COO- H-C NH ₃ +	CH ₃ C [*] -CH ₂ -CH ₃ H	113.2	5.3	2.32	9.76	
Methionine Met M	СОО ⁻ H—С <mark>—СН</mark> ₂ NH ₃	—СH ₂ —S—СН	131.2	2.2	2.13	9.28	
Proline Pro P	C_{1}^{0}	CH ₂ CH ₂	97.1	5.2	1.95	10.64	
Phenylalanin Phe F	H $H = COO^{-}$ $H = C = CH_{2}$ $H = H_{2}$ $H = H_$	$\overline{\bigcirc}$	147.2	3.9	2.20	9.31	
Tryptophan Trp W	COO ⁻ H-C-CH ₂ NH ₃ ⁺	I I I I I I I I I I I I I I I I I I I	186.2	1.4	2.46	9.41	

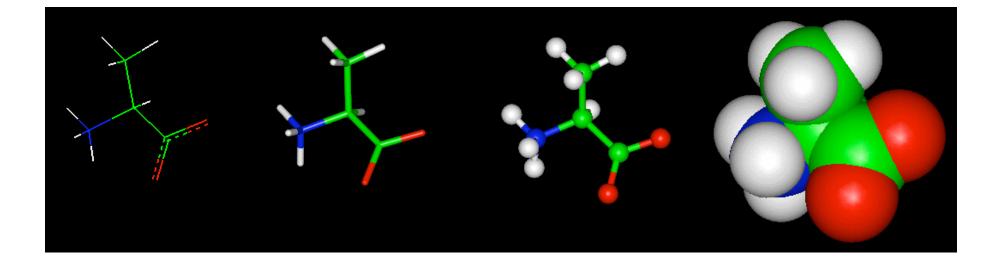
TABLE 4-1. COVALENT STRUCTURES AND ABBREVIATIONS OF THE "STANDARD" AMINO ACIDS OF PROTEINS, THEIR OCCURANCE, AND THE PK VALUES OF THEIR IONIZING GROUPS

^a The ionic forms shown are those predominating at pH 7.0 although residue mass is given for the neutral compound. The C_a atoms, as well as those atoms marked with an asterisk, are chiral centers with configurations as indicated according to Fischer projection formulas. The standard organic numbering system is provided for heterocycles.


^b The residue masses are given for the neutral residues. For the molecular masses of the parent amino acids, add 18.0 D, the molecular mass of H₂O, to the residue masses. For side chain masses, subtract 56.0 D, the formula mass of a peptide group, from the residue masses.

^c Calculated from a database of nonredundant proteins containing 300,688 residues as compiled by Doolittle, R. F. in Fasman, G, D. (Ed.), Predictions of Protein Structure and the Principles of Protein Conformation, Plenum Press (1989).

^d Source: Dawson, R.M.C., Elliott, D.C., Elliott, W.H. and Jones, K.M., Data for Biochemical Research (3rd ed.), pp. 1-31, Oxford Science Publications (1986).

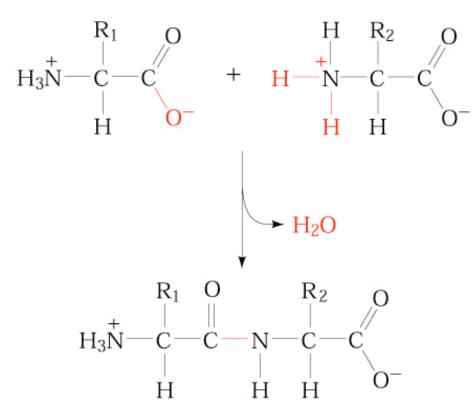

* The three- and one-letter symbols for asparagine or aspartic acid are Asx and B, whereas for glutamine or glutamic acid they are Glx and Z. The one-letter symbol for an undetermined or "nonstandard" amino acid is X.

Name, Three-letter Symbol, and One-letter Symbol	Structural Formula ^e	Residue Mass (D) ^s	Average Occurence in Proteins (%) ^e	p <i>K</i> 1 α-COOH4	pK2 α-NH3 4	pK _R Side chain ⁴
Amino acids with uncharg Serine COO ⁻ Ser H-C-CH ₂ -C S NH ₃ ⁺		ins 87.1	6.8	2.19	9.21	
$\begin{array}{c} \text{Threonine} \text{COO}^- \text{ H} \\ \text{Thr} \text{H}^- \text{C}^- \text{C}^+ \\ & \text{H}^+ \text{OH} \end{array}$	-CH ₃	101.1	5.9	2.09	9.10	
Asparagine ^e COO ⁻ Asn H—C—CH ₂ —0 N NH ₃ ⁺	0	114.1	4.3	2.14	8.72	
$\begin{array}{c} & \text{NH}_3 \\ \text{Glutamine}^{\prime} & \text{COO}^{-} \\ \text{Gln} & \text{H} - \begin{array}{c} & - \\ \text{C} - & \text{CH}_2 - \\ \text{Q} & & \\ & \text{NH}_3^+ \end{array}$	CH ₂ -C _{NH₂}	128.1	4.3	2.17	9.13	
$\begin{array}{c} \text{Yrosine} \text{COO}^-\\ \text{Yr} \text{H} \overset{ }{-} \overset{\text{C}}{-} \overset{\text{CH}_2}{-} \overset{\text{CH}_2}{-} \overset{\text{CH}_2}{-} \overset{\text{CH}_3}{-} \overset{\text{CO}^-}{-} \overset{\text{CH}_3}{-} \overset{\text{CO}^-}{-} \overset{\text{CO}^-}$	О-он	163.2	3.2	2.20	9.21	10.46 (phenol)
Cysteine COO^- Cys $H - C - CH_2 - S$ C NH_3^+	SH	103.1	1.9	1.92	10.70	8.37 (sulfhydryl)
Imino acids with charged usine COO- -ys I - C - CH ₂ - C NH ⁺ ₃	polar side chains	128.2	5.9	2.16	9.06	10.54 (e-NH ₃ ⁺)
Arginine COO ⁻ $Arg H - C - CH_2 -$	-CH2-NH-C	NH ₂ 156.2	5.1	1.82	8.99	12.48 (guanidino
$\begin{array}{c} \text{Iistidine} \text{COO}^-\\ \text{Iis} \text{H} - \text{C} - \text{CH}_2 - \text{H}\\ \text{I} \text{I}\\ \text{NH}_3^+ \end{array}$	N 3 1 N H	137.1	2.3	1.80	9.33	6.04 (imidazole)
Aspartic acid ^e COO- Asp $H - C - CH_2 - C$	0	115.1	5.3	1.99	9.90	3.90 (β-COOH)
Glutamic acid* COO- Glu H-C-CH 5 I NH ₃ ⁺	0 2-CH2-C 0-	129.1	6.3	2.10	9.47	4.07 (у-СООН)

