2.22)

We did this problem in class. Evaluate the integral;

\[V = 2\kappa \int_{0}^{\infty} dx \frac{\lambda}{[x^2 + y^2]^{1/2}} = 2\kappa \lambda \ln(x + \sqrt{x^2 + y^2}) \bigg|_{0}^{\infty} \]

The issue here is understanding how to remove the \(\infty \), which after all is a constant. If integration is taken between \(\pm \infty \) then one needs to consider the limits obtained by expansion of the log terms and cancelling terms to first order.

\[V = 2\kappa \lambda \ln(y) \]

Figure 1: The coordinate geometry for the problem

2.34)

a) \[W = (\epsilon/2) \int E^2 d\tau \]

For a spherically symmetric shell, there are no fields on the inside of the charges on each shell. Thus;

\[E = 0 \quad r < a \text{ and } r > b \]

\[\vec{E} = \frac{\kappa q}{r^2} \hat{r} \quad a < r < b \]

\[W = (\epsilon_0/2) \int d\tau \left[\frac{\kappa q}{r^2} \right]^2 r^2 d\Omega \]

\[W = (\epsilon_0/2)\kappa^2 q^2 4\pi \int_{a}^{b} dr E^2 / r^2 \]
\[W = \frac{q^2}{8\pi\epsilon_0} [1/a - 1/b] \]

b) \[W_1 = \epsilon/2 \int d\tau E_1^2 = \frac{q^2}{8\pi\epsilon_0} (1/a) \]

\[W_2 = \epsilon/2 \int d\tau E_2^2 = \frac{q^2}{8\pi\epsilon_0} (1/b) \]

\[A = \epsilon_0 \lim d\tau \vec{E_1} \cdot \vec{E_2} = -\frac{q^2}{4\pi\epsilon_0} (1/b) \]

\[W_1 + W_2 + A = \frac{q^2}{8\pi\epsilon_0} [1/a - 1/b] \]

Figure 2: The coordinate geometry for the problem

2.35)

a) \[\sigma = \frac{q}{4\pi R^2} \quad r = R \]

\[\sigma = -\frac{q}{4\pi a^2} \quad r = a \]

\[\sigma = \frac{q}{4\pi b^2} \quad r = b \]

b) \[\vec{E} = 0 \quad 0 < r < R \]

\[\vec{E} = \kappa \frac{q\hat{r}}{r^2} \quad R < r < a \]

\[\vec{E} = 0 \quad a < r < b \]

\[\vec{E} = \kappa \frac{q\hat{r}}{r^2} \quad b < r < \infty \]

\[V = \kappa q \int \frac{a}{R} dr (1/r^2) = \kappa q [1/R - 1/a] \]
\[V = \kappa q \int_b^\infty dr (1/r^2) = \kappa q [1/b] \]

\[V_c = \kappa q [1/R - (1/a - 1/b)] \]

c) Change the zero of the potential. The charge density remains the same. The potential is:

\[V_c = \kappa q [1/R - 1/a] \]

Figure 3: The coordinate geometry for the problem

2.38)

This is the same as the problem on the 1st exam. The surface charge creates a field only on the outside of the spherical surface. Thus the average field is \((1/2)\epsilon_0 \sigma\). The force/area (from the text) is

\[\mathcal{F} = (1/2\epsilon_0) \sigma^2 \hat{n} \]

Integrate the z direction of the force.

\[F = (\sigma^2/2\epsilon) \int d\Omega R^2 \cos(\theta) \]

\[F = 2\pi \sigma^2 \epsilon_0 R^2 \]