Amino acids

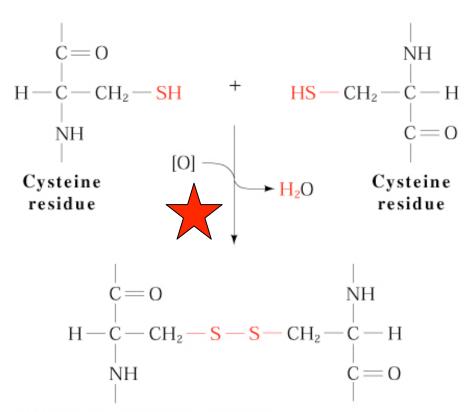
 The amino acid, Alanine (Ala, A) is shown below in line, stick, ball and stick, and CPK (space filling) representations.

Linear arrays (polymers) of amino acids can make a huge number of molecules

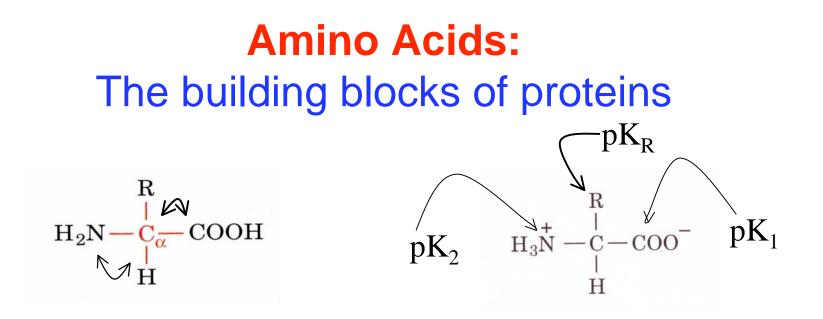

> Consider a peptide with two amino acids; There are 20 possibilities at each site

 $20 \times 20 = 400$ different molecules

20 x 20 x 20 = 8000 different molecules For 100 amino acid protein the # of possibilities are: $20^{100} = 1.27 \times 10^{130}$


Peptide bonds

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.


- As mentioned previously, amino acids can be connected together (i.e. condensed) to form a bigger molecule, now containing two amino acids
- The bond formed is a "peptide bond" and the molecule is a dipeptide.
- If we add another amino acid, then we would have a tripeptide

Disulfide bond formation

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

- Amino acids in a polypeptide chain can also be cross-linked via two Cys residues
- Cys residues have "SH" groups at the end of their side chains. Two of these groups can be oxidized to form an S-S (disulfide) bond.
- Disulfide bonds can provide stability to a protein structure 16

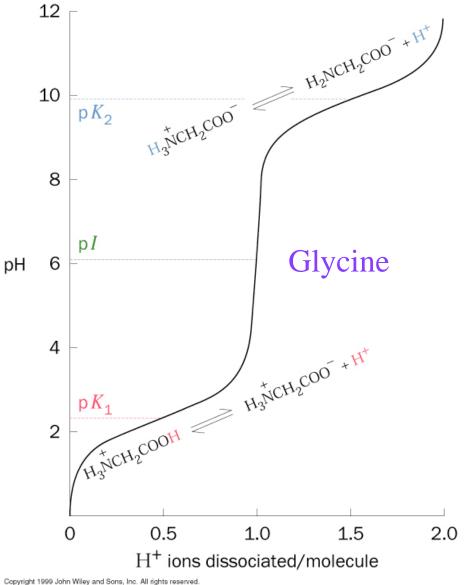
 α -amino acids because of the α -carboxylic and α -amino groups pK₁ and pK₂ respectively pK_R is for R group pK's

 $pK_1 \approx 2.2$ while $pK_2 \approx 9.4$

Remember these values for the pKa's of the termini for ALL AA's

17

In the physiological pH range, both carboxylic and amino groups are completely ionized!!

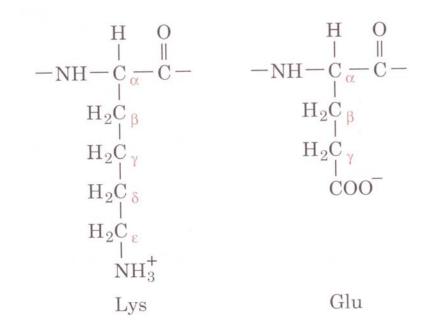

Hint: draw the structures of an amino acid at several pH values

Acid - Base properties of amino acids $pH = pK + log\left(\frac{[A^{-}]}{[HA]}\right)$ ¹²

Henderson-Hasselbalch Eq. Isoelectric point: the pH where a protein carries no net electrical charge

$$pI = \frac{1}{2} \left(pK_i + pK_j \right)$$

The observed pKa of an amino acid side chain is dependent on its environment in the protein standard pKa's can be substantially shifted by the protein environment



Isoelectric point

- $pI = 0.5(pK_i + pK_j)$; for 2 ionizable groups
- If amino acid has ionizable side chain, then it must be taken into account when computing pl
- If the side chain is negatively charged when ionized (Asp, Glu), then pI = 0.5(pK₁ + pK_R) (remember pK₁ is the pK_a of the C-terminus, -COOH)
 - e.g., pl of Asp = 0.5(2.20 + 3.90) = 3.05 (the total charge from the side chain and C-term at pH=3.05 is –1 which balances with the +1 charge of the N-term to give a total charge of 0)
- If the side chain is positively charged when ionized (Arg, Lys, His), then $pI = 0.5(pK_R + pK_2)$ (remember pK_2 is the pK_a of the N-terminus, $-NH_2$)

$$- e.g.$$
, pl of Lys = 0.5(10.54 + 9.4) = 9.97

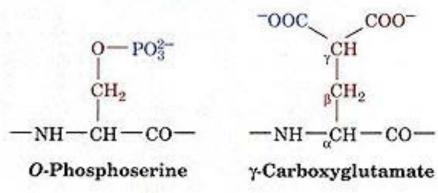
Amino acid nomenclature

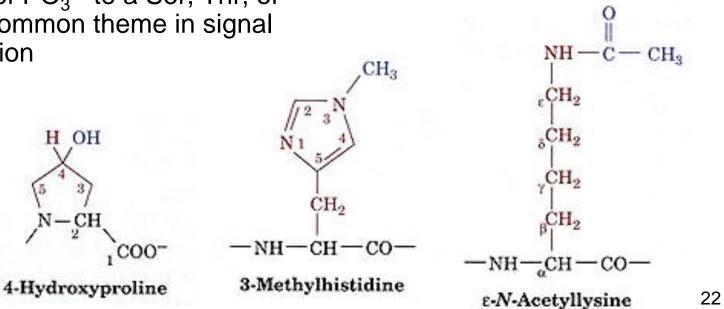
- Greek lettering used to identify atoms in all amino acid side chains - lysine and glutamate are shown as examples
- Naming is for Carbon atoms anything attached to the carbon has the same Greek letter
- For example, the NH_3 + at the end of the Lys side chain is $N\epsilon$

Nomenclature

Glx means either Gln or Glu; same for Asx (Asn or Asp)

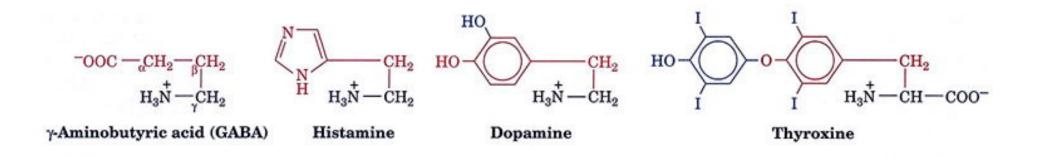
Long name - drop -ine and add -yl and put amino acids in order (e.g. alanine – alanyl, lysine – lysyl, etc.) The standard method to write an amino acid sequence is from the N-terminus to the C-terminus

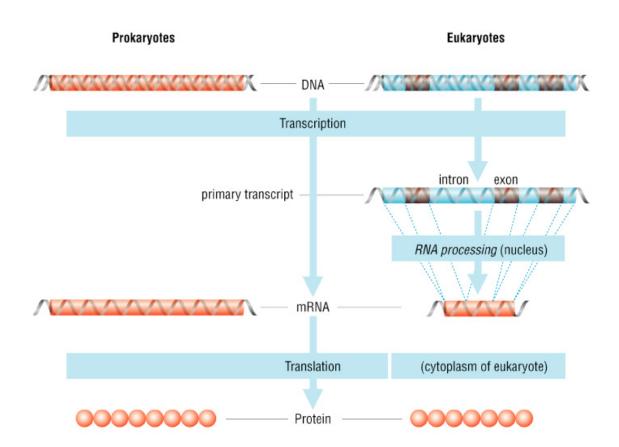

N-terminus- AA_1 - AA_2 - AA_3 - AA_4 -... AA_n -C-terminus


The protein is different, if named backwards!! KCAT (Lys-Cys-Ala-Thr) is different from TACK Order DOES count

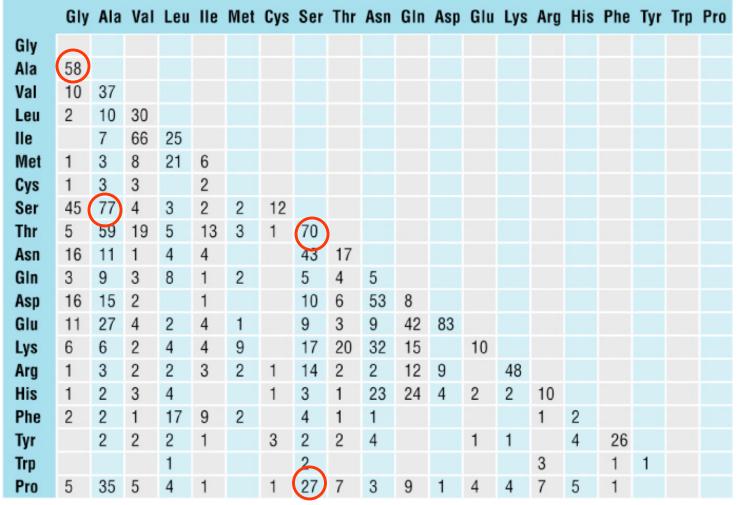
Non-standard amino acids

- Post-translationally modified • amino acids
- These transformations are made • after the amino acids are already incorporated into a protein
- Typical alterations include: hydroxylation, methylation, acetylation, carboxylation, and phosphorylation
- Addition of PO_3^{2-} to a Ser, Thr, or ۲ Tyr is a common theme in signal transduction

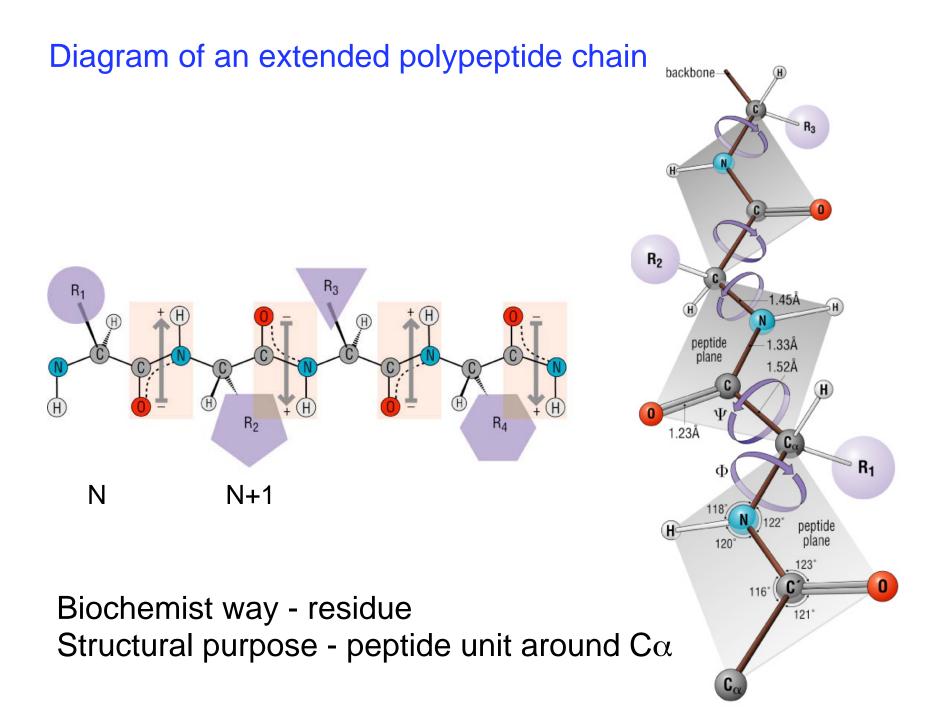

H OH


Non-standard amino acids

- Neurotransmitters
 - GABA: glutamine decarboxylation product
 - Dopamine: tyrosine derivative
- Local mediator of allergic reactions
 - Histamine: histidine decarboxylation product
- Thyroid hormone that stimulates vertebrate metabolism
 - Thyroxine: tyrosine derivative
- About 250 amino acids have been found in various plants and fungi


		2nd p	osition		
lst position (5' end)	U	C	Α	G	3rd position (3' end)
U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys STOP Trp	U C A G
C	Leu Leu Leu Leu	Pro Pro Pro Pro	His His GIn GIn	Arg Arg Arg Arg	U C A G
Α	lle Ile Ile Met	Thr Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	U C A G
G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	U C A G
Amino A acids	bbrevia	ations		Codor	IS
Alanine Cysteine Aspartic acid Glutamic acid Phenylalanine Glycine Histidine Isoleucine Lysine Leucine Methionine Asparagine Proline Glutamine Arginine Serine Threonine Valine Tryptophan	Ala Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Arg Gln Arg Ser Thr Val Trp	A C D E F G H I K L M N P Q R S T V W	AUG AAC AA CCA CC CAA CA AGA AG	GU AG AG AG AG AG AU AG AU AG AU AG AU AG AC AC AC AC AC AC AC AC AC AC AC AC AC	GGU CUC CUG CUU CCU CGC CGG CGU UCC UCG UCU ACU

Gene and Proteins

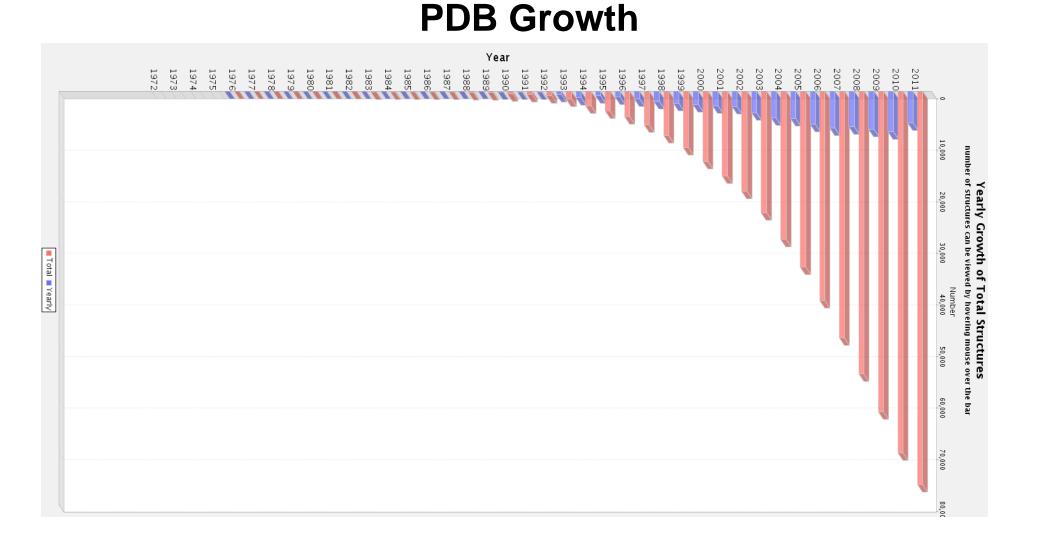


Linear relationship, single-nt polymorphism Conservative substitutions²⁴

Table of the frequency with which one amino acid is replaced by others in amino-acid sequences of the same protein from different organisms

From Protein Structure & Function (Petsko & Ringe)

chemical interactions that Stabilize Polypeptides						
Interaction	Example	Distance dependence	Typical distance	Free energy (bond dissociation enthalpies for the covalent bonds)		
Covalent bond	-Ca-C-	-	1.5 Å	356 kJ/mole (610 kJ/mole for a C=C bond)		
Disulfide bond	-Cys-S-S-Cys-	-	2.2 Å	167 kJ/mole		
Salt bridge	- C (0H-N-H - H+ 0 H	Donor (here N), and acceptor (here O) atoms <3.5 Å	2.8 Å	12.5–17 kJ/mole; may be as high as 30 kJ/mole for fully or partially buried salt bridges (see text), less if the salt bridge is external		
Hydrogen bond	_N−H …0=C <	Donor (here N), and acceptor (here O) atoms <3.5 Å	3.0 Å	2–6 kJ/mole in water; 12.5–21 kJ/mole if either donor or acceptor is charged		
Long-range electrostatic interaction	- C (- 0 H	Depends on dielectric constant of medium. Screened by water. 1/r dependence	Variable	Depends on distance and environment. Can be very strong in nonpolar region but very weak in water		
Van der Waals interaction	н н С-Н Н-С- - н н	Short range. Falls off rapidly beyond 4 Å separation. 1/r ⁶ dependence	3.5 Å	4 kJ/mole (4–17 in protein interior) depending on the size of the group (for comparison, the average thermal energy of molecules at room temperature is 2.5 kJ/mole)		

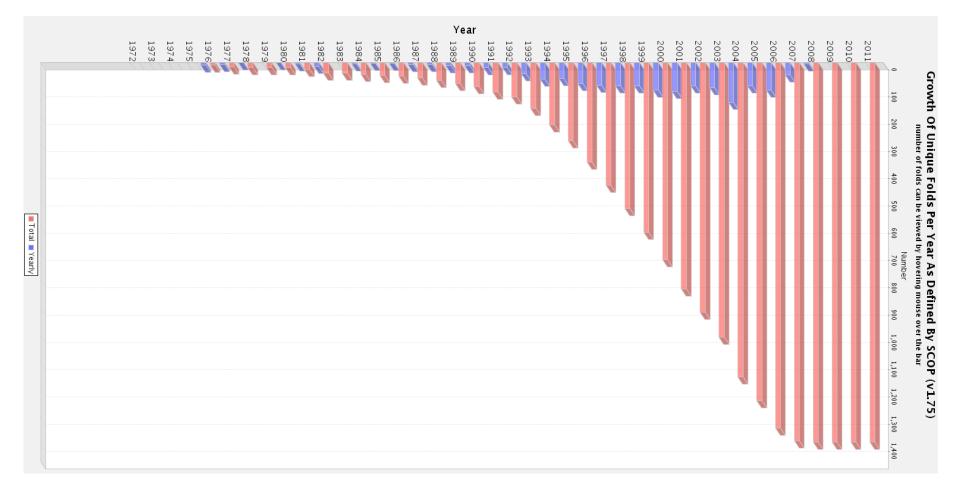

Chemical Interactions that Stabilize Polynentides

Any specific number is highly dependent on the context in which the interaction is found!!

Retrieving and Viewing Protein Structures from the Protein Data Bank (PDB)

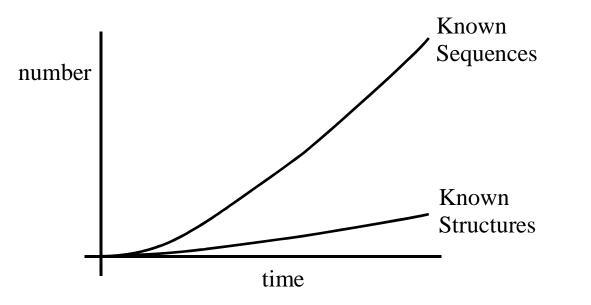
Protein Data Bank

- Established in 1971
 - Funded by NSF, DOE, NIH
 - Operated by Rutgers, SDSC, NIST
- Purpose: Make protein structure data available to the entire scientific community
- In the beginning: "less than a dozen" protein structures
- Currently has xx,xxx protein structures
- Growing at 20% per year
- New structures 50 times larger than those in 1971 are common place


As of October 4, 2011, 76288

- Engineered bacteria as a source of proteins
- Improved crystal-growing conditions
- More intense sources of X-rays
- Cryogenic treatment of crystals
- Improved detectors & data collection
- New method NMR:
 - Accounts for 15% of new structures in PDB
 - Enables determination of structure of proteins in solution

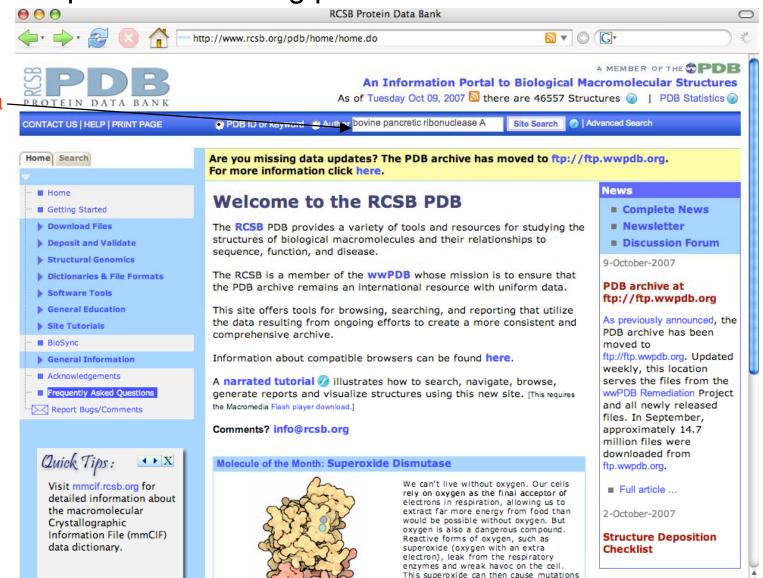
"Protein Structures: From Famine to Feast", Berman, et.al. American Scientist v.90, p.350-359, July-August 2002


Not all Structures are Different

PDB Growth in "New Folds"

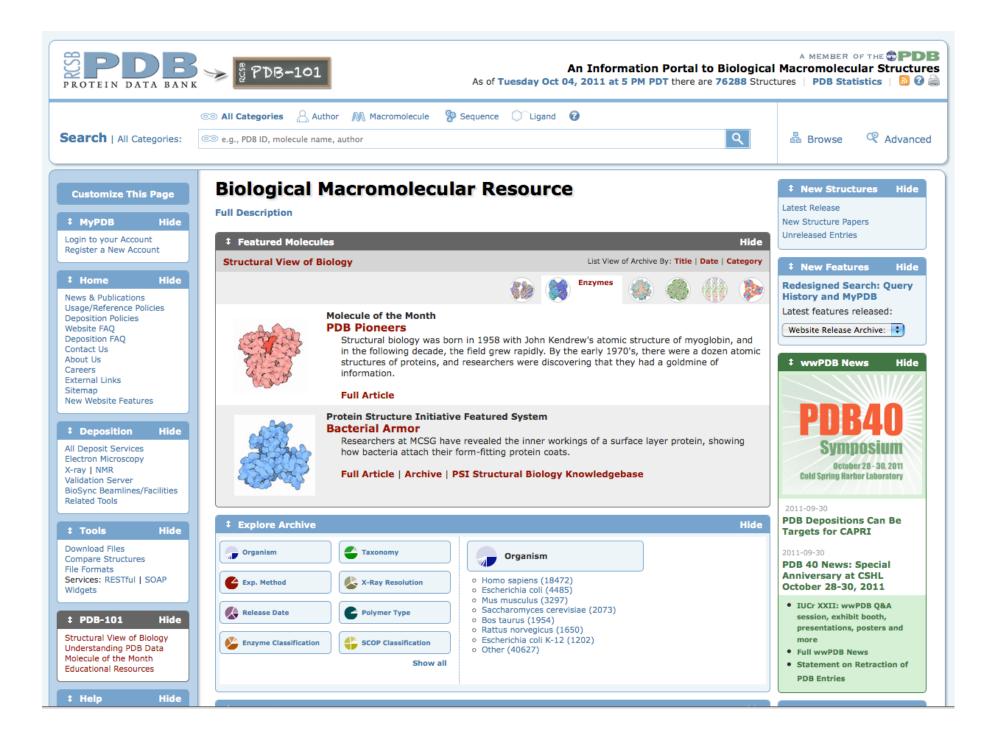
Structure vs. Sequence

- New protein sequences are being discovered much more quickly than new protein structures are being solved
 - Currently, known protein sequences vastly outnumber known protein structures
 - The "sequence-structure" gap continues to widen

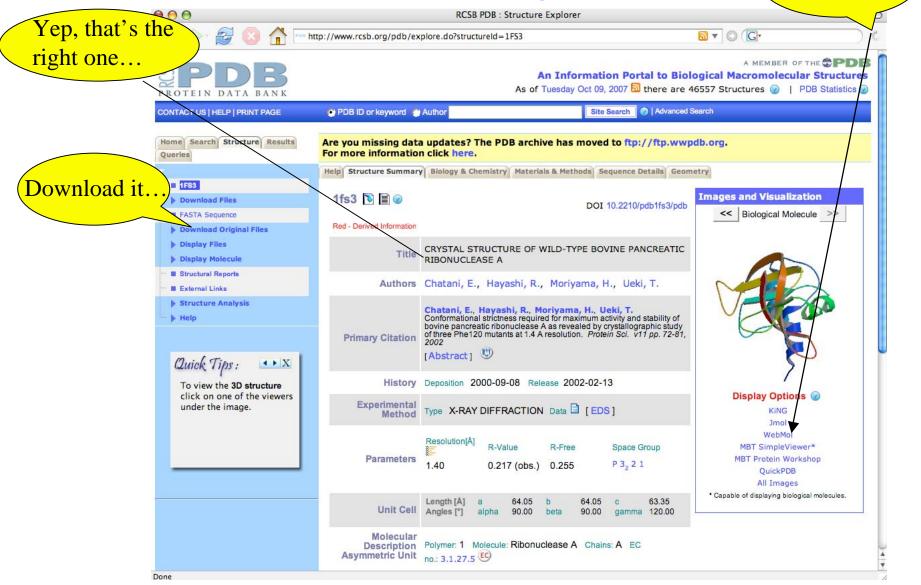

Point of Information

- Today's material is:
 - a subset of the information available to you in online tutorials
 - presented to "get you started" quickly and to "shorten the learning curve"
 - not exhaustive or even sufficient

=> should be augmented by actually working through the online tutorials

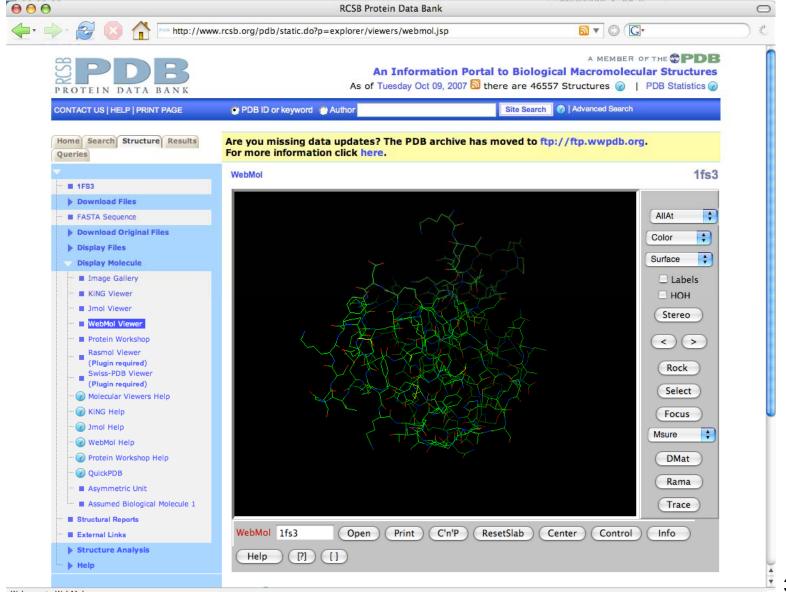

PDB Website

http://www.rcsb.org/pdb/home/home.do

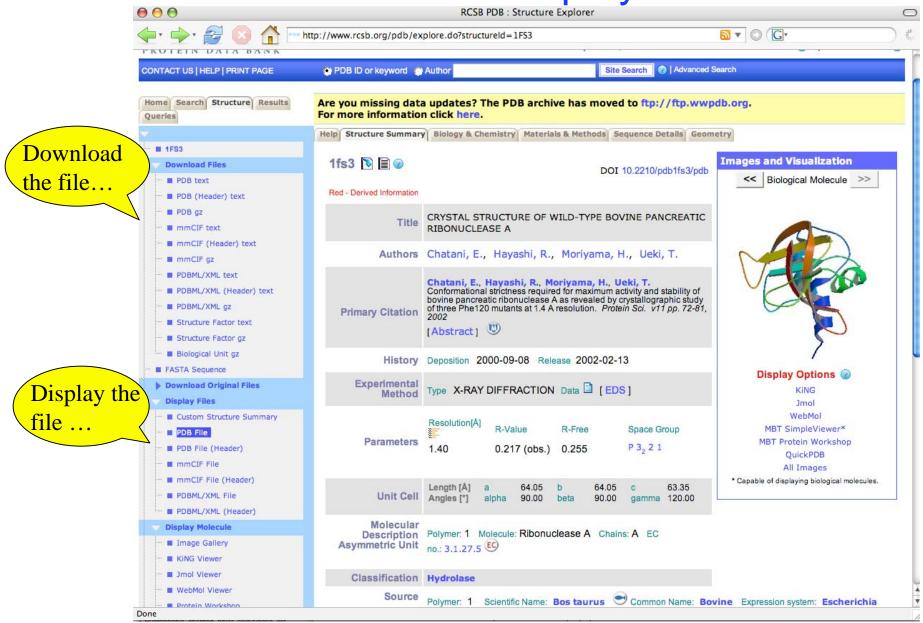

in DNA or attack enzymes that make

Enter what you – know (names, id codes..)

Which one do I want?			RCSB PDB : Query Results
	/	http://www.rcsb.org/pdb/results/	
	PROTEIN DATA BANK		A MEMBER OF THE PDB An Information Portal to Biological Macromolecular Structures As of Tuesday Oct 09, 2007 there are 46557 Structures @ PDB Statistics @
Let's look at	CONTACT US HELP PRINT PAGE	🕐 PDB ID or keyword 💮 Auth	or Site Search 🔗 Advanced Search
this one	iome Search Structure Results Queries	Are you missing data up For more information clie	dates? The PDB archive has moved to ftp://ftp.wwpdb.org. ck here.
		Help 79 Structure Hits 38 Ci	tations 7 Unreleased Structures 30 Ligand Hits 39 Web Page Hits GO Hits SCOP Hits CATH Hits
	Results (The Second Sec		Advanced Keyword Query for: bovine pancreatic ribonuclease A
	Modify / Refine this Search		123458 🗘
	T Structures Awaiting Release Select All	🖻 1fs3 🛛 🖹 🗑 🍘	CRYSTAL STRUCTURE OF WILD-TYPE BOVINE PANCREATIC RIBONUCLEASE A
	E Deselect All	Characteristics	Release Date: 13-Feb-2002 Exp. Method: X Ray Diffraction
	Download Selected	Classification	Resolution: 1.40 Å Hydrolase
	Tabulate Narrow Query Sort Results	Compound Authors	Polymer: 1 Molecule: Ribonuclease A Chains: A EC no.: 3.1.27.5 EC Chatani, E., Hayashi, R., Moriyama, H., Ueki, T.
	Results per Page Show Query Details	🖻 1tq9 🗋 🖹 🗑 🥥	Non-covalent swapped dimer of Bovine Seminal Ribonuclease in complex with 2'-DEOXYCYTIDINE-2'-DEOXYADENOSINE-3',5'-MONOPHOSPHATE
	Results Help	Characteristic	Release Date: 14-Sep-2004 Exp. Method: X Ray Diffraction S Resolution: 2.00 Å
		Classification	Hydrolase
	Quick Tips : 🔹 🗴	Compound Authors	Polymer: 1 Molecule: Ribonuclease, seminal Chains: A,B EC no.: 3.1.27.5 EC Sica, F., Di Fiore, A., Merlino, A., Mazzarella, L.
	Refine this query by selecting the link "Refine this Search" in the menu	🗹 2aas 🛛 🗎 🗟 🥥	HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF RIBONUCLEASE A IN SOLUTION BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
	above.	Characteristic: Classification	s Release Date: 31-Jan-1994 Exp. Method: NMR 32 Structures Hydrolase(endoribonuclease)
		Compound Authors	Polymer: 1 Molecule: RIBONUCLEASE A Chains: A EC no.: 3.1.27.5 EC Santoro, J., Gonzalez, C., Bruix, M., Neira, J.L., Nieto, J.L., Herranz, J., Rico, M.
		— 🖂 1j82 🔃 🖹 🗟 🥥	Osmolyte Stabilization of RNase
		Characteristic	Release Date: 06-Jun-2001 Exp. Method: X Ray Diffraction


Structure Explorer

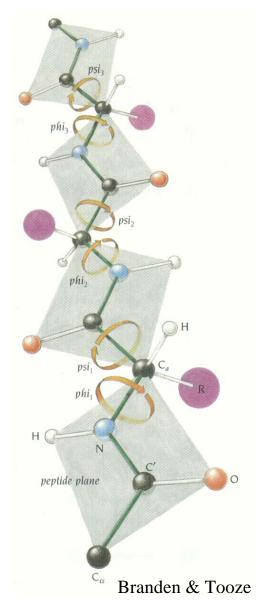
38


View it...

View Structure

Welcome to WebMol

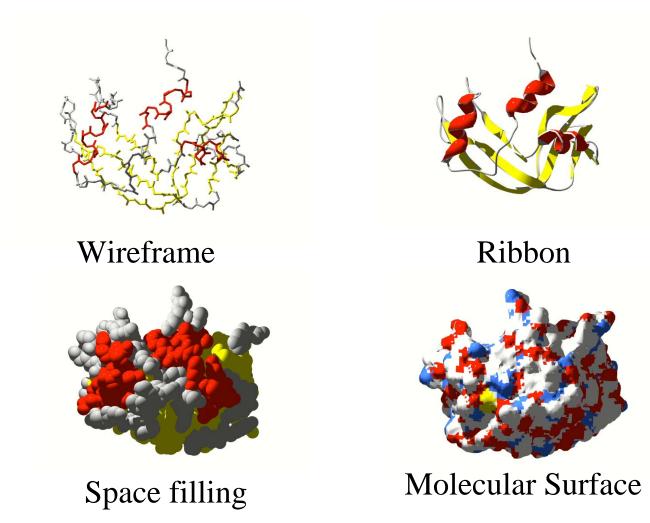
Download/Display



Header Information

$\bigcirc \bigcirc \bigcirc$		Mozilla Firefox
<	http://www.rcsb.org/pdb/files/1fs3.pdb	
HEADER	HYDROLASE 08-SEP-00	1FS3
TITLE	CRYSTAL STRUCTURE OF WILD-TYPE BOVINE PANCREATIC	
TITLE	2 RIBONUCLEASE A	
COMPND	MOL_ID: 1;	
COMPND	2 MOLECULE: RIBONUCLEASE A;	
COMPND	3 CHAIN: A;	
COMPND	4 SYNONYM: RIBONUCLEASE PANCREATIC;	
COMPND	5 EC: 3.1.27.5;	
COMPND	6 ENGINEERED: YES	
SOURCE	MOL ID: 1;	
SOURCE	2 ORGANISM SCIENTIFIC: BOS TAURUS;	
SOURCE	3 ORGANISM COMMON: BOVINE;	
SOURCE	4 TISSUE: PANCREAS;	
SOURCE	5 EXPRESSION_SYSTEM: ESCHERICHIA COLI;	
SOURCE	6 EXPRESSION SYSTEM COMMON: BACTERIA;	
SOURCE	7 EXPRESSION_SYSTEM_VECTOR_TYPE: PLASMID	
KEYWDS	RIBONUCLEASE, RNASE A, BOVINE PANCREAS, HYDROLASE	
EXPDTA	X-RAY DIFFRACTION	
AUTHOR	E.CHATANI, R.HAYASHI, H.MORIYAMA, T.UEKI	
REVDAT	2 31-DEC-02 1FS3 1 REMARK	
REVDAT	1 13-FEB-02 1FS3 0	
JRNL	AUTH E.CHATANI, R. HAYASHI, H. MORIYAMA, T. UEKI	
JRNL	TITL CONFORMATIONAL STRICTNESS REQUIRED FOR MAX	IMUM
JRNL	TITL 2 ACTIVITY AND STABILITY OF BOVINE PANCREATI	C
JRNL	TITL 3 RIBONUCLEASE A AS REVEALED BY CRYSTALLOGRA	PHIC
JRNL	TITL 4 STUDY OF THREE PHE120 MUTANTS AT 1.4 A RES	SOLUTION.
JRNL	REF PROTEIN SCI. V. 11 72	2002
JRNL	REFN ASTM PRCIEI US ISSN 0961-8368	
REMARK	1	
REMARK	2	
REMARK	2 RESOLUTION. 1.40 ANGSTROMS.	
D D L D D D D		

Visualizing Proteins


- High complexity
- Multiple levels of structure
- Important properties are "distributed" throughout the 3D structure

Visualization Objectives

- Structure
 - Backbone; secondary, tertiary & quaternary
- Side chain groups
 - Hydrophobic, charged, polar, acidic/base, etc.
- Cross-links
 - Hydrogen bonds, disulfide bonds
- Surfaces
 - Van der Waals, solvent-accessible
- Charge distributions, distances & angles, etc.

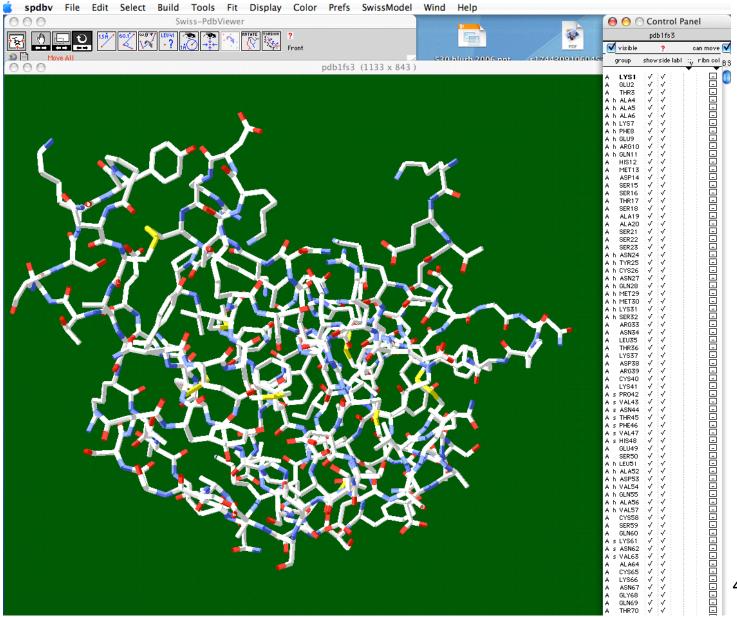
Display Conventions

Important URLs & Visualization Tools

PyMol:	http://pymol.sourceforge.net/
Chimera:	http://www.cgl.ucsf.edu/chimera/
VMD:	http://www.ks.uiuc.edu/Research/vmd/
MolMol:	http://hugin.ethz.ch/wuthrich/software/molmol/index.html
Cn3D:	http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
iMol:	http://www.pirx.com/iMol/
Molview:	http://www.danforthcenter.org/smith/MolView/molview.html
RasMol:	http://www.bernstein-plus-sons.com/software/rasmol/

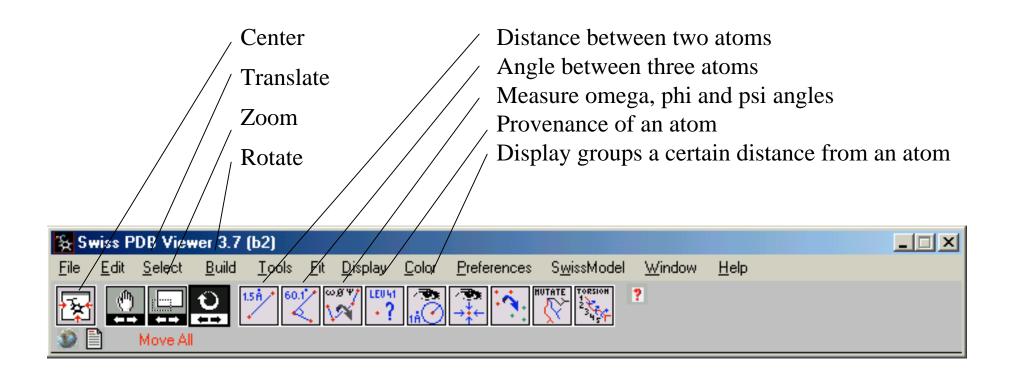
- Operating systems Unix, Windows, Mac
- Our choice (arbitrary) :

-PyMOL


-SwissPDB (stand-alone) etc.

PyMOL

00							X PYMC	DL Tcl/Tk C	101							
e <u>E</u> dit	<u>B</u> uild	<u>M</u> ovie	<u>D</u> isplay	<u>S</u> etting	S <u>c</u> ene	Mouse	<u>W</u> izard	<u>P</u> lugin							<u>H</u> elp	Tutoria
	CHAIN:	A;								Re	set	Zoom	Dra	w	Ray	Rock
MPND 9 MPND 9	EC: 3.1	1; RIBON 1,27,5; EPED: VE	OULEHSE M	ANCREATIC;						U	npick		Deselec	ct	Get	t View
bjectMo. bjectMol	ecule: H	kead sec Read cru	ondary sti stal summ	ructure as etru infor	signment					<	<	Stop	Play	>	>	MClear
ymmetry: mdLoad;	Found ("/Users/	6 symmet /yeo/Des	ry operat ktop/1FS3	ors. .pdb" load	led as "1	.FS3".					Con	nmand			Build	er
ou click elector:	ed /1FSJ select:	3//A/ARG ion "sel	39/CB e" define	d with 11	atoms.					- I						
000							Ma	cPyMOL								
												all			A	5 H L
												1FS3			A S	6 H L
												(sele			A S	5 H L
		2	Ì				A	1	15							
							States -		X	, E						


46

SwissPDB

47

SwissPDB – Toolbar